/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dm_services.h" #include "basics/dc_common.h" #include "dm_helpers.h" #include "core_types.h" #include "resource.h" #include "dcn20_resource.h" #include "dcn20_hwseq.h" #include "dce/dce_hwseq.h" #include "dcn20_dsc.h" #include "dcn20_optc.h" #include "abm.h" #include "clk_mgr.h" #include "dmcu.h" #include "hubp.h" #include "timing_generator.h" #include "opp.h" #include "ipp.h" #include "mpc.h" #include "mcif_wb.h" #include "dchubbub.h" #include "reg_helper.h" #include "dcn10/dcn10_cm_common.h" #include "vm_helper.h" #include "dccg.h" #include "dc_dmub_srv.h" #include "dce/dmub_hw_lock_mgr.h" #include "hw_sequencer.h" #include "dpcd_defs.h" #include "inc/link_enc_cfg.h" #include "link_hwss.h" #include "link.h" #define DC_LOGGER_INIT(logger) #define CTX \ hws->ctx #define REG(reg)\ hws->regs->reg #undef FN #define FN(reg_name, field_name) \ hws->shifts->field_name, hws->masks->field_name static int find_free_gsl_group(const struct dc *dc) { if (dc->res_pool->gsl_groups.gsl_0 == 0) return 1; if (dc->res_pool->gsl_groups.gsl_1 == 0) return 2; if (dc->res_pool->gsl_groups.gsl_2 == 0) return 3; return 0; } /* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock) * This is only used to lock pipes in pipe splitting case with immediate flip * Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate, * so we get tearing with freesync since we cannot flip multiple pipes * atomically. * We use GSL for this: * - immediate flip: find first available GSL group if not already assigned * program gsl with that group, set current OTG as master * and always us 0x4 = AND of flip_ready from all pipes * - vsync flip: disable GSL if used * * Groups in stream_res are stored as +1 from HW registers, i.e. * gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1 * Using a magic value like -1 would require tracking all inits/resets */ static void dcn20_setup_gsl_group_as_lock( const struct dc *dc, struct pipe_ctx *pipe_ctx, bool enable) { struct gsl_params gsl; int group_idx; memset(&gsl, 0, sizeof(struct gsl_params)); if (enable) { /* return if group already assigned since GSL was set up * for vsync flip, we would unassign so it can't be "left over" */ if (pipe_ctx->stream_res.gsl_group > 0) return; group_idx = find_free_gsl_group(dc); ASSERT(group_idx != 0); pipe_ctx->stream_res.gsl_group = group_idx; /* set gsl group reg field and mark resource used */ switch (group_idx) { case 1: gsl.gsl0_en = 1; dc->res_pool->gsl_groups.gsl_0 = 1; break; case 2: gsl.gsl1_en = 1; dc->res_pool->gsl_groups.gsl_1 = 1; break; case 3: gsl.gsl2_en = 1; dc->res_pool->gsl_groups.gsl_2 = 1; break; default: BREAK_TO_DEBUGGER(); return; // invalid case } gsl.gsl_master_en = 1; } else { group_idx = pipe_ctx->stream_res.gsl_group; if (group_idx == 0) return; // if not in use, just return pipe_ctx->stream_res.gsl_group = 0; /* unset gsl group reg field and mark resource free */ switch (group_idx) { case 1: gsl.gsl0_en = 0; dc->res_pool->gsl_groups.gsl_0 = 0; break; case 2: gsl.gsl1_en = 0; dc->res_pool->gsl_groups.gsl_1 = 0; break; case 3: gsl.gsl2_en = 0; dc->res_pool->gsl_groups.gsl_2 = 0; break; default: BREAK_TO_DEBUGGER(); return; } gsl.gsl_master_en = 0; } /* at this point we want to program whether it's to enable or disable */ if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL && pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) { pipe_ctx->stream_res.tg->funcs->set_gsl( pipe_ctx->stream_res.tg, &gsl); pipe_ctx->stream_res.tg->funcs->set_gsl_source_select( pipe_ctx->stream_res.tg, group_idx, enable ? 