/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dc.h" #include "dcn30_init.h" #include "resource.h" #include "include/irq_service_interface.h" #include "dcn20/dcn20_resource.h" #include "dcn30_resource.h" #include "dcn10/dcn10_ipp.h" #include "dcn30/dcn30_hubbub.h" #include "dcn30/dcn30_mpc.h" #include "dcn30/dcn30_hubp.h" #include "irq/dcn30/irq_service_dcn30.h" #include "dcn30/dcn30_dpp.h" #include "dcn30/dcn30_optc.h" #include "dcn20/dcn20_hwseq.h" #include "dcn30/dcn30_hwseq.h" #include "dce110/dce110_hw_sequencer.h" #include "dcn30/dcn30_opp.h" #include "dcn20/dcn20_dsc.h" #include "dcn30/dcn30_vpg.h" #include "dcn30/dcn30_afmt.h" #include "dcn30/dcn30_dio_stream_encoder.h" #include "dcn30/dcn30_dio_link_encoder.h" #include "dce/dce_clock_source.h" #include "dce/dce_audio.h" #include "dce/dce_hwseq.h" #include "clk_mgr.h" #include "virtual/virtual_stream_encoder.h" #include "dce110/dce110_resource.h" #include "dml/display_mode_vba.h" #include "dcn30/dcn30_dccg.h" #include "dcn10/dcn10_resource.h" #include "dce/dce_panel_cntl.h" #include "dcn30/dcn30_dwb.h" #include "dcn30/dcn30_mmhubbub.h" #include "sienna_cichlid_ip_offset.h" #include "dcn/dcn_3_0_0_offset.h" #include "dcn/dcn_3_0_0_sh_mask.h" #include "nbio/nbio_7_4_offset.h" #include "dcn/dpcs_3_0_0_offset.h" #include "dcn/dpcs_3_0_0_sh_mask.h" #include "mmhub/mmhub_2_0_0_offset.h" #include "mmhub/mmhub_2_0_0_sh_mask.h" #include "reg_helper.h" #include "dce/dmub_abm.h" #include "dce/dmub_psr.h" #include "dce/dce_aux.h" #include "dce/dce_i2c.h" #include "dml/dcn30/display_mode_vba_30.h" #include "vm_helper.h" #include "dcn20/dcn20_vmid.h" #include "amdgpu_socbb.h" #define DC_LOGGER_INIT(logger) struct _vcs_dpi_ip_params_st dcn3_0_ip = { .use_min_dcfclk = 1, .clamp_min_dcfclk = 0, .odm_capable = 1, .gpuvm_enable = 0, .hostvm_enable = 0, .gpuvm_max_page_table_levels = 4, .hostvm_max_page_table_levels = 4, .hostvm_cached_page_table_levels = 0, .pte_group_size_bytes = 2048, .num_dsc = 6, .rob_buffer_size_kbytes = 184, .det_buffer_size_kbytes = 184, .dpte_buffer_size_in_pte_reqs_luma = 84, .pde_proc_buffer_size_64k_reqs = 48, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .pte_enable = 1, .max_page_table_levels = 2, .pte_chunk_size_kbytes = 2, // ? .meta_chunk_size_kbytes = 2, .writeback_chunk_size_kbytes = 8, .line_buffer_size_bits = 789504, .is_line_buffer_bpp_fixed = 0, // ? .line_buffer_fixed_bpp = 0, // ? .dcc_supported = true, .writeback_interface_buffer_size_kbytes = 90, .writeback_line_buffer_buffer_size = 0, .max_line_buffer_lines = 12, .writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640 .writeback_chroma_buffer_size_kbytes = 8, .writeback_chroma_line_buffer_width_pixels = 4, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_taps = 1, .writeback_max_vscl_taps = 1, .writeback_line_buffer_luma_buffer_size = 0, .writeback_line_buffer_chroma_buffer_size = 14643, .cursor_buffer_size = 8, .cursor_chunk_size = 2, .max_num_otg = 6, .max_num_dpp = 6, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 6, .max_vscl_ratio = 6, .hscl_mults = 4, .vscl_mults = 4, .max_hscl_taps = 8, .max_vscl_taps = 8, .dispclk_ramp_margin_percent = 1, .underscan_factor = 1.11, .min_vblank_lines = 32, .dppclk_delay_subtotal = 46, .dynamic_metadata_vm_enabled = true, .dppclk_delay_scl_lb_only = 16, .dppclk_delay_scl = 50, .dppclk_delay_cnvc_formatter = 27, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 119, .dcfclk_cstate_latency = 5.2, // SRExitTime .max_inter_dcn_tile_repeaters = 8, .odm_combine_4to1_supported = true, .xfc_supported = false, .xfc_fill_bw_overhead_percent = 10.0, .xfc_fill_constant_bytes = 0, .gfx7_compat_tiling_supported = 0, .number_of_cursors = 1, }; struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = { .clock_limits = { { .state = 0, .dispclk_mhz = 562.0, .dppclk_mhz = 300.0, .phyclk_mhz = 300.0, .phyclk_d18_mhz = 667.0, .dscclk_mhz = 405.6, }, }, .min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */ .num_states = 1, .sr_exit_time_us = 12, .sr_enter_plus_exit_time_us = 20, .urgent_latency_us = 4.0, .urgent_latency_pixel_data_only_us = 4.0, .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, .urgent_latency_vm_data_only_us = 4.0, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0, .max_avg_sdp_bw_use_normal_percent = 60.0, .max_avg_dram_bw_use_normal_percent = 40.0, .writeback_latency_us = 12.0, .max_request_size_bytes = 256, .fabric_datapath_to_dcn_data_return_bytes = 64, .dcn_downspread_percent = 0.5, .downspread_percent = 0.38, .dram_page_open_time_ns = 50.0, .dram_rw_turnaround_time_ns = 17.5, .dram_return_buffer_per_channel_bytes = 8192, .round_trip_ping_latency_dcfclk_cycles = 191, .urgent_out_of_order_return_per_channel_bytes = 4096, .channel_interleave_bytes = 256, .num_banks = 8, .gpuvm_min_page_size_bytes = 4096, .hostvm_min_page_size_bytes = 4096, .dram_clock_change_latency_us = 404, .dummy_pstate_latency_us = 5, .writeback_dram_clock_change_latency_us = 23.0, .return_bus_width_bytes = 64, .dispclk_dppclk_vco_speed_mhz = 3650, .xfc_bus_transport_time_us = 20, // ? .xfc_xbuf_latency_tolerance_us = 4, // ? .use_urgent_burst_bw = 1, // ? .do_urgent_latency_adjustment = true, .urgent_latency_adjustment_fabric_clock_component_us = 1.0, .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, }; enum dcn30_clk_src_array_id { DCN30_CLK_SRC_PLL0, DCN30_CLK_SRC_PLL1, DCN30_CLK_SRC_PLL2, DCN30_CLK_SRC_PLL3, DCN30_CLK_SRC_PLL4, DCN30_CLK_SRC_PLL5, DCN30_CLK_SRC_TOTAL }; /* begin ********************* * macros to expend register list macro defined in HW object header file */ /* DCN */ /* TODO awful hack. fixup dcn20_dwb.h */ #undef BASE_INNER #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRI2(reg_name, block, id)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name #define SRIR(var_name, reg_name, block, id)\ .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII_MPC_RMU(reg_name, block, id)\ .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define SRII_DWB(reg_name, temp_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## temp_name #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ mm ## reg_name ## _ ## block ## id /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIO_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* MMHUB */ #define MMHUB_BASE_INNER(seg) \ MMHUB_BASE__INST0_SEG ## seg #define MMHUB_BASE(seg) \ MMHUB_BASE_INNER(seg) #define MMHUB_SR(reg_name)\ .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ mmMM ## reg_name /* CLOCK */ #define CLK_BASE_INNER(seg) \ CLK_BASE__INST0_SEG ## seg #define CLK_BASE(seg) \ CLK_BASE_INNER(seg) #define CLK_SRI(reg_name, block, inst)\ .