/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dm_helpers.h" #include "core_types.h" #include "resource.h" #include "dcn30_hwseq.h" #include "dccg.h" #include "dce/dce_hwseq.h" #include "dcn30_mpc.h" #include "dcn30_dpp.h" #include "dcn10/dcn10_cm_common.h" #include "dcn30_cm_common.h" #include "reg_helper.h" #include "abm.h" #include "clk_mgr.h" #include "hubp.h" #include "dchubbub.h" #include "timing_generator.h" #include "opp.h" #include "ipp.h" #include "mpc.h" #include "mcif_wb.h" #include "dc_dmub_srv.h" #include "link_hwss.h" #include "dpcd_defs.h" #include "../dcn20/dcn20_hwseq.h" #include "dcn30_resource.h" #include "link.h" #define DC_LOGGER_INIT(logger) #define CTX \ hws->ctx #define REG(reg)\ hws->regs->reg #define DC_LOGGER \ dc->ctx->logger #undef FN #define FN(reg_name, field_name) \ hws->shifts->field_name, hws->masks->field_name bool dcn30_set_blend_lut( struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; bool result = true; struct pwl_params *blend_lut = NULL; if (plane_state->blend_tf) { if (plane_state->blend_tf->type == TF_TYPE_HWPWL) blend_lut = &plane_state->blend_tf->pwl; else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) { cm3_helper_translate_curve_to_hw_format( plane_state->blend_tf, &dpp_base->regamma_params, false); blend_lut = &dpp_base->regamma_params; } } result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut); return result; } static bool dcn30_set_mpc_shaper_3dlut(struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; bool result = false; int acquired_rmu = 0; int mpcc_id_projected = 0; const struct pwl_params *shaper_lut = NULL; //get the shaper lut params if (stream->func_shaper) { if (stream->func_shaper->type == TF_TYPE_HWPWL) { shaper_lut = &stream->func_shaper->pwl; } else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format(stream->ctx, stream->func_shaper, &dpp_base->shaper_params, true); shaper_lut = &dpp_base->shaper_params; } } if (stream->lut3d_func && stream->lut3d_func->state.bits.initialized == 1 && stream->lut3d_func->state.bits.rmu_idx_valid == 1) { if (stream->lut3d_func->state.bits.rmu_mux_num == 0) mpcc_id_projected = stream->lut3d_func->state.bits.mpc_rmu0_mux; else if (stream->lut3d_func->state.bits.rmu_mux_num == 1) mpcc_id_projected = stream->lut3d_func->state.bits.mpc_rmu1_mux; else if (stream->lut3d_func->state.bits.rmu_mux_num == 2) mpcc_id_projected = stream->lut3d_func->state.bits.mpc_rmu2_mux; if (mpcc_id_projected != mpcc_id) BREAK_TO_DEBUGGER(); /* find the reason why logical layer assigned a different * mpcc_id into acquire_post_bldn_3dlut */ acquired_rmu = mpc->funcs->acquire_rmu(mpc, mpcc_id, stream->lut3d_func->state.bits.rmu_mux_num); if (acquired_rmu != stream->lut3d_func->state.bits.rmu_mux_num) BREAK_TO_DEBUGGER(); result = mpc->funcs->program_3dlut(mpc, &stream->lut3d_func->lut_3d, stream->lut3d_func->state.bits.rmu_mux_num); result = mpc->funcs->program_shaper(mpc, shaper_lut, stream->lut3d_func->state.bits.rmu_mux_num); } else { // loop through the available mux and release the requested mpcc_id mpc->funcs->release_rmu(mpc, mpcc_id); } return result; } bool dcn30_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dce_hwseq *hws = dc->hwseq; struct dpp *dpp_base = pipe_ctx->plane_res.dpp; enum dc_transfer_func_predefined tf; bool result = true; struct pwl_params *params = NULL; if (dpp_base == NULL || plane_state == NULL) return false; tf = TRANSFER_FUNCTION_UNITY; if (plane_state->in_transfer_func && plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED) tf = plane_state->in_transfer_func->tf; dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf); if (plane_state->in_transfer_func) { if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL) params = &plane_state->in_transfer_func->pwl; else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS && cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func, &dpp_base->degamma_params, false)) params = &dpp_base->degamma_params; } result = dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params); if (pipe_ctx->stream_res.opp && pipe_ctx->stream_res.opp->ctx) { if (dpp_base->funcs->dpp_program_blnd_lut) hws->funcs.set_blend_lut(pipe_ctx, plane_state); if (dpp_base->funcs->dpp_program_shaper_lut && dpp_base->funcs->dpp_program_3dlut) hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state); } return result; } bool dcn30_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; struct pwl_params *params = NULL; bool ret = false; /* program OGAM or 3DLUT only for the top pipe*/ if (pipe_ctx->top_pipe == NULL) { /*program rmu shaper and 3dlut in MPC*/ ret = dcn30_set_mpc_shaper_3dlut(pipe_ctx, stream); if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) { if (stream->out_transfer_func->type == TF_TYPE_HWPWL) params = &stream->out_transfer_func->pwl; else if (pipe_ctx->stream->out_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS && cm3_helper_translate_curve_to_hw_format( stream->out_transfer_func, &mpc->blender_params, false)) params = &mpc->blender_params; /* there are no ROM LUTs in OUTGAM */ if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED) BREAK_TO_DEBUGGER(); } } if (mpc->funcs->set_output_gamma) mpc->funcs->set_output_gamma(mpc, mpcc_id, params); else DC_LOG_ERROR("%s: set_output_gamma function pointer is NULL.\n", __func__); return ret; } static void dcn30_set_writeback( struct dc *dc, struct dc_writeback_info *wb_info, struct dc_state *context) { struct mcif_wb *mcif_wb; struct mcif_buf_params *mcif_buf_params; ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES); ASSERT(wb_info->wb_enabled); ASSERT(wb_info->mpcc_inst >= 0); ASSERT(wb_info->mpcc_inst < dc->res_pool->mpcc_count); mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst]; mcif_buf_params = &wb_info->mcif_buf_params; /* set DWB MPC mux */ dc->res_pool->mpc->funcs->set_dwb_mux(dc->res_pool->mpc, wb_info->dwb_pipe_inst, wb_info->mpcc_inst); /* set MCIF_WB buffer and arbitration configuration */ mcif_wb->funcs->config_mcif_buf(mcif_wb, mcif_buf_params, wb_info->dwb_params.dest_height); mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]); } void dcn30_update_writeback( struct dc *dc, struct dc_writeback_info *wb_info, struct dc_state *context) { struct dwbc *dwb; dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; DC_LOG_DWB("%s dwb_pipe_inst = %d, mpcc_inst = %d",\ __func__, wb_info->dwb_pipe_inst,\ wb_info->mpcc_inst); dcn30_set_writeback(dc, wb_info, context); /* update DWB */ dwb->funcs->update(dwb, &wb_info->dwb_params); } bool dcn30_mmhubbub_warmup( struct dc *dc, unsigned int num_dwb, struct dc_writeback_info *wb_info) { struct dwbc *dwb; struct mcif_wb *mcif_wb; struct mcif_warmup_params warmup_params = {0}; unsigned int i, i_buf; /*make sure there is no active DWB eanbled */ for (i = 0; i < num_dwb; i++) { dwb = dc->res_pool->dwbc[wb_info[i].dwb_pipe_inst]; if (dwb->dwb_is_efc_transition || dwb->dwb_is_drc) { /*can not do warmup while any dwb enabled*/ return false; } } if (wb_info->mcif_warmup_params.p_vmid == 0) return false; /*check whether this is new interface: warmup big buffer once*/ if (wb_info->mcif_warmup_params.start_address.quad_part != 0 && wb_info->mcif_warmup_params.region_size != 0) { /*mmhubbub is shared, so it does not matter which MCIF*/ mcif_wb = dc->res_pool->mcif_wb[0]; /*warmup a big chunk of VM buffer at once*/ warmup_params.start_address.quad_part = wb_info->mcif_warmup_params.start_address.quad_part; warmup_params.address_increment = wb_info->mcif_warmup_params.region_size; warmup_params.region_size = wb_info->mcif_warmup_params.region_size; warmup_params.p_vmid = wb_info->mcif_warmup_params.p_vmid; if (warmup_params.address_increment == 0) warmup_params.address_increment = dc->dml.soc.vmm_page_size_bytes; mcif_wb->funcs->warmup_mcif(mcif_wb, &warmup_params); return true; } /*following is the original: warmup each DWB's mcif buffer*/ for (i = 0; i < num_dwb; i++) { dwb = dc->res_pool->dwbc[wb_info[i].dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[wb_info[i].dwb_pipe_inst]; /*warmup is for VM mode only*/ if (wb_info[i].mcif_buf_params.p_vmid == 0) return false; /* Warmup MCIF_WB */ for (i_buf = 0; i_buf < MCIF_BUF_COUNT; i_buf++) { warmup_params.start_address.quad_part = wb_info[i].mcif_buf_params.luma_address[i_buf]; warmup_params.address_increment = dc->dml.soc.vmm_page_size_bytes; warmup_params.region_size = wb_info[i].mcif_buf_params.luma_pitch * wb_info[i].dwb_params.dest_height; warmup_params.p_vmid = wb_info[i].mcif_buf_params.p_vmid; mcif_wb->funcs->warmup_mcif(mcif_wb, &warmup_params); } } return true; } void dcn30_enable_writeback( struct dc *dc, struct dc_writeback_info *wb_info, struct dc_state *context) { struct dwbc *dwb; struct mcif_wb *mcif_wb; dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst]; DC_LOG_DWB("%s dwb_pipe_inst = %d, mpcc_inst = %d",\ __func__, wb_info->dwb_pipe_inst,\ wb_info->mpcc_inst); /* Update writeback pipe */ dcn30_set_writeback(dc, wb_info, context); /* Enable MCIF_WB */ mcif_wb->funcs->enable_mcif(mcif_wb); /* Enable DWB */ dwb->funcs->enable(dwb, &wb_info->dwb_params); } void dcn30_disable_writeback( struct dc *dc, unsigned int dwb_pipe_inst) { struct dwbc *dwb; struct mcif_wb *mcif_wb; ASSERT(dwb_pipe_inst < MAX_DWB_PIPES); dwb = dc->res_pool->dwbc[dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst]; DC_LOG_DWB("%s dwb_pipe_inst = %d",\ __func__, dwb_pipe_inst); /* disable DWB */ dwb->funcs->disable(dwb); /* disable MCIF */ mcif_wb->funcs->disable_mcif(mcif_wb); /* disable MPC DWB mux */ dc->res_pool->mpc->funcs->disable_dwb_mux(dc->res_pool->mpc, dwb_pipe_inst); } void dcn30_program_all_writeback_pipes_in_tree( struct dc *dc, const struct dc_stream_state *stream, struct dc_state *context) { struct dc_writeback_info wb_info; struct dwbc *dwb; struct dc_stream_status *stream_status = NULL; int i_wb, i_pipe, i_stream; DC_LOG_DWB("%s", __func__); ASSERT(stream); for (i_stream = 0; i_stream < context->stream_count; i_stream++) { if (context->streams[i_stream] == stream) { stream_status = &context->stream_status[i_stream]; break; } } ASSERT(stream_status); ASSERT(stream->num_wb_info <= dc->res_pool->res_cap->num_dwb); /* For each writeback pipe */ for (i_wb = 0; i_wb < stream->num_wb_info; i_wb++) { /* copy writeback info to local non-const so mpcc_inst can be set */ wb_info = stream->writeback_info[i_wb]; if (wb_info.wb_enabled) { /* get the MPCC instance for writeback_source_plane */ wb_info.mpcc_inst = -1; for (i_pipe = 0; i_pipe < dc->res_pool->pipe_count; i_pipe++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i_pipe]; if (!pipe_ctx->plane_state) continue; if (pipe_ctx->plane_state == wb_info.writeback_source_plane) { wb_info.mpcc_inst = pipe_ctx->plane_res.mpcc_inst; break; } } if (wb_info.mpcc_inst == -1) { /* Disable writeback pipe and disconnect from MPCC * if source plane has been removed */ dc->hwss.disable_writeback(dc, wb_info.dwb_pipe_inst); continue; } ASSERT(wb_info.dwb_pipe_inst < dc->res_pool->res_cap->num_dwb); dwb = dc->res_pool->dwbc[wb_info.dwb_pipe_inst]; if (dwb->funcs->is_enabled(dwb)) { /* writeback pipe already enabled, only need to update */ dc->hwss.update_writeback(dc, &wb_info, context); } else { /* Enable writeback pipe and connect to MPCC */ dc->hwss.enable_writeback(dc, &wb_info, context); } } else { /* Disable writeback pipe and disconnect from MPCC */ dc->hwss.disable_writeback(dc, wb_info.dwb_pipe_inst); } } } void dcn30_init_hw(struct dc *dc) { struct abm **abms = dc->res_pool->multiple_abms; struct dce_hwseq *hws = dc->hwseq; struct dc_bios *dcb = dc->ctx->dc_bios; struct resource_pool *res_pool = dc->res_pool; int i; int edp_num; uint32_t backlight = MAX_BACKLIGHT_LEVEL; if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->init_clocks) dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); // Initialize the dccg if (res_pool->dccg->funcs->dccg_init) res_pool->dccg->funcs->dccg_init(res_pool->dccg); if (!dcb->funcs->is_accelerated_mode(dcb)) { hws->funcs.bios_golden_init(dc); hws->funcs.disable_vga(dc->hwseq); } if (dc->debug.enable_mem_low_power.bits.dmcu) { // Force ERAM to shutdown if DMCU is not enabled if (dc->debug.disable_dmcu || dc->config.disable_dmcu) { REG_UPDATE(DMU_MEM_PWR_CNTL, DMCU_ERAM_MEM_PWR_FORCE, 3); } } // Set default OPTC memory power states if (dc->debug.enable_mem_low_power.bits.optc) { // Shutdown when unassigned and light sleep in VBLANK REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1); } if (dc->debug.enable_mem_low_power.bits.vga) { // Power down VGA memory REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1); } if (dc->ctx->dc_bios->fw_info_valid) { res_pool->ref_clocks.xtalin_clock_inKhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency; if (res_pool->dccg && res_pool->hubbub) { (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg, dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency, &res_pool->ref_clocks.dccg_ref_clock_inKhz); (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub, res_pool->ref_clocks.dccg_ref_clock_inKhz, &res_pool->ref_clocks.dchub_ref_clock_inKhz); } else { // Not all ASICs have DCCG sw component res_pool->ref_clocks.dccg_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; res_pool->ref_clocks.dchub_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; } } else ASSERT_CRITICAL(false); for (i = 0; i < dc->link_count; i++) { /* Power up AND update implementation according to the * required signal (which may be different from the * default signal on connector). */ struct dc_link *link = dc->links[i]; link->link_enc->funcs->hw_init(link->link_enc); /* Check for enabled DIG to identify enabled display */ if (link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc)) { link->link_status.link_active = true; if (link->link_enc->funcs->fec_is_active && link->link_enc->funcs->fec_is_active(link->link_enc)) link->fec_state = dc_link_fec_enabled; } } /* we want to turn off all dp displays before doing detection */ dc->link_srv->blank_all_dp_displays(dc); if (hws->funcs.enable_power_gating_plane) hws->funcs.enable_power_gating_plane(dc->hwseq, true); /* If taking control over from VBIOS, we may want to optimize our first * mode set, so we need to skip powering down pipes until we know which * pipes we want to use. * Otherwise, if taking control is not possible, we need to power * everything down. */ if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) { hws->funcs.init_pipes(dc, dc->current_state); if (dc->res_pool->hubbub->funcs->allow_self_refresh_control) dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter); } /* In headless boot cases, DIG may be turned * on which causes HW/SW discrepancies. * To avoid this, power down hardware on boot * if DIG is turned on and seamless boot not enabled */ if (!dc->config.seamless_boot_edp_requested) { struct dc_link *edp_links[MAX_NUM_EDP]; struct dc_link *edp_link = NULL; dc_get_edp_links(dc, edp_links, &edp_num); if (edp_num) edp_link = edp_links[0]; if (edp_link && edp_link->link_enc->funcs->is_dig_enabled && edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) && dc->hwss.edp_backlight_control && dc->hwss.power_down && dc->hwss.edp_power_control) { dc->hwss.edp_backlight_control(edp_link, false); dc->hwss.power_down(dc); dc->hwss.edp_power_control(edp_link, false); } else { for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc) && dc->hwss.power_down) { dc->hwss.power_down(dc); break; } } } } for (i = 0; i < res_pool->audio_count; i++) { struct audio *audio = res_pool->audios[i]; audio->funcs->hw_init(audio); } for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->panel_cntl) backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl); } for (i = 0; i < dc->res_pool->pipe_count; i++) { if (abms[i] != NULL) abms[i]->funcs->abm_init(abms[i], backlight); } /* power AFMT HDMI memory TODO: may move to dis/en output save power*/ REG_WRITE(DIO_MEM_PWR_CTRL, 0); if (!dc->debug.disable_clock_gate) { /* enable all DCN clock gating */ REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0); REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0); REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); } if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks) dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub); if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->notify_wm_ranges) dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr); //if softmax is enabled then hardmax will be set by a different call if (dc->clk_mgr && dc->clk_mgr->funcs && dc->clk_mgr->funcs->set_hard_max_memclk && !dc->clk_mgr->dc_mode_softmax_enabled) dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr); if (dc->res_pool->hubbub->funcs->force_pstate_change_control) dc->res_pool->hubbub->funcs->force_pstate_change_control( dc->res_pool->hubbub, false, false); if (dc->res_pool->hubbub->funcs->init_crb) dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub); // Get DMCUB capabilities dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv); dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr; dc->caps.dmub_caps.mclk_sw = dc->ctx->dmub_srv->dmub->feature_caps.fw_assisted_mclk_switch; } void dcn30_set_avmute(struct pipe_ctx *pipe_ctx, bool enable) { if (pipe_ctx == NULL) return; if (dc_is_hdmi_signal(pipe_ctx->stream->signal) && pipe_ctx->stream_res.stream_enc != NULL) { pipe_ctx->stream_res.stream_enc->funcs->set_avmute( pipe_ctx->stream_res.stream_enc, enable); /* Wait for two frame to make sure AV mute is sent out */ if (enable) { pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE); pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK); pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE); pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK); pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE); } } } void dcn30_update_info_frame(struct pipe_ctx *pipe_ctx) { bool is_hdmi_tmds; bool is_dp; ASSERT(pipe_ctx->stream); if (pipe_ctx->stream_res.stream_enc == NULL) return; /* this is not root pipe */ is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal); is_dp = dc_is_dp_signal(pipe_ctx->stream->signal); if (!is_hdmi_tmds && !is_dp) return; if (is_hdmi_tmds) pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets( pipe_ctx->stream_res.stream_enc, &pipe_ctx->stream_res.encoder_info_frame); else { if (pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num) pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets_sdp_line_num( pipe_ctx->stream_res.stream_enc, &pipe_ctx->stream_res.encoder_info_frame); pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets( pipe_ctx->stream_res.stream_enc, &pipe_ctx->stream_res.encoder_info_frame); } } void dcn30_program_dmdata_engine(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct hubp *hubp = pipe_ctx->plane_res.hubp; bool enable = false; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal) ? dmdata_dp : dmdata_hdmi; /* if using dynamic meta, don't set up generic infopackets */ if (pipe_ctx->stream->dmdata_address.quad_part != 0) { pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false; enable = true; } if (!hubp) return; if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata) return; stream_enc->funcs->set_dynamic_metadata(stream_enc, enable, hubp->inst, mode); } bool dcn30_apply_idle_power_optimizations(struct dc *dc, bool enable) { union dmub_rb_cmd cmd; uint32_t tmr_delay = 0, tmr_scale = 0; struct dc_cursor_attributes cursor_attr; bool cursor_cache_enable = false; struct dc_stream_state *stream = NULL; struct dc_plane_state *plane = NULL; if (!dc->ctx->dmub_srv) return false; if (enable) { if (dc->current_state) { int i; /* First, check no-memory-requests case */ for (i = 0; i < dc->current_state->stream_count; i++) { if (dc->current_state->stream_status[i].plane_count) /* Fail eligibility on a visible stream */ break; } if (i == dc->current_state->stream_count) { /* Enable no-memory-requests case */ memset(&cmd, 0, sizeof(cmd)); cmd.mall.header.type = DMUB_CMD__MALL; cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_NO_DF_REQ; cmd.mall.header.payload_bytes = sizeof(cmd.mall) - sizeof(cmd.mall.header); dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); return true; } stream = dc->current_state->streams[0]; plane = (stream ? dc->current_state->stream_status[0].plane_states[0] : NULL); if (!stream || !plane) return false; if (stream && plane) { cursor_cache_enable = stream->cursor_position.enable && plane->address.grph.cursor_cache_addr.quad_part; cursor_attr = stream->cursor_attributes; } /* * Second, check MALL eligibility * * single display only, single surface only, 8 and 16 bit formats only, no VM, * do not use MALL for displays that support PSR as they use D0i3.2 in DMCUB FW * * TODO: When we implement multi-display, PSR displays will be allowed if there is * a non-PSR display present, since in that case we can't do D0i3.2 */ if (dc->current_state->stream_count == 1 && stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED && dc->current_state->stream_status[0].plane_count == 1 && plane->format <= SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F && plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB8888 && plane->address.page_table_base.quad_part == 0 && dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_cache_enable ? &cursor_attr : NULL)) { unsigned int v_total = stream->adjust.v_total_max ? stream->adjust.v_total_max : stream->timing.v_total; unsigned int refresh_hz = div_u64((unsigned long long) stream->timing.pix_clk_100hz * 100LL, (v_total * stream->timing.h_total)); /* * one frame time in microsec: * Delay_Us = 1000000 / refresh * dynamic_delay_us = 1000000 / refresh + 2 * stutter_period * * one frame time modified by 'additional timer percent' (p): * Delay_Us_modified = dynamic_delay_us + dynamic_delay_us * p / 100 * = dynamic_delay_us * (1 + p / 100) * = (1000000 / refresh + 2 * stutter_period) * (100 + p) / 100 * = (1000000 + 2 * stutter_period * refresh) * (100 + p) / (100 * refresh) * * formula for timer duration based on parameters, from regspec: * dynamic_delay_us = 65.28 * (64 + MallFrameCacheTmrDly) * 2^MallFrameCacheTmrScale * * dynamic_delay_us / 65.28 = (64 + MallFrameCacheTmrDly) * 2^MallFrameCacheTmrScale * (dynamic_delay_us / 65.28) / 2^MallFrameCacheTmrScale = 64 + MallFrameCacheTmrDly * MallFrameCacheTmrDly = ((dynamic_delay_us / 65.28) / 2^MallFrameCacheTmrScale) - 64 * = (1000000 + 2 * stutter_period * refresh) * (100 + p) / (100 * refresh) / 65.28 / 2^MallFrameCacheTmrScale - 64 * = (1000000 + 2 * stutter_period * refresh) * (100 + p) / (refresh * 6528 * 2^MallFrameCacheTmrScale) - 64 * * need to round up the result of the division before the subtraction */ unsigned int denom = refresh_hz * 6528; unsigned int stutter_period = dc->current_state->perf_params.stutter_period_us; tmr_delay = div_u64(((1000000LL + 2 * stutter_period * refresh_hz) * (100LL + dc->debug.mall_additional_timer_percent) + denom - 1), denom) - 64LL; /* In some cases the stutter period is really big (tiny modes) in these * cases MALL cant be enabled, So skip these cases to avoid a ASSERT() * * We can check if stutter_period is more than 1/10th the frame time to * consider if we can actually meet the range of hysteresis timer */ if (stutter_period > 100000/refresh_hz) return false; /* scale should be increased until it fits into 6 bits */ while (tmr_delay & ~0x3F) { tmr_scale++; if (tmr_scale > 3) { /* Delay exceeds range of hysteresis timer */ ASSERT(false); return false; } denom *= 2; tmr_delay = div_u64(((1000000LL + 2 * stutter_period * refresh_hz) * (100LL + dc->debug.mall_additional_timer_percent) + denom - 1), denom) - 64LL; } /* Copy HW cursor */ if (cursor_cache_enable) { memset(&cmd, 0, sizeof(cmd)); cmd.mall.header.type = DMUB_CMD__MALL; cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_COPY_CURSOR; cmd.mall.header.payload_bytes = sizeof(cmd.mall) - sizeof(cmd.mall.header); switch (cursor_attr.color_format) { case CURSOR_MODE_MONO: cmd.mall.cursor_bpp = 2; break; case CURSOR_MODE_COLOR_1BIT_AND: case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA: case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA: cmd.mall.cursor_bpp = 32; break; case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED: case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED: cmd.mall.cursor_bpp = 64; break; } cmd.mall.cursor_copy_src.quad_part = cursor_attr.address.quad_part; cmd.mall.cursor_copy_dst.quad_part = (plane->address.grph.cursor_cache_addr.quad_part + 2047) & ~2047; cmd.mall.cursor_width = cursor_attr.width; cmd.mall.cursor_height = cursor_attr.height; cmd.mall.cursor_pitch = cursor_attr.pitch; dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); /* Use copied cursor, and it's okay to not switch back */ cursor_attr.address.quad_part = cmd.mall.cursor_copy_dst.quad_part; dc_stream_set_cursor_attributes(stream, &cursor_attr); } /* Enable MALL */ memset(&cmd, 0, sizeof(cmd)); cmd.mall.header.type = DMUB_CMD__MALL; cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_ALLOW; cmd.mall.header.payload_bytes = sizeof(cmd.mall) - sizeof(cmd.mall.header); cmd.mall.tmr_delay = tmr_delay; cmd.mall.tmr_scale = tmr_scale; cmd.mall.debug_bits = dc->debug.mall_error_as_fatal; dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT); return true; } } /* No applicable optimizations */ return false; } /* Disable MALL */ memset(&cmd, 0, sizeof(cmd)); cmd.mall.header.type = DMUB_CMD__MALL; cmd.mall.header.sub_type = DMUB_CMD__MALL_ACTION_DISALLOW; cmd.mall.header.payload_bytes = sizeof(cmd.mall) - sizeof(cmd.mall.header); dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT); return true; } bool dcn30_does_plane_fit_in_mall(struct dc *dc, struct dc_plane_state *plane, struct dc_cursor_attributes *cursor_attr) { // add meta size? unsigned int surface_size = plane->plane_size.surface_pitch * plane->plane_size.surface_size.height * (plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4); unsigned int mall_size = dc->caps.mall_size_total; unsigned int cursor_size = 0; if (dc->debug.mall_size_override) mall_size = 1024 * 1024 * dc->debug.mall_size_override; if (cursor_attr) { cursor_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size; switch (cursor_attr->color_format) { case CURSOR_MODE_MONO: cursor_size /= 2; break; case CURSOR_MODE_COLOR_1BIT_AND: case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA: case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA: cursor_size *= 4; break; case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED: case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED: cursor_size *= 8; break; } } return (surface_size + cursor_size) < mall_size; } void dcn30_hardware_release(struct dc *dc) { bool subvp_in_use = false; uint32_t i; dc_dmub_srv_p_state_delegate(dc, false, NULL); dc_dmub_setup_subvp_dmub_command(dc, dc->current_state, false); /* SubVP treated the same way as FPO. If driver disable and * we are using a SubVP config, disable and force on DCN side * to prevent P-State hang on driver enable. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) { subvp_in_use = true; break; } } /* If pstate unsupported, or still supported * by firmware, force it supported by dcn */ if (dc->current_state) if ((!dc->clk_mgr->clks.p_state_change_support || subvp_in_use || dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) && dc->res_pool->hubbub->funcs->force_pstate_change_control) dc->res_pool->hubbub->funcs->force_pstate_change_control( dc->res_pool->hubbub, true, true); } void dcn30_set_disp_pattern_generator(const struct dc *dc, struct pipe_ctx *pipe_ctx, enum controller_dp_test_pattern test_pattern, enum controller_dp_color_space color_space, enum dc_color_depth color_depth, const struct tg_color *solid_color, int width, int height, int offset) { pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern, color_space, color_depth, solid_color, width, height, offset); } void dcn30_prepare_bandwidth(struct dc *dc, struct dc_state *context) { bool p_state_change_support = context->bw_ctx.bw.dcn.clk.p_state_change_support; /* Any transition into an FPO config should disable MCLK switching first to avoid * driver and FW P-State synchronization issues. */ if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dc->clk_mgr->clks.fw_based_mclk_switching) { dc->optimized_required = true; context->bw_ctx.bw.dcn.clk.p_state_change_support = false; } if (dc->clk_mgr->dc_mode_softmax_enabled) if (dc->clk_mgr->clks.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 && context->bw_ctx.bw.dcn.clk.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000) dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz); dcn20_prepare_bandwidth(dc, context); /* * enabled -> enabled: do not disable * enabled -> disabled: disable * disabled -> enabled: don't care * disabled -> disabled: don't care */ if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) dc_dmub_srv_p_state_delegate(dc, false, context); if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dc->clk_mgr->clks.fw_based_mclk_switching) { /* After disabling P-State, restore the original value to ensure we get the correct P-State * on the next optimize. */ context->bw_ctx.bw.dcn.clk.p_state_change_support = p_state_change_support; } } void dcn30_set_static_screen_control(struct pipe_ctx **pipe_ctx, int num_pipes, const struct dc_static_screen_params *params) { unsigned int i; unsigned int triggers = 0; if (params->triggers.surface_update) triggers |= 0x100; if (params->triggers.cursor_update) triggers |= 0x8; if (params->triggers.force_trigger) triggers |= 0x1; for (i = 0; i < num_pipes; i++) pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(pipe_ctx[i]->stream_res.tg, triggers, params->num_frames); }