4 : 0); } else BREAK_TO_DEBUGGER(); } void dcn20_set_flip_control_gsl( struct pipe_ctx *pipe_ctx, bool flip_immediate) { if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl) pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl( pipe_ctx->plane_res.hubp, flip_immediate); } void dcn20_enable_power_gating_plane( struct dce_hwseq *hws, bool enable) { bool force_on = true; /* disable power gating */ uint32_t org_ip_request_cntl = 0; if (enable) force_on = false; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); /* DCHUBP0/1/2/3/4/5 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on); if (REG(DOMAIN8_PG_CONFIG)) REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); if (REG(DOMAIN10_PG_CONFIG)) REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on); /* DPP0/1/2/3/4/5 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on); if (REG(DOMAIN9_PG_CONFIG)) REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); if (REG(DOMAIN11_PG_CONFIG)) REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on); /* DCS0/1/2/3/4/5 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on); if (REG(DOMAIN19_PG_CONFIG)) REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on); if (REG(DOMAIN20_PG_CONFIG)) REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on); if (REG(DOMAIN21_PG_CONFIG)) REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); } void dcn20_dccg_init(struct dce_hwseq *hws) { /* * set MICROSECOND_TIME_BASE_DIV * 100Mhz refclk -> 0x120264 * 27Mhz refclk -> 0x12021b * 48Mhz refclk -> 0x120230 * */ REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264); /* * set MILLISECOND_TIME_BASE_DIV * 100Mhz refclk -> 0x1186a0 * 27Mhz refclk -> 0x106978 * 48Mhz refclk -> 0x10bb80 * */ REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0); /* This value is dependent on the hardware pipeline delay so set once per SOC */ REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0xe01003c); } void dcn20_disable_vga( struct dce_hwseq *hws) { REG_WRITE(D1VGA_CONTROL, 0); REG_WRITE(D2VGA_CONTROL, 0); REG_WRITE(D3VGA_CONTROL, 0); REG_WRITE(D4VGA_CONTROL, 0); REG_WRITE(D5VGA_CONTROL, 0); REG_WRITE(D6VGA_CONTROL, 0); } void dcn20_program_triple_buffer( const struct dc *dc, struct pipe_ctx *pipe_ctx, bool enable_triple_buffer) { if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) { pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer( pipe_ctx->plane_res.hubp, enable_triple_buffer); } } /* Blank pixel data during initialization */ void dcn20_init_blank( struct dc *dc, struct timing_generator *tg) { struct dce_hwseq *hws = dc->hwseq; enum dc_color_space color_space; struct tg_color black_color = {0}; struct output_pixel_processor *opp = NULL; struct output_pixel_processor *bottom_opp = NULL; uint32_t num_opps, opp_id_src0, opp_id_src1; uint32_t otg_active_width, otg_active_height; /* program opp dpg blank color */ color_space = COLOR_SPACE_SRGB; color_space_to_black_color(dc, color_space, &black_color); /* get the OTG active size */ tg->funcs->get_otg_active_size(tg, &otg_active_width, &otg_active_height); /* get the OPTC source */ tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1); if (opp_id_src0 >= dc->res_pool->res_cap->num_opp) { ASSERT(false); return; } opp = dc->res_pool->opps[opp_id_src0]; /* don't override the blank pattern if already enabled with the correct one. */ if (opp->funcs->dpg_is_blanked && opp->funcs->dpg_is_blanked(opp)) return; if (num_opps == 2) { otg_active_width = otg_active_width / 2; if (opp_id_src1 >= dc->res_pool->res_cap->num_opp) { ASSERT(false); return; } bottom_opp = dc->res_pool->opps[opp_id_src1]; } opp->funcs->opp_set_disp_pattern_generator( opp, CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, CONTROLLER_DP_COLOR_SPACE_UDEFINED, COLOR_DEPTH_UNDEFINED, &black_color, otg_active_width, otg_active_height, 0); if (num_opps == 2) { bottom_opp->funcs->opp_set_disp_pattern_generator( bottom_opp, CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR, CONTROLLER_DP_COLOR_SPACE_UDEFINED, COLOR_DEPTH_UNDEFINED, &black_color, otg_active_width, otg_active_height, 0); } hws->funcs.wait_for_blank_complete(opp); } void dcn20_dsc_pg_control( struct dce_hwseq *hws, unsigned int dsc_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; uint32_t org_ip_request_cntl = 0; if (hws->ctx->dc->debug.disable_dsc_power_gate) return; if (REG(DOMAIN16_PG_CONFIG) == 0) return; REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl); if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); switch (dsc_inst) { case 0: /* DSC0 */ REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_GATE, power_gate); REG_WAIT(DOMAIN16_PG_STATUS, DOMAIN16_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DSC1 */ REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_GATE, power_gate); REG_WAIT(DOMAIN17_PG_STATUS, DOMAIN17_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DSC2 */ REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_GATE, power_gate); REG_WAIT(DOMAIN18_PG_STATUS, DOMAIN18_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DSC3 */ REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_GATE, power_gate); REG_WAIT(DOMAIN19_PG_STATUS, DOMAIN19_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 4: /* DSC4 */ REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_GATE, power_gate); REG_WAIT(DOMAIN20_PG_STATUS, DOMAIN20_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 5: /* DSC5 */ REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_GATE, power_gate); REG_WAIT(DOMAIN21_PG_STATUS, DOMAIN21_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } if (org_ip_request_cntl == 0) REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); } void dcn20_dpp_pg_control( struct dce_hwseq *hws, unsigned int dpp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; if (hws->ctx->dc->debug.disable_dpp_power_gate) return; if (REG(DOMAIN1_PG_CONFIG) == 0) return; switch (dpp_inst) { case 0: /* DPP0 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_GATE, power_gate); REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN1_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DPP1 */ REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_GATE, power_gate); REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN3_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DPP2 */ REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_GATE, power_gate); REG_WAIT(DOMAIN5_PG_STATUS, DOMAIN5_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DPP3 */ REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_GATE, power_gate); REG_WAIT(DOMAIN7_PG_STATUS, DOMAIN7_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 4: /* DPP4 */ REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_GATE, power_gate); REG_WAIT(DOMAIN9_PG_STATUS, DOMAIN9_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 5: /* DPP5 */ /* * Do not power gate DPP5, should be left at HW default, power on permanently. * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard * reset. * REG_UPDATE(DOMAIN11_PG_CONFIG, * DOMAIN11_POWER_GATE, power_gate); * * REG_WAIT(DOMAIN11_PG_STATUS, * DOMAIN11_PGFSM_PWR_STATUS, pwr_status, * 1, 1000); */ break; default: BREAK_TO_DEBUGGER(); break; } } void dcn20_hubp_pg_control( struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? 0 : 2; if (hws->ctx->dc->debug.disable_hubp_power_gate) return; if (REG(DOMAIN0_PG_CONFIG) == 0) return; switch (hubp_inst) { case 0: /* DCHUBP0 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_GATE, power_gate); REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN0_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DCHUBP1 */ REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_GATE, power_gate); REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN2_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DCHUBP2 */ REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_GATE, power_gate); REG_WAIT(DOMAIN4_PG_STATUS, DOMAIN4_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DCHUBP3 */ REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_GATE, power_gate); REG_WAIT(DOMAIN6_PG_STATUS, DOMAIN6_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 4: /* DCHUBP4 */ REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_GATE, power_gate); REG_WAIT(DOMAIN8_PG_STATUS, DOMAIN8_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 5: /* DCHUBP5 */ /* * Do not power gate DCHUB5, should be left at HW default, power on permanently. * PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard * reset. * REG_UPDATE(DOMAIN10_PG_CONFIG, * DOMAIN10_POWER_GATE, power_gate); * * REG_WAIT(DOMAIN10_PG_STATUS, * DOMAIN10_PGFSM_PWR_STATUS, pwr_status, * 1, 1000); */ break; default: BREAK_TO_DEBUGGER(); break; } } /* disable HW used by plane. * note: cannot disable until disconnect is complete */ void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx); /* In flip immediate with pipe splitting case GSL is used for * synchronization so we must disable it when the plane is disabled. */ if (pipe_ctx->stream_res.gsl_group != 0) dcn20_setup_gsl_group_as_lock(dc, pipe_ctx, false); if (hubp->funcs->hubp_update_mall_sel) hubp->funcs->hubp_update_mall_sel(hubp, 0, false); dc->hwss.set_flip_control_gsl(pipe_ctx, false); hubp->funcs->hubp_clk_cntl(hubp, false); dpp->funcs->dpp_dppclk_control(dpp, false, false); hubp->power_gated = true; hws->funcs.plane_atomic_power_down(dc, pipe_ctx->plane_res.dpp, pipe_ctx->plane_res.hubp); pipe_ctx->stream = NULL; memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res)); memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res)); pipe_ctx->top_pipe = NULL; pipe_ctx->bottom_pipe = NULL; pipe_ctx->plane_state = NULL; } void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx) { bool is_phantom = pipe_ctx->plane_state && pipe_ctx->plane_state->is_phantom; struct timing_generator *tg = is_phantom ? pipe_ctx->stream_res.tg : NULL; DC_LOGGER_INIT(dc->ctx->logger); if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) return; dcn20_plane_atomic_disable(dc, pipe_ctx); /* Turn back off the phantom OTG after the phantom plane is fully disabled */ if (is_phantom) if (tg && tg->funcs->disable_phantom_crtc) tg->funcs->disable_phantom_crtc(tg); DC_LOG_DC("Power down front end %d\n", pipe_ctx->pipe_idx); } void dcn20_disable_pixel_data(struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank) { dcn20_blank_pixel_data(dc, pipe_ctx, blank); } static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream, int opp_cnt) { bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing); int flow_ctrl_cnt; if (opp_cnt >= 2) hblank_halved = true; flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable - stream->timing.h_border_left - stream->timing.h_border_right; if (hblank_halved) flow_ctrl_cnt /= 2; /* ODM combine 4:1 case */ if (opp_cnt == 4) flow_ctrl_cnt /= 2; return flow_ctrl_cnt; } enum dc_status dcn20_enable_stream_timing( struct pipe_ctx *pipe_ctx, struct dc_state *context, struct dc *dc) { struct dce_hwseq *hws = dc->hwseq; struct dc_stream_state *stream = pipe_ctx->stream; struct drr_params params = {0}; unsigned int event_triggers = 0; struct pipe_ctx *odm_pipe; int opp_cnt = 1; int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst }; bool interlace = stream->timing.flags.INTERLACE; int i; struct mpc_dwb_flow_control flow_control; struct mpc *mpc = dc->res_pool->mpc; bool rate_control_2x_pclk = (interlace || optc2_is_two_pixels_per_containter(&stream->timing)); unsigned int k1_div = PIXEL_RATE_DIV_NA; unsigned int k2_div = PIXEL_RATE_DIV_NA; if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) { hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div); dc->res_pool->dccg->funcs->set_pixel_rate_div( dc->res_pool->dccg, pipe_ctx->stream_res.tg->inst, k1_div, k2_div); } /* by upper caller loop, pipe0 is parent pipe and be called first. * back end is set up by for pipe0. Other children pipe share back end * with pipe 0. No program is needed. */ if (pipe_ctx->top_pipe != NULL) return DC_OK; /* TODO check if timing_changed, disable stream if timing changed */ for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; opp_cnt++; } if (opp_cnt > 1) pipe_ctx->stream_res.tg->funcs->set_odm_combine( pipe_ctx->stream_res.tg, opp_inst, opp_cnt, &pipe_ctx->stream->timing); /* HW program guide assume display already disable * by unplug sequence. OTG assume stop. */ pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true); if (false == pipe_ctx->clock_source->funcs->program_pix_clk( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings), &pipe_ctx->pll_settings)) { BREAK_TO_DEBUGGER(); return DC_ERROR_UNEXPECTED; } if (dc_is_hdmi_tmds_signal(stream->signal)) { stream->link->phy_state.symclk_ref_cnts.otg = 1; if (stream->link->phy_state.symclk_state == SYMCLK_OFF_TX_OFF) stream->link->phy_state.symclk_state = SYMCLK_ON_TX_OFF; else stream->link->phy_state.symclk_state = SYMCLK_ON_TX_ON; } if (dc->hwseq->funcs.PLAT_58856_wa && (!dc_is_dp_signal(stream->signal))) dc->hwseq->funcs.PLAT_58856_wa(context, pipe_ctx); pipe_ctx->stream_res.tg->funcs->program_timing( pipe_ctx->stream_res.tg, &stream->timing, pipe_ctx->pipe_dlg_param.vready_offset, pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width, pipe_ctx->stream->signal, true); rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1; flow_control.flow_ctrl_mode = 0; flow_control.flow_ctrl_cnt0 = 0x80; flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(stream, opp_cnt); if (mpc->funcs->set_out_rate_control) { for (i = 0; i < opp_cnt; ++i) { mpc->funcs->set_out_rate_control( mpc, opp_inst[i], true, rate_control_2x_pclk, &flow_control); } } for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control( odm_pipe->stream_res.opp, true); pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, true); hws->funcs.blank_pixel_data(dc, pipe_ctx, true); /* VTG is within DCHUB command block. DCFCLK is always on */ if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) { BREAK_TO_DEBUGGER(); return DC_ERROR_UNEXPECTED; } hws->funcs.wait_for_blank_complete(pipe_ctx->stream_res.opp); params.vertical_total_min = stream->adjust.v_total_min; params.vertical_total_max = stream->adjust.v_total_max; params.vertical_total_mid = stream->adjust.v_total_mid; params.vertical_total_mid_frame_num = stream->adjust.v_total_mid_frame_num; if (pipe_ctx->stream_res.tg->funcs->set_drr) pipe_ctx->stream_res.tg->funcs->set_drr( pipe_ctx->stream_res.tg, ¶ms); // DRR should set trigger event to monitor surface update event if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0) event_triggers = 0x80; /* Event triggers and num frames initialized for DRR, but can be * later updated for PSR use. Note DRR trigger events are generated * regardless of whether num frames met. */ if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control) pipe_ctx->stream_res.tg->funcs->set_static_screen_control( pipe_ctx->stream_res.tg, event_triggers, 2); /* TODO program crtc source select for non-virtual signal*/ /* TODO program FMT */ /* TODO setup link_enc */ /* TODO set stream attributes */ /* TODO program audio */ /* TODO enable stream if timing changed */ /* TODO unblank stream if DP */ if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) { if (pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable) pipe_ctx->stream_res.tg->funcs->phantom_crtc_post_enable(pipe_ctx->stream_res.tg); } return DC_OK; } void dcn20_program_output_csc(struct dc *dc, struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace, uint16_t *matrix, int opp_id) { struct mpc *mpc = dc->res_pool->mpc; enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A; int mpcc_id = pipe_ctx->plane_res.hubp->inst; if (mpc->funcs->power_on_mpc_mem_pwr) mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true); if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) { if (mpc->funcs->set_output_csc != NULL) mpc->funcs->set_output_csc(mpc, opp_id, matrix, ocsc_mode); } else { if (mpc->funcs->set_ocsc_default != NULL) mpc->funcs->set_ocsc_default(mpc, opp_id, colorspace, ocsc_mode); } } bool dcn20_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { int mpcc_id = pipe_ctx->plane_res.hubp->inst; struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc; struct pwl_params *params = NULL; /* * program OGAM only for the top pipe * if there is a pipe split then fix diagnostic is required: * how to pass OGAM parameter for stream. * if programming for all pipes is required then remove condition * pipe_ctx->top_pipe == NULL ,but then fix the diagnostic. */ if (mpc->funcs->power_on_mpc_mem_pwr) mpc->funcs->power_on_mpc_mem_pwr(mpc, mpcc_id, true); if (pipe_ctx->top_pipe == NULL && mpc->funcs->set_output_gamma && stream->out_transfer_func) