/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dm_services.h" #include "dcn20/dcn20_hubbub.h" #include "dcn21_hubbub.h" #include "reg_helper.h" #define REG(reg)\ hubbub1->regs->reg #define DC_LOGGER \ hubbub1->base.ctx->logger #define CTX \ hubbub1->base.ctx #undef FN #define FN(reg_name, field_name) \ hubbub1->shifts->field_name, hubbub1->masks->field_name #define REG(reg)\ hubbub1->regs->reg #define CTX \ hubbub1->base.ctx #undef FN #define FN(reg_name, field_name) \ hubbub1->shifts->field_name, hubbub1->masks->field_name static uint32_t convert_and_clamp( uint32_t wm_ns, uint32_t refclk_mhz, uint32_t clamp_value) { uint32_t ret_val = 0; ret_val = wm_ns * refclk_mhz; ret_val /= 1000; if (ret_val > clamp_value) ret_val = clamp_value; return ret_val; } void dcn21_dchvm_init(struct hubbub *hubbub) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); uint32_t riommu_active, prefetch_done; int i; REG_GET(DCHVM_RIOMMU_STAT0, HOSTVM_PREFETCH_DONE, &prefetch_done); if (prefetch_done) { hubbub->riommu_active = true; return; } //Init DCHVM block REG_UPDATE(DCHVM_CTRL0, HOSTVM_INIT_REQ, 1); //Poll until RIOMMU_ACTIVE = 1 for (i = 0; i < 100; i++) { REG_GET(DCHVM_RIOMMU_STAT0, RIOMMU_ACTIVE, &riommu_active); if (riommu_active) break; else udelay(5); } if (riommu_active) { //Reflect the power status of DCHUBBUB REG_UPDATE(DCHVM_RIOMMU_CTRL0, HOSTVM_POWERSTATUS, 1); //Start rIOMMU prefetching REG_UPDATE(DCHVM_RIOMMU_CTRL0, HOSTVM_PREFETCH_REQ, 1); // Enable dynamic clock gating REG_UPDATE_4(DCHVM_CLK_CTRL, HVM_DISPCLK_R_GATE_DIS, 0, HVM_DISPCLK_G_GATE_DIS, 0, HVM_DCFCLK_R_GATE_DIS, 0, HVM_DCFCLK_G_GATE_DIS, 0); //Poll until HOSTVM_PREFETCH_DONE = 1 REG_WAIT(DCHVM_RIOMMU_STAT0, HOSTVM_PREFETCH_DONE, 1, 5, 100); hubbub->riommu_active = true; } } int hubbub21_init_dchub(struct hubbub *hubbub, struct dcn_hubbub_phys_addr_config *pa_config) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); struct dcn_vmid_page_table_config phys_config; REG_SET(DCN_VM_FB_LOCATION_BASE, 0, FB_BASE, pa_config->system_aperture.fb_base >> 24); REG_SET(DCN_VM_FB_LOCATION_TOP, 0, FB_TOP, pa_config->system_aperture.fb_top >> 24); REG_SET(DCN_VM_FB_OFFSET, 0, FB_OFFSET, pa_config->system_aperture.fb_offset >> 24); REG_SET(DCN_VM_AGP_BOT, 0, AGP_BOT, pa_config->system_aperture.agp_bot >> 24); REG_SET(DCN_VM_AGP_TOP, 0, AGP_TOP, pa_config->system_aperture.agp_top >> 24); REG_SET(DCN_VM_AGP_BASE, 0, AGP_BASE, pa_config->system_aperture.agp_base >> 24); if (pa_config->gart_config.page_table_start_addr != pa_config->gart_config.page_table_end_addr) { phys_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr >> 12; phys_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr >> 12; phys_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr | 1; //Note: hack phys_config.depth = 0; phys_config.block_size = 0; // Init VMID 0 based on PA config dcn20_vmid_setup(&hubbub1->vmid[0], &phys_config); } dcn21_dchvm_init(hubbub); return hubbub1->num_vmid; } bool hubbub21_program_urgent_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; bool wm_pending = false; /* Repeat for water mark set A, B, C and D. */ /* clock state A */ if (safe_to_lower || watermarks->a.urgent_ns > hubbub1->watermarks.a.urgent_ns) { hubbub1->watermarks.a.urgent_ns = watermarks->a.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value, DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.urgent_ns, prog_wm_value); } else if (watermarks->a.urgent_ns < hubbub1->watermarks.a.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->a.frac_urg_bw_flip > hubbub1->watermarks.a.frac_urg_bw_flip) { hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->a.frac_urg_bw_flip); } else if (watermarks->a.frac_urg_bw_flip < hubbub1->watermarks.a.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->a.frac_urg_bw_nom > hubbub1->watermarks.a.frac_urg_bw_nom) { hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->a.frac_urg_bw_nom); } else if (watermarks->a.frac_urg_bw_nom < hubbub1->watermarks.a.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->a.urgent_latency_ns > hubbub1->watermarks.a.urgent_latency_ns) { hubbub1->watermarks.a.urgent_latency_ns = watermarks->a.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->a.urgent_latency_ns, refclk_mhz, 0x1fffff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, prog_wm_value); } else if (watermarks->a.urgent_latency_ns < hubbub1->watermarks.a.urgent_latency_ns) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->b.urgent_ns > hubbub1->watermarks.b.urgent_ns) { hubbub1->watermarks.b.urgent_ns = watermarks->b.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->b.urgent_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value, DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.urgent_ns, prog_wm_value); } else if (watermarks->b.urgent_ns < hubbub1->watermarks.b.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->a.frac_urg_bw_flip > hubbub1->watermarks.a.frac_urg_bw_flip) { hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->a.frac_urg_bw_flip); } else if (watermarks->a.frac_urg_bw_flip < hubbub1->watermarks.a.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->a.frac_urg_bw_nom > hubbub1->watermarks.a.frac_urg_bw_nom) { hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->a.frac_urg_bw_nom); } else if (watermarks->a.frac_urg_bw_nom < hubbub1->watermarks.a.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->b.urgent_latency_ns > hubbub1->watermarks.b.urgent_latency_ns) { hubbub1->watermarks.b.urgent_latency_ns = watermarks->b.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->b.urgent_latency_ns, refclk_mhz, 0x1fffff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, prog_wm_value); } else if (watermarks->b.urgent_latency_ns < hubbub1->watermarks.b.urgent_latency_ns) wm_pending = true; /* clock state C */ if (safe_to_lower || watermarks->c.urgent_ns > hubbub1->watermarks.c.urgent_ns) { hubbub1->watermarks.c.urgent_ns = watermarks->c.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->c.urgent_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value, DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.urgent_ns, prog_wm_value); } else if (watermarks->c.urgent_ns < hubbub1->watermarks.c.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->a.frac_urg_bw_flip > hubbub1->watermarks.a.frac_urg_bw_flip) { hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, watermarks->a.frac_urg_bw_flip); } else if (watermarks->a.frac_urg_bw_flip < hubbub1->watermarks.a.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->a.frac_urg_bw_nom > hubbub1->watermarks.a.frac_urg_bw_nom) { hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, watermarks->a.frac_urg_bw_nom); } else if (watermarks->a.frac_urg_bw_nom < hubbub1->watermarks.a.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->c.urgent_latency_ns > hubbub1->watermarks.c.urgent_latency_ns) { hubbub1->watermarks.c.urgent_latency_ns = watermarks->c.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->c.urgent_latency_ns, refclk_mhz, 0x1fffff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, prog_wm_value); } else if (watermarks->c.urgent_latency_ns < hubbub1->watermarks.c.urgent_latency_ns) wm_pending = true; /* clock state D */ if (safe_to_lower || watermarks->d.urgent_ns > hubbub1->watermarks.d.urgent_ns) { hubbub1->watermarks.d.urgent_ns = watermarks->d.urgent_ns; prog_wm_value = convert_and_clamp(watermarks->d.urgent_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, 0, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value, DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.urgent_ns, prog_wm_value); } else if (watermarks->d.urgent_ns < hubbub1->watermarks.d.urgent_ns) wm_pending = true; /* determine the transfer time for a quantity of data for a particular requestor.*/ if (safe_to_lower || watermarks->a.frac_urg_bw_flip > hubbub1->watermarks.a.frac_urg_bw_flip) { hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, 0, DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, watermarks->a.frac_urg_bw_flip); } else if (watermarks->a.frac_urg_bw_flip < hubbub1->watermarks.a.frac_urg_bw_flip) wm_pending = true; if (safe_to_lower || watermarks->a.frac_urg_bw_nom > hubbub1->watermarks.a.frac_urg_bw_nom) { hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, 0, DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, watermarks->a.frac_urg_bw_nom); } else if (watermarks->a.frac_urg_bw_nom < hubbub1->watermarks.a.frac_urg_bw_nom) wm_pending = true; if (safe_to_lower || watermarks->d.urgent_latency_ns > hubbub1->watermarks.d.urgent_latency_ns) { hubbub1->watermarks.d.urgent_latency_ns = watermarks->d.urgent_latency_ns; prog_wm_value = convert_and_clamp(watermarks->d.urgent_latency_ns, refclk_mhz, 0x1fffff); REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, 0, DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, prog_wm_value); } else if (watermarks->d.urgent_latency_ns < hubbub1->watermarks.d.urgent_latency_ns) wm_pending = true; return wm_pending; } bool hubbub21_program_stutter_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; bool wm_pending = false; /* clock state A */ if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns > hubbub1->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub1->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns < hubbub1->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_ns > hubbub1->watermarks.a.cstate_pstate.cstate_exit_ns) { hubbub1->watermarks.a.cstate_pstate.cstate_exit_ns = watermarks->a.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.cstate_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n", watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.cstate_exit_ns < hubbub1->watermarks.a.cstate_pstate.cstate_exit_ns) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns > hubbub1->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub1->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns < hubbub1->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_ns > hubbub1->watermarks.b.cstate_pstate.cstate_exit_ns) { hubbub1->watermarks.b.cstate_pstate.cstate_exit_ns = watermarks->b.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.cstate_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n", watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.cstate_exit_ns < hubbub1->watermarks.b.cstate_pstate.cstate_exit_ns) wm_pending = true; /* clock state C */ if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns > hubbub1->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub1->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns < hubbub1->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_ns > hubbub1->watermarks.c.cstate_pstate.cstate_exit_ns) { hubbub1->watermarks.c.cstate_pstate.cstate_exit_ns = watermarks->c.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.cstate_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n", watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.cstate_exit_ns < hubbub1->watermarks.c.cstate_pstate.cstate_exit_ns) wm_pending = true; /* clock state D */ if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns > hubbub1->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) { hubbub1->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, 0, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns < hubbub1->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) wm_pending = true; if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_ns > hubbub1->watermarks.d.cstate_pstate.cstate_exit_ns) { hubbub1->watermarks.d.cstate_pstate.cstate_exit_ns = watermarks->d.cstate_pstate.cstate_exit_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.cstate_exit_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, 0, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n", watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.cstate_exit_ns < hubbub1->watermarks.d.cstate_pstate.cstate_exit_ns) wm_pending = true; return wm_pending; } bool hubbub21_program_pstate_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; bool wm_pending = false; /* clock state A */ if (safe_to_lower || watermarks->a.cstate_pstate.pstate_change_ns > hubbub1->watermarks.a.cstate_pstate.pstate_change_ns) { hubbub1->watermarks.a.cstate_pstate.pstate_change_ns = watermarks->a.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->a.cstate_pstate.pstate_change_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->a.cstate_pstate.pstate_change_ns < hubbub1->watermarks.a.cstate_pstate.pstate_change_ns) wm_pending = true; /* clock state B */ if (safe_to_lower || watermarks->b.cstate_pstate.pstate_change_ns > hubbub1->watermarks.b.cstate_pstate.pstate_change_ns) { hubbub1->watermarks.b.cstate_pstate.pstate_change_ns = watermarks->b.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->b.cstate_pstate.pstate_change_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->b.cstate_pstate.pstate_change_ns < hubbub1->watermarks.b.cstate_pstate.pstate_change_ns) wm_pending = false; /* clock state C */ if (safe_to_lower || watermarks->c.cstate_pstate.pstate_change_ns > hubbub1->watermarks.c.cstate_pstate.pstate_change_ns) { hubbub1->watermarks.c.cstate_pstate.pstate_change_ns = watermarks->c.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->c.cstate_pstate.pstate_change_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->c.cstate_pstate.pstate_change_ns < hubbub1->watermarks.c.cstate_pstate.pstate_change_ns) wm_pending = true; /* clock state D */ if (safe_to_lower || watermarks->d.cstate_pstate.pstate_change_ns > hubbub1->watermarks.d.cstate_pstate.pstate_change_ns) { hubbub1->watermarks.d.cstate_pstate.pstate_change_ns = watermarks->d.cstate_pstate.pstate_change_ns; prog_wm_value = convert_and_clamp( watermarks->d.cstate_pstate.pstate_change_ns, refclk_mhz, 0x1fffff); REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, 0, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value, DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value); DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n" "HW register value = 0x%x\n\n", watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value); } else if (watermarks->d.cstate_pstate.pstate_change_ns < hubbub1->watermarks.d.cstate_pstate.pstate_change_ns) wm_pending = true; return wm_pending; } bool hubbub21_program_watermarks( struct hubbub *hubbub, struct dcn_watermark_set *watermarks, unsigned int refclk_mhz, bool safe_to_lower) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); bool wm_pending = false; if (hubbub21_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub21_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; if (hubbub21_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) wm_pending = true; /* * The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric. * If the memory controller is fully utilized and the DCHub requestors are * well ahead of their amortized schedule, then it is safe to prevent the next winner * from being committed and sent to the fabric. * The utilization of the memory controller is approximated by ensuring that * the number of outstanding requests is greater than a threshold specified * by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized schedule, * the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles. * * TODO: Revisit request limit after figure out right number. request limit for Renoir isn't decided yet, set maximum value (0x1FF) * to turn off it for now. */ REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0, DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz); REG_UPDATE_2(DCHUBBUB_ARB_DF_REQ_OUTSTAND, DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF, DCHUBBUB_ARB_MIN_REQ_OUTSTAND_COMMIT_THRESHOLD, 0xA); REG_UPDATE(DCHUBBUB_ARB_HOSTVM_CNTL, DCHUBBUB_ARB_MAX_QOS_COMMIT_THRESHOLD, 0xF); hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter); return wm_pending; } void hubbub21_wm_read_state(struct hubbub *hubbub, struct dcn_hubbub_wm *wm) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); struct dcn_hubbub_wm_set *s; memset(wm, 0, sizeof(struct dcn_hubbub_wm)); s = &wm->sets[0]; s->wm_set = 0; REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, &s->data_urgent); REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, &s->sr_enter); REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, &s->sr_exit); REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, &s->dram_clk_chanage); s = &wm->sets[1]; s->wm_set = 1; REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, &s->data_urgent); REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, &s->sr_enter); REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, &s->sr_exit); REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, &s->dram_clk_chanage); s = &wm->sets[2]; s->wm_set = 2; REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, &s->data_urgent); REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, &s->sr_enter); REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, &s->sr_exit); REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, &s->dram_clk_chanage); s = &wm->sets[3]; s->wm_set = 3; REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, &s->data_urgent); REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, &s->sr_enter); REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, &s->sr_exit); REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, &s->dram_clk_chanage); } static void hubbub21_apply_DEDCN21_147_wa(struct hubbub *hubbub) { struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); uint32_t prog_wm_value; prog_wm_value = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A); REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value); } static const struct hubbub_funcs hubbub21_funcs = { .update_dchub = hubbub2_update_dchub, .init_dchub_sys_ctx = hubbub21_init_dchub, .init_vm_ctx = hubbub2_init_vm_ctx, .dcc_support_swizzle = hubbub2_dcc_support_swizzle, .dcc_support_pixel_format = hubbub2_dcc_support_pixel_format, .get_dcc_compression_cap = hubbub2_get_dcc_compression_cap, .wm_read_state = hubbub21_wm_read_state, .get_dchub_ref_freq = hubbub2_get_dchub_ref_freq, .program_watermarks = hubbub21_program_watermarks, .allow_self_refresh_control = hubbub1_allow_self_refresh_control, .apply_DEDCN21_147_wa = hubbub21_apply_DEDCN21_147_wa, .hubbub_read_state = hubbub2_read_state, }; void hubbub21_construct(struct dcn20_hubbub *hubbub, struct dc_context *ctx, const struct dcn_hubbub_registers *hubbub_regs, const struct dcn_hubbub_shift *hubbub_shift, const struct dcn_hubbub_mask *hubbub_mask) { hubbub->base.ctx = ctx; hubbub->base.funcs = &hubbub21_funcs; hubbub->regs = hubbub_regs; hubbub->shifts = hubbub_shift; hubbub->masks = hubbub_mask; hubbub->debug_test_index_pstate = 0xB; hubbub->detile_buf_size = 164 * 1024; /* 164KB for DCN2.0 */ }