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## _ ## inst ## _ ## reg_name static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; #define clk_src_regs(index, pllid)\ [index] = {\ CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E), clk_src_regs(5, F) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; #define abm_regs(id)\ [id] = {\ ABM_DCN30_REG_LIST(id)\ } static const struct dce_abm_registers abm_regs[] = { abm_regs(0), abm_regs(1), abm_regs(2), abm_regs(3), abm_regs(4), abm_regs(5), }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN301(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN301(_MASK) }; #define audio_regs(id)\ [id] = {\ AUD_COMMON_REG_LIST(id)\ } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), audio_regs(6) }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; #define vpg_regs(id)\ [id] = {\ VPG_DCN3_REG_LIST(id)\ } static const struct dcn30_vpg_registers vpg_regs[] = { vpg_regs(0), vpg_regs(1), vpg_regs(2), vpg_regs(3), vpg_regs(4), vpg_regs(5), vpg_regs(6), }; static const struct dcn30_vpg_shift vpg_shift = { DCN3_VPG_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_vpg_mask vpg_mask = { DCN3_VPG_MASK_SH_LIST(_MASK) }; #define afmt_regs(id)\ [id] = {\ AFMT_DCN3_REG_LIST(id)\ } static const struct dcn30_afmt_registers afmt_regs[] = { afmt_regs(0), afmt_regs(1), afmt_regs(2), afmt_regs(3), afmt_regs(4), afmt_regs(5), afmt_regs(6), }; static const struct dcn30_afmt_shift afmt_shift = { DCN3_AFMT_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_afmt_mask afmt_mask = { DCN3_AFMT_MASK_SH_LIST(_MASK) }; #define stream_enc_regs(id)\ [id] = {\ SE_DCN3_REG_LIST(id)\ } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4), stream_enc_regs(5) }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define aux_regs(id)\ [id] = {\ DCN2_AUX_REG_LIST(id)\ } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4), aux_regs(5) }; #define hpd_regs(id)\ [id] = {\ HPD_REG_LIST(id)\ } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4), hpd_regs(5) }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN3_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ DPCS_DCN2_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E), link_regs(5, F) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ DPCS_DCN2_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ DPCS_DCN2_MASK_SH_LIST(_MASK) }; static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCN_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; #define dpp_regs(id)\ [id] = {\ DPP_REG_LIST_DCN30(id),\ } static const struct dcn3_dpp_registers dpp_regs[] = { dpp_regs(0), dpp_regs(1), dpp_regs(2), dpp_regs(3), dpp_regs(4), dpp_regs(5), }; static const struct dcn3_dpp_shift tf_shift = { DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) }; static const struct dcn3_dpp_mask tf_mask = { DPP_REG_LIST_SH_MASK_DCN30(_MASK) }; #define opp_regs(id)\ [id] = {\ OPP_REG_LIST_DCN30(id),\ } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4), opp_regs(5) }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4), aux_engine_regs(5) }; #define dwbc_regs_dcn3(id)\ [id] = {\ DWBC_COMMON_REG_LIST_DCN30(id),\ } static const struct dcn30_dwbc_registers dwbc30_regs[] = { dwbc_regs_dcn3(0), }; static const struct dcn30_dwbc_shift dwbc30_shift = { DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_dwbc_mask dwbc30_mask = { DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define mcif_wb_regs_dcn3(id)\ [id] = {\ MCIF_WB_COMMON_REG_LIST_DCN30(id),\ } static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { mcif_wb_regs_dcn3(0) }; static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define dsc_regsDCN20(id)\ [id] = {\ DSC_REG_LIST_DCN20(id)\ } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3), dsc_regsDCN20(4), dsc_regsDCN20(5) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; static const struct dcn30_mpc_registers mpc_regs = { MPC_REG_LIST_DCN3_0(0), MPC_REG_LIST_DCN3_0(1), MPC_REG_LIST_DCN3_0(2), MPC_REG_LIST_DCN3_0(3), MPC_REG_LIST_DCN3_0(4), MPC_REG_LIST_DCN3_0(5), MPC_OUT_MUX_REG_LIST_DCN3_0(0), MPC_OUT_MUX_REG_LIST_DCN3_0(1), MPC_OUT_MUX_REG_LIST_DCN3_0(2), MPC_OUT_MUX_REG_LIST_DCN3_0(3), MPC_OUT_MUX_REG_LIST_DCN3_0(4), MPC_OUT_MUX_REG_LIST_DCN3_0(5), MPC_RMU_GLOBAL_REG_LIST_DCN3AG, MPC_RMU_REG_LIST_DCN3AG(0), MPC_RMU_REG_LIST_DCN3AG(1), MPC_RMU_REG_LIST_DCN3AG(2), MPC_DWB_MUX_REG_LIST_DCN3_0(0), }; static const struct dcn30_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define optc_regs(id)\ [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} static const struct dcn_optc_registers optc_regs[] = { optc_regs(0), optc_regs(1), optc_regs(2), optc_regs(3), optc_regs(4), optc_regs(5) }; static const struct dcn_optc_shift optc_shift = { OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_optc_mask optc_mask = { OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; #define hubp_regs(id)\ [id] = {\ HUBP_REG_LIST_DCN30(id)\ } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3), hubp_regs(4), hubp_regs(5) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN30(_MASK) }; static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN30(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN30(_MASK) }; static const struct dccg_registers dccg_regs = { DCCG_REG_LIST_DCN30() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN3(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN3(_MASK) }; static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN30_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN30_MASK_SH_LIST(_MASK) }; #define vmid_regs(id)\ [id] = {\ DCN20_VMID_REG_LIST(id)\ } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; static const struct resource_caps res_cap_dcn3 = { .num_timing_generator = 6, .num_opp = 6, .num_video_plane = 6, .num_audio = 6, .num_stream_encoder = 6, .num_pll = 6, .num_dwb = 1, .num_ddc = 6, .num_vmid = 16, .num_mpc_3dlut = 3, .num_dsc = 6, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = false, .ayuv = false, }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 16000 }, .max_downscale_factor = { .argb8888 = 600, .nv12 = 600, .fp16 = 600 } }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = true, //No DMCU on DCN30 .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = true, .pipe_split_policy = MPC_SPLIT_DYNAMIC, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 7680,/*upto 8K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .underflow_assert_delay_us = 0xFFFFFFFF, .dwb_fi_phase = -1, // -1 = disable, .dmub_command_table = true, .disable_psr = false, }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = true, //No dmcu on DCN30 .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_dpp_power_gate = true, .disable_hubp_power_gate = true, .disable_clock_gate = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .disable_stutter = false, .scl_reset_length10 = true, .dwb_fi_phase = -1, // -1 = disable .dmub_command_table = true, .disable_psr = true, .enable_tri_buf = true, }; void dcn30_dpp_destroy(struct dpp **dpp) { kfree(TO_DCN20_DPP(*dpp)); *dpp = NULL; } static struct dpp *dcn30_dpp_create( struct dc_context *ctx, uint32_t inst) { struct dcn3_dpp *dpp = kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); if (!dpp) return NULL; if (dpp3_construct(dpp, ctx, inst, &dpp_regs[inst], &tf_shift, &tf_mask)) return &dpp->base; BREAK_TO_DEBUGGER(); kfree(dpp); return NULL; } static struct output_pixel_processor *dcn30_opp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } static struct dce_aux *dcn30_aux_engine_create( struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5), i2c_inst_regs(6), }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) }; static struct dce_i2c_hw *dcn30_i2c_hw_create( struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static struct mpc *dcn30_mpc_create( struct dc_context *ctx, int num_mpcc, int num_rmu) { struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), GFP_KERNEL); if (!mpc30) return NULL; dcn30_mpc_construct(mpc30, ctx, &mpc_regs, &mpc_shift, &mpc_mask, num_mpcc, num_rmu); return &mpc30->base; } struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub3) return NULL; hubbub3_construct(hubbub3, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); for (i = 0; i < res_cap_dcn3.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub3->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub3->base; } static struct timing_generator *dcn30_timing_generator_create( struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &optc_regs[instance]; tgn10->tg_shift = &optc_shift; tgn10->tg_mask = &optc_mask; dcn30_timing_generator_init(tgn10); return &tgn10->base; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; static struct link_encoder *dcn30_link_encoder_create( const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); if (!enc20) return NULL; dcn30_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static void read_dce_straps( struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static struct audio *dcn30_create_audio( struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } static struct vpg *dcn30_vpg_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); if (!vpg3) return NULL; vpg3_construct(vpg3, ctx, inst, &vpg_regs[inst], &vpg_shift, &vpg_mask); return &vpg3->base; } static struct afmt *dcn30_afmt_create( struct dc_context *ctx, uint32_t inst) { struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); if (!afmt3) return NULL; afmt3_construct(afmt3, ctx, inst, &afmt_regs[inst], &afmt_shift, &afmt_mask); return &afmt3->base; } struct stream_encoder *dcn30_stream_encoder_create( enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1; struct vpg *vpg; struct afmt *afmt; int vpg_inst; int afmt_inst; /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ if (eng_id <= ENGINE_ID_DIGF) { vpg_inst = eng_id; afmt_inst = eng_id; } else return NULL; enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); vpg = dcn30_vpg_create(ctx, vpg_inst); afmt = dcn30_afmt_create(ctx, afmt_inst); if (!enc1 || !vpg || !afmt) return NULL; dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, vpg, afmt, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } struct dce_hwseq *dcn30_hwseq_create( struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn30_create_audio, .create_stream_encoder = dcn30_stream_encoder_create, .create_hwseq = dcn30_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hwseq = dcn30_hwseq_create, }; static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) { unsigned int i; for (i = 0; i < pool->base.stream_enc_count; i++) { if (pool->base.stream_enc[i] != NULL) { if (pool->base.stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); pool->base.stream_enc[i]->vpg = NULL; } if (pool->base.stream_enc[i]->afmt != NULL) { kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); pool->base.stream_enc[i]->afmt = NULL; } kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); pool->base.stream_enc[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { if (pool->base.dscs[i] != NULL) dcn20_dsc_destroy(&pool->base.dscs[i]); } if (pool->base.mpc != NULL) { kfree(TO_DCN20_MPC(pool->base.mpc)); pool->base.mpc = NULL; } if (pool->base.hubbub != NULL) { kfree(pool->base.hubbub); pool->base.hubbub = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.dpps[i] != NULL) dcn30_dpp_destroy(&pool->base.dpps[i]); if (pool->base.ipps[i] != NULL) pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); if (pool->base.hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->base.hubps[i])); pool->base.hubps[i] = NULL; } if (pool->base.irqs != NULL) { dal_irq_service_destroy(&pool->base.irqs); } } for (i = 0; i < pool->base.res_cap->num_ddc; i++) { if (pool->base.engines[i] != NULL) dce110_engine_destroy(&pool->base.engines[i]); if (pool->base.hw_i2cs[i] != NULL) { kfree(pool->base.hw_i2cs[i]); pool->base.hw_i2cs[i] = NULL; } if (pool->base.sw_i2cs[i] != NULL) { kfree(pool->base.sw_i2cs[i]); pool->base.sw_i2cs[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { if (pool->base.opps[i] != NULL) pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { if (pool->base.timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); pool->base.timing_generators[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_dwb; i++) { if (pool->base.dwbc[i] != NULL) { kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); pool->base.dwbc[i] = NULL; } if (pool->base.mcif_wb[i] != NULL) { kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); pool->base.mcif_wb[i] = NULL; } } for (i = 0; i < pool->base.audio_count; i++) { if (pool->base.audios[i]) dce_aud_destroy(&pool->base.audios[i]); } for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] != NULL) { dcn20_clock_source_destroy(&pool->base.clock_sources[i]); pool->base.clock_sources[i] = NULL; } } for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { if (pool->base.mpc_lut[i] != NULL) { dc_3dlut_func_release(pool->base.mpc_lut[i]); pool->base.mpc_lut[i] = NULL; } if (pool->base.mpc_shaper[i] != NULL) { dc_transfer_func_release(pool->base.mpc_shaper[i]); pool->base.mpc_shaper[i] = NULL; } } if (pool->base.dp_clock_source != NULL) { dcn20_clock_source_destroy(&pool->base.dp_clock_source); pool->base.dp_clock_source = NULL; } for (i = 0; i < pool->base.pipe_count; i++) { if (pool->base.multiple_abms[i] != NULL) dce_abm_destroy(&pool->base.multiple_abms[i]); } if (pool->base.psr != NULL) dmub_psr_destroy(&pool->base.psr); if (pool->base.dccg != NULL) dcn_dccg_destroy(&pool->base.dccg); } static struct hubp *dcn30_hubp_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); if (!hubp2) return NULL; if (hubp3_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), GFP_KERNEL); if (!dwbc30) { dm_error("DC: failed to create dwbc30!\n"); return false; } dcn30_dwbc_construct(dwbc30, ctx, &dwbc30_regs[i], &dwbc30_shift, &dwbc30_mask, i); pool->dwbc[i] = &dwbc30->base; } return true; } static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), GFP_KERNEL); if (!mcif_wb30) { dm_error("DC: failed to create mcif_wb30!\n"); return false; } dcn30_mmhubbub_construct(mcif_wb30, ctx, &mcif_wb30_regs[i], &mcif_wb30_shift, &mcif_wb30_mask, i); pool->mcif_wb[i] = &mcif_wb30->base; } return true; } static struct display_stream_compressor *dcn30_dsc_create( struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); return &dsc->base; } enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) { return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); } static void dcn30_destroy_resource_pool(struct resource_pool **pool) { struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); dcn30_resource_destruct(dcn30_pool); kfree(dcn30_pool); *pool = NULL; } static struct clock_source *dcn30_clock_source_create( struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn3_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } BREAK_TO_DEBUGGER(); return NULL; } int dcn30_populate_dml_pipes_from_context( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes) { int i, pipe_cnt; struct resource_context *res_ctx = &context->res_ctx; dcn20_populate_dml_pipes_from_context(dc, context, pipes); for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { if (!res_ctx->pipe_ctx[i].stream) continue; pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = dm_lb_16; } return pipe_cnt; } void dcn30_populate_dml_writeback_from_context( struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) { int pipe_cnt, i, j; double max_calc_writeback_dispclk; double writeback_dispclk; struct writeback_st dout_wb; for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream; if (!stream) continue; max_calc_writeback_dispclk = 0; /* Set writeback information */ pipes[pipe_cnt].dout.wb_enable = 0; pipes[pipe_cnt].dout.num_active_wb = 0; for (j = 0; j < stream->num_wb_info; j++) { struct dc_writeback_info *wb_info = &stream->writeback_info[j]; if (wb_info->wb_enabled && wb_info->writeback_source_plane && (wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) { pipes[pipe_cnt].dout.wb_enable = 1; pipes[pipe_cnt].dout.num_active_wb++; dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ? wb_info->dwb_params.cnv_params.crop_height : wb_info->dwb_params.cnv_params.src_height; dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ? wb_info->dwb_params.cnv_params.crop_width : wb_info->dwb_params.cnv_params.src_width; dout_wb.wb_dst_width = wb_info->dwb_params.dest_width; dout_wb.wb_dst_height = wb_info->dwb_params.dest_height; /* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */ if (dc->dml.ip.writeback_max_hscl_taps > 1) { dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps; dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps; } else { dout_wb.wb_htaps_luma = 1; dout_wb.wb_vtaps_luma = 1; } dout_wb.wb_htaps_chroma = 0; dout_wb.wb_vtaps_chroma = 0; dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ? (double)wb_info->dwb_params.cnv_params.crop_width / (double)wb_info->dwb_params.dest_width : (double)wb_info->dwb_params.cnv_params.src_width / (double)wb_info->dwb_params.dest_width; dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ? (double)wb_info->dwb_params.cnv_params.crop_height / (double)wb_info->dwb_params.dest_height : (double)wb_info->dwb_params.cnv_params.src_height / (double)wb_info->dwb_params.dest_height; if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) dout_wb.wb_pixel_format = dm_444_64; else dout_wb.wb_pixel_format = dm_444_32; /* Workaround for cases where multiple writebacks are connected to same plane * In which case, need to compute worst case and set the associated writeback parameters * This workaround is necessary due to DML computation assuming only 1 set of writeback * parameters per pipe */ writeback_dispclk = dml30_CalculateWriteBackDISPCLK( dout_wb.wb_pixel_format, pipes[pipe_cnt].pipe.dest.pixel_rate_mhz, dout_wb.wb_hratio, dout_wb.wb_vratio, dout_wb.wb_htaps_luma, dout_wb.wb_vtaps_luma, dout_wb.wb_src_width, dout_wb.wb_dst_width, pipes[pipe_cnt].pipe.dest.htotal, dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size); if (writeback_dispclk > max_calc_writeback_dispclk) { max_calc_writeback_dispclk = writeback_dispclk; pipes[pipe_cnt].dout.wb = dout_wb; } } } pipe_cnt++; } } unsigned int dcn30_calc_max_scaled_time( unsigned int time_per_pixel, enum mmhubbub_wbif_mode mode, unsigned int urgent_watermark) { unsigned int time_per_byte = 0; unsigned int total_free_entry = 0xb40; unsigned int buf_lh_capability; unsigned int max_scaled_time; if (mode == PACKED_444) /* packed mode 32 bpp */ time_per_byte = time_per_pixel/4; else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ time_per_byte = time_per_pixel/8; if (time_per_byte == 0) time_per_byte = 1; buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ max_scaled_time = buf_lh_capability - urgent_watermark; return max_scaled_time; } void dcn30_set_mcif_arb_params( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt) { enum mmhubbub_wbif_mode wbif_mode; struct display_mode_lib *dml = &context->bw_ctx.dml; struct mcif_arb_params *wb_arb_params; int i, j, k, dwb_pipe; /* Writeback MCIF_WB arbitration parameters */ dwb_pipe = 0; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; for (j = 0; j < MAX_DWB_PIPES; j++) { struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; if (writeback_info->wb_enabled == false) continue; //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) wbif_mode = PACKED_444_FP16; else wbif_mode = PACKED_444; for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) { wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000; wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000; } wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ wb_arb_params->slice_lines = 32; wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, wbif_mode, wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */ dwb_pipe++; if (dwb_pipe >= MAX_DWB_PIPES) return; } if (dwb_pipe >= MAX_DWB_PIPES) return; } } static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; bool dcn30_acquire_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, int mpcc_id, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int i; bool ret = false; union dc_3dlut_state *state; ASSERT(*lut == NULL && *shaper == NULL); *lut = NULL; *shaper = NULL; for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (!res_ctx->is_mpc_3dlut_acquired[i]) { *lut = pool->mpc_lut[i]; *shaper = pool->mpc_shaper[i]; state = &pool->mpc_lut[i]->state; res_ctx->is_mpc_3dlut_acquired[i] = true; state->bits.rmu_idx_valid = 1; state->bits.rmu_mux_num = i; if (state->bits.rmu_mux_num == 0) state->bits.mpc_rmu0_mux = mpcc_id; else if (state->bits.rmu_mux_num == 1) state->bits.mpc_rmu1_mux = mpcc_id; else if (state->bits.rmu_mux_num == 2) state->bits.mpc_rmu2_mux = mpcc_id; ret = true; break; } } return ret; } bool dcn30_release_post_bldn_3dlut( struct resource_context *res_ctx, const struct resource_pool *pool, struct dc_3dlut **lut, struct dc_transfer_func **shaper) { int i; bool ret = false; for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { res_ctx->is_mpc_3dlut_acquired[i] = false; pool->mpc_lut[i]->state.raw = 0; *lut = NULL; *shaper = NULL; ret = true; break; } } return ret; } #define fixed16_to_double(x) (((double) x) / ((double) (1 << 16))) #define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x)) static bool is_soc_bounding_box_valid(struct dc *dc) { uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) return true; return false; } static bool init_soc_bounding_box(struct dc *dc, struct dcn30_resource_pool *pool) { const struct gpu_info_soc_bounding_box_v1_0 *bb = dc->soc_bounding_box; struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; DC_LOGGER_INIT(dc->ctx->logger); if (!bb && !is_soc_bounding_box_valid(dc)) { DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__); return false; } if (bb && !is_soc_bounding_box_valid(dc)) { int i; dcn3_0_soc.sr_exit_time_us = fixed16_to_double_to_cpu(bb->sr_exit_time_us); dcn3_0_soc.sr_enter_plus_exit_time_us = fixed16_to_double_to_cpu(bb->sr_enter_plus_exit_time_us); dcn3_0_soc.urgent_latency_us = fixed16_to_double_to_cpu(bb->urgent_latency_us); dcn3_0_soc.urgent_latency_pixel_data_only_us = fixed16_to_double_to_cpu(bb->urgent_latency_pixel_data_only_us); dcn3_0_soc.urgent_latency_pixel_mixed_with_vm_data_us = fixed16_to_double_to_cpu(bb->urgent_latency_pixel_mixed_with_vm_data_us); dcn3_0_soc.urgent_latency_vm_data_only_us = fixed16_to_double_to_cpu(bb->urgent_latency_vm_data_only_us); dcn3_0_soc.urgent_out_of_order_return_per_channel_pixel_only_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_only_bytes); dcn3_0_soc.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_and_vm_bytes); dcn3_0_soc.urgent_out_of_order_return_per_channel_vm_only_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_vm_only_bytes); dcn3_0_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_only); dcn3_0_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm); dcn3_0_soc.pct_ideal_dram_sdp_bw_after_urgent_vm_only = fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_vm_only); dcn3_0_soc.max_avg_sdp_bw_use_normal_percent = fixed16_to_double_to_cpu(bb->max_avg_sdp_bw_use_normal_percent); dcn3_0_soc.max_avg_dram_bw_use_normal_percent = fixed16_to_double_to_cpu(bb->max_avg_dram_bw_use_normal_percent); dcn3_0_soc.writeback_latency_us = fixed16_to_double_to_cpu(bb->writeback_latency_us); dcn3_0_soc.ideal_dram_bw_after_urgent_percent = fixed16_to_double_to_cpu(bb->ideal_dram_bw_after_urgent_percent); dcn3_0_soc.max_request_size_bytes = le32_to_cpu(bb->max_request_size_bytes); dcn3_0_soc.dram_channel_width_bytes = le32_to_cpu(bb->dram_channel_width_bytes); dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes = le32_to_cpu(bb->fabric_datapath_to_dcn_data_return_bytes); dcn3_0_soc.dcn_downspread_percent = fixed16_to_double_to_cpu(bb->dcn_downspread_percent); dcn3_0_soc.downspread_percent = fixed16_to_double_to_cpu(bb->downspread_percent); dcn3_0_soc.dram_page_open_time_ns = fixed16_to_double_to_cpu(bb->dram_page_open_time_ns); dcn3_0_soc.dram_rw_turnaround_time_ns = fixed16_to_double_to_cpu(bb->dram_rw_turnaround_time_ns); dcn3_0_soc.dram_return_buffer_per_channel_bytes = le32_to_cpu(bb->dram_return_buffer_per_channel_bytes); dcn3_0_soc.round_trip_ping_latency_dcfclk_cycles = le32_to_cpu(bb->round_trip_ping_latency_dcfclk_cycles); dcn3_0_soc.urgent_out_of_order_return_per_channel_bytes = le32_to_cpu(bb->urgent_out_of_order_return_per_channel_bytes); dcn3_0_soc.channel_interleave_bytes = le32_to_cpu(bb->channel_interleave_bytes); dcn3_0_soc.num_banks = le32_to_cpu(bb->num_banks); dcn3_0_soc.num_chans = le32_to_cpu(bb->num_chans); dcn3_0_soc.gpuvm_min_page_size_bytes = le32_to_cpu(bb->vmm_page_size_bytes); dcn3_0_soc.dram_clock_change_latency_us = fixed16_to_double_to_cpu(bb->dram_clock_change_latency_us); dcn3_0_soc.writeback_dram_clock_change_latency_us = fixed16_to_double_to_cpu(bb->writeback_dram_clock_change_latency_us); dcn3_0_soc.return_bus_width_bytes = le32_to_cpu(bb->return_bus_width_bytes); dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = le32_to_cpu(bb->dispclk_dppclk_vco_speed_mhz); dcn3_0_soc.xfc_bus_transport_time_us = le32_to_cpu(bb->xfc_bus_transport_time_us); dcn3_0_soc.xfc_xbuf_latency_tolerance_us = le32_to_cpu(bb->xfc_xbuf_latency_tolerance_us); dcn3_0_soc.use_urgent_burst_bw = le32_to_cpu(bb->use_urgent_burst_bw); dcn3_0_soc.num_states = le32_to_cpu(bb->num_states); for (i = 0; i < dcn3_0_soc.num_states; i++) { dcn3_0_soc.clock_limits[i].state = le32_to_cpu(bb->clock_limits[i].state); dcn3_0_soc.clock_limits[i].dcfclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dcfclk_mhz); dcn3_0_soc.clock_limits[i].fabricclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].fabricclk_mhz); dcn3_0_soc.clock_limits[i].dispclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dispclk_mhz); dcn3_0_soc.clock_limits[i].dppclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dppclk_mhz); dcn3_0_soc.clock_limits[i].phyclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].phyclk_mhz); dcn3_0_soc.clock_limits[i].socclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].socclk_mhz); dcn3_0_soc.clock_limits[i].dscclk_mhz = fixed16_to_double_to_cpu(bb->clock_limits[i].dscclk_mhz); dcn3_0_soc.clock_limits[i].dram_speed_mts = fixed16_to_double_to_cpu(bb->clock_limits[i].dram_speed_mts); } } loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; loaded_ip->max_num_dpp = pool->base.pipe_count; loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; dcn20_patch_bounding_box(dc, loaded_bb); if (!bb && dc->ctx->dc_bios->funcs->get_soc_bb_info) { struct bp_soc_bb_info bb_info = {0}; if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { if (bb_info.dram_clock_change_latency_100ns > 0) dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; if (bb_info.dram_sr_enter_exit_latency_100ns > 0) dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; if (bb_info.dram_sr_exit_latency_100ns > 0) dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; } } return true; } static bool dcn30_split_stream_for_mpc_or_odm( const struct dc *dc, struct resource_context *res_ctx, struct pipe_ctx *pri_pipe, struct pipe_ctx *sec_pipe, bool odm) { int pipe_idx = sec_pipe->pipe_idx; const struct resource_pool *pool = dc->res_pool; *sec_pipe = *pri_pipe; sec_pipe->pipe_idx = pipe_idx; sec_pipe->plane_res.mi = pool->mis[pipe_idx]; sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; sec_pipe->stream_res.dsc = NULL; if (odm) { if (pri_pipe->next_odm_pipe) { ASSERT(pri_pipe->next_odm_pipe != sec_pipe); sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; } pri_pipe->next_odm_pipe = sec_pipe; sec_pipe->prev_odm_pipe = pri_pipe; ASSERT(sec_pipe->top_pipe == NULL); sec_pipe->stream_res.opp = pool->opps[pipe_idx]; if (sec_pipe->stream->timing.flags.DSC == 1) { dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); ASSERT(sec_pipe->stream_res.dsc); if (sec_pipe->stream_res.dsc == NULL) return false; } } else { if (pri_pipe->bottom_pipe) { ASSERT(pri_pipe->bottom_pipe != sec_pipe); sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; sec_pipe->bottom_pipe->top_pipe = sec_pipe; } pri_pipe->bottom_pipe = sec_pipe; sec_pipe->top_pipe = pri_pipe; ASSERT(pri_pipe->plane_state); } return true; } static struct pipe_ctx *dcn30_find_split_pipe( struct dc *dc, struct dc_state *context, int old_index) { struct pipe_ctx *pipe = NULL; int i; if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[old_index]; pipe->pipe_idx = old_index; } if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } } /* * May need to fix pipes getting tossed from 1 opp to another on flip * Add for debugging transient underflow during topology updates: * ASSERT(pipe); */ if (!pipe) for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { if (context->res_ctx.pipe_ctx[i].stream == NULL) { pipe = &context->res_ctx.pipe_ctx[i]; pipe->pipe_idx = i; break; } } return pipe; } static bool dcn30_internal_validate_bw( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int *pipe_cnt_out, int *vlevel_out, bool fast_validate) { bool out = false; bool repopulate_pipes = false; int split[MAX_PIPES] = { 0 }; bool merge[MAX_PIPES] = { false }; bool newly_split[MAX_PIPES] = { false }; int pipe_cnt, i, pipe_idx, vlevel; struct vba_vars_st *vba = &context->bw_ctx.dml.vba; ASSERT(pipes); if (!pipes) return false; pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes); if (!pipe_cnt) { out = true; goto validate_out; } dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); if (!fast_validate) { /* * DML favors voltage over p-state, but we're more interested in * supporting p-state over voltage. We can't support p-state in * prefetch mode > 0 so try capping the prefetch mode to start. */ context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = dm_allow_self_refresh_and_mclk_switch; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); /* This may adjust vlevel and maxMpcComb */ if (vlevel < context->bw_ctx.dml.soc.num_states) vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); } if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { /* * If mode is unsupported or there's still no p-state support then * fall back to favoring voltage. * * We don't actually support prefetch mode 2, so require that we * at least support prefetch mode 1. */ context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = dm_allow_self_refresh; vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); if (vlevel < context->bw_ctx.dml.soc.num_states) { memset(split, 0, sizeof(split)); memset(merge, 0, sizeof(merge)); vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); } } dml_log_mode_support_params(&context->bw_ctx.dml); /* TODO: Need to check calculated vlevel why that fails validation of below resolutions */ if (context->res_ctx.pipe_ctx[0].stream != NULL) { if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 640 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 480) vlevel = 0; if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 1280 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 800) vlevel = 0; if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 1280 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 768) vlevel = 0; if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 1280 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 1024) vlevel = 0; if (context->res_ctx.pipe_ctx[0].stream->timing.h_addressable == 2048 && context->res_ctx.pipe_ctx[0].stream->timing.v_addressable == 1536) vlevel = 0; } if (vlevel == context->bw_ctx.dml.soc.num_states) goto validate_fail; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; if (!pipe->stream) continue; /* We only support full screen mpo with ODM */ if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled && pipe->plane_state && mpo_pipe && memcmp(&mpo_pipe->plane_res.scl_data.recout, &pipe->plane_res.scl_data.recout, sizeof(struct rect)) != 0) { ASSERT(mpo_pipe->plane_state != pipe->plane_state); goto validate_fail; } pipe_idx++; } /* merge pipes if necessary */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; /*skip pipes that don't need merging*/ if (!merge[i]) continue; /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ if (pipe->prev_odm_pipe) { /*split off odm pipe*/ pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; if (pipe->next_odm_pipe) pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; pipe->bottom_pipe = NULL; pipe->next_odm_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; pipe->top_pipe = NULL; pipe->prev_odm_pipe = NULL; if (pipe->stream_res.dsc) dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); repopulate_pipes = true; } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { struct pipe_ctx *top_pipe = pipe->top_pipe; struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; top_pipe->bottom_pipe = bottom_pipe; if (bottom_pipe) bottom_pipe->top_pipe = top_pipe; pipe->top_pipe = NULL; pipe->bottom_pipe = NULL; pipe->plane_state = NULL; pipe->stream = NULL; memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); repopulate_pipes = true; } else ASSERT(0); /* Should never try to merge master pipe */ } for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *hsplit_pipe = NULL; bool odm; int old_index = -1; if (!pipe->stream || newly_split[i]) continue; pipe_idx++; odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; if (!pipe->plane_state && !odm) continue; if (split[i]) { if (odm) { if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; } else { if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; else if (old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; } hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); ASSERT(hsplit_pipe); if (!hsplit_pipe) goto validate_fail; if (!dcn30_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, hsplit_pipe, odm)) goto validate_fail; newly_split[hsplit_pipe->pipe_idx] = true; repopulate_pipes = true; } if (split[i] == 4) { struct pipe_ctx *pipe_4to1; if (odm && old_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) goto validate_fail; if (!dcn30_split_stream_for_mpc_or_odm( dc, &context->res_ctx, pipe, pipe_4to1, odm)) goto validate_fail; newly_split[pipe_4to1->pipe_idx] = true; if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; else old_index = -1; pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); ASSERT(pipe_4to1); if (!pipe_4to1) goto validate_fail; if (!dcn30_split_stream_for_mpc_or_odm( dc, &context->res_ctx, hsplit_pipe, pipe_4to1, odm)) goto validate_fail; newly_split[pipe_4to1->pipe_idx] = true; } if (odm) dcn20_build_mapped_resource(dc, context, pipe->stream); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->plane_state) { if (!resource_build_scaling_params(pipe)) goto validate_fail; } } /* Actual dsc count per stream dsc validation*/ if (!dcn20_validate_dsc(dc, context)) { vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; goto validate_fail; } if (repopulate_pipes) pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes); *vlevel_out = vlevel; *pipe_cnt_out = pipe_cnt; out = true; goto validate_out; validate_fail: out = false; validate_out: return out; } void dcn30_calculate_wm_and_dlg( struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, int pipe_cnt, int vlevel) { int i, pipe_idx; double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != dm_dram_clock_change_unsupported; if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk) dcfclk = context->bw_ctx.dml.soc.min_dcfclk; pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; /* Set B: * DCFCLK: 1GHz or min required above 1GHz * FCLK/UCLK: Max */ if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { if (vlevel == 0) { pipes[0].clks_cfg.voltage = 1; pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz; } context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; pipes[0].clks_cfg.voltage = vlevel; pipes[0].clks_cfg.dcfclk_mhz = dcfclk; /* Set D: * DCFCLK: Min Required * FCLK(proportional to UCLK): 1GHz or Max * sr_enter_exit = 4, sr_exit = 2us */ /* if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; */ /* Set C: * DCFCLK: Min Required * FCLK(proportional to UCLK): 1GHz or Max * pstate latency overridden to 5us */ if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; unsigned int min_dram_speed_mts_margin = 160; context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us; if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported) min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16; for (i = 3; i > 0; i--) { if ((min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) && (min_dram_speed_mts - min_dram_speed_mts_margin < dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts)) context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; } context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; if (!pstate_en) { /* The only difference between A and C is p-state latency, if p-state is not supported we want to * calculate DLG based on dummy p-state latency, and max out the set A p-state watermark */ context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0x13FFFF; } else { /* Set A: * DCFCLK: Min Required * FCLK(proportional to UCLK): 1GHz or Max * * Set A calculated last so that following calculations are based on Set A */ if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) { context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; } context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; } context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; /* Make set D = set A until set D is enabled */ context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { if (!context->res_ctx.pipe_ctx[i].stream) continue; pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); if (dc->config.forced_clocks) { pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; } if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; pipe_idx++; } dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); if (!pstate_en) /* Restore full p-state latency */ context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; } bool dcn30_validate_bandwidth(struct dc *dc, struct dc_state *context, bool fast_validate) { bool out = false; BW_VAL_TRACE_SETUP(); int vlevel = 0; int pipe_cnt = 0; display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); DC_LOGGER_INIT(dc->ctx->logger); BW_VAL_TRACE_COUNT(); out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); if (pipe_cnt == 0) goto validate_out; if (!out) goto validate_fail; BW_VAL_TRACE_END_VOLTAGE_LEVEL(); if (fast_validate) { BW_VAL_TRACE_SKIP(fast); goto validate_out; } dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); BW_VAL_TRACE_END_WATERMARKS(); goto validate_out; validate_fail: DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); BW_VAL_TRACE_SKIP(fail); out = false; validate_out: kfree(pipes); BW_VAL_TRACE_FINISH(); return out; } static void get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, unsigned int *optimal_dcfclk, unsigned int *optimal_fclk) { double bw_from_dram, bw_from_dram1, bw_from_dram2; bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans * dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100); bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans * dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100); bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; if (optimal_fclk) *optimal_fclk = bw_from_dram / (dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100)); if (optimal_dcfclk) *optimal_dcfclk = bw_from_dram / (dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100)); } void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) { unsigned int i, j; unsigned int num_states = 0; unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; unsigned int num_dcfclk_sta_targets = 4; unsigned int num_uclk_states; if (dc->ctx->dc_bios->vram_info.num_chans) dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; if (bw_params->clk_table.entries[0].memclk_mhz) { if (bw_params->clk_table.entries[1].dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array dcfclk_sta_targets[num_dcfclk_sta_targets] = bw_params->clk_table.entries[1].dcfclk_mhz; num_dcfclk_sta_targets++; } else if (bw_params->clk_table.entries[1].dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates for (i = 0; i < num_dcfclk_sta_targets; i++) { if (dcfclk_sta_targets[i] > bw_params->clk_table.entries[1].dcfclk_mhz) { dcfclk_sta_targets[i] = bw_params->clk_table.entries[1].dcfclk_mhz; break; } } // Update size of array since we "removed" duplicates num_dcfclk_sta_targets = i + 1; } num_uclk_states = bw_params->clk_table.num_entries; // Calculate optimal dcfclk for each uclk for (i = 0; i < num_uclk_states; i++) { get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, &optimal_dcfclk_for_uclk[i], NULL); if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; } } // Calculate optimal uclk for each dcfclk sta target for (i = 0; i < num_dcfclk_sta_targets; i++) { for (j = 0; j < num_uclk_states; j++) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { optimal_uclk_for_dcfclk_sta_targets[i] = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } i = 0; j = 0; // create the final dcfclk and uclk table while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } else { if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } else { j = num_uclk_states; } } } while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } for (i = 0; i < dcn3_0_soc.num_states; i++) { dcn3_0_soc.clock_limits[i].state = i; dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; /* Fill all states with max values of all other clocks */ dcn3_0_soc.clock_limits[i].dispclk_mhz = bw_params->clk_table.entries[1].dispclk_mhz; dcn3_0_soc.clock_limits[i].dppclk_mhz = bw_params->clk_table.entries[1].dppclk_mhz; dcn3_0_soc.clock_limits[i].phyclk_mhz = bw_params->clk_table.entries[1].phyclk_mhz; dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz; /* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */ /* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */ dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz; dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz; dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz; } /* re-init DML with updated bb */ dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); if (dc->current_state) dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); } /* re-init DML with updated bb */ dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); if (dc->current_state) dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); } static const struct resource_funcs dcn30_res_pool_funcs = { .destroy = dcn30_destroy_resource_pool, .link_enc_create = dcn30_link_encoder_create, .panel_cntl_create = dcn30_panel_cntl_create, .validate_bandwidth = dcn30_validate_bandwidth, .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, .add_stream_to_ctx = dcn30_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, .set_mcif_arb_params = dcn30_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, .update_bw_bounding_box = dcn30_update_bw_bounding_box, .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, }; static bool dcn30_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct dcn30_resource_pool *pool) { int i; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; ctx->dc_bios->regs = &bios_regs; pool->base.res_cap = &res_cap_dcn3; pool->base.funcs = &dcn30_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; pool->base.pipe_count = pool->base.res_cap->num_timing_generator; pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; dc->caps.max_downscale_ratio = 600; dc->caps.i2c_speed_in_khz = 100; dc->caps.max_cursor_size = 256; dc->caps.dmdata_alloc_size = 2048; dc->caps.max_slave_planes = 1; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; dc->caps.color.dpp.dgam_rom_caps.pq = 1; dc->caps.color.dpp.dgam_rom_caps.hlg = 1; dc->caps.color.dpp.post_csc = 1; dc->caps.color.dpp.gamma_corr = 1; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 1; // no OGAM ROM on DCN3 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 1; dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { dc->debug = debug_defaults_diags; } else dc->debug = debug_defaults_diags; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ /* Clock Sources for Pixel Clock*/ pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL5, &clk_src_regs[5], false); pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->base.dp_clock_source = dcn30_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->base.clk_src_count; i++) { if (pool->base.clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } /* DCCG */ pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->base.dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* PP Lib and SMU interfaces */ init_soc_bounding_box(dc, pool); dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); /* IRQ */ init_data.ctx = dc->ctx; pool->base.irqs = dal_irq_service_dcn30_create(&init_data); if (!pool->base.irqs) goto create_fail; /* HUBBUB */ pool->base.hubbub = dcn30_hubbub_create(ctx); if (pool->base.hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } /* HUBPs, DPPs, OPPs and TGs */ for (i = 0; i < pool->base.pipe_count; i++) { pool->base.hubps[i] = dcn30_hubp_create(ctx, i); if (pool->base.hubps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create hubps!\n"); goto create_fail; } pool->base.dpps[i] = dcn30_dpp_create(ctx, i); if (pool->base.dpps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create dpps!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_opp; i++) { pool->base.opps[i] = dcn30_opp_create(ctx, i); if (pool->base.opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC: failed to create output pixel processor!\n"); goto create_fail; } } for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { pool->base.timing_generators[i] = dcn30_timing_generator_create( ctx, i); if (pool->base.timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } } pool->base.timing_generator_count = i; /* PSR */ pool->base.psr = dmub_psr_create(ctx); if (pool->base.psr == NULL) { dm_error("DC: failed to create PSR obj!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* ABM */ for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { pool->base.multiple_abms[i] = dmub_abm_create(ctx, &abm_regs[i], &abm_shift, &abm_mask); if (pool->base.multiple_abms[i] == NULL) { dm_error("DC: failed to create abm for pipe %d!\n", i); BREAK_TO_DEBUGGER(); goto create_fail; } } /* MPC and DSC */ pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); if (pool->base.mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } for (i = 0; i < pool->base.res_cap->num_dsc; i++) { pool->base.dscs[i] = dcn30_dsc_create(ctx, i); if (pool->base.dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } /* DWB and MMHUBBUB */ if (!dcn30_dwbc_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } if (!dcn30_mmhubbub_create(ctx, &pool->base)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } /* AUX and I2C */ for (i = 0; i < pool->base.res_cap->num_ddc; i++) { pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); if (pool->base.engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create aux engine!!\n"); goto create_fail; } pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); if (pool->base.hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error( "DC:failed to create hw i2c!!\n"); goto create_fail; } pool->base.sw_i2cs[i] = NULL; } /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ if (!resource_construct(num_virtual_links, dc, &pool->base, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto create_fail; /* HW Sequencer and Plane caps */ dcn30_hw_sequencer_construct(dc); dc->caps.max_planes = pool->base.pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; return true; create_fail: dcn30_resource_destruct(pool); return false; } struct resource_pool *dcn30_create_resource_pool( const struct dc_init_data *init_data, struct dc *dc) { struct dcn30_resource_pool *pool = kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) return &pool->base; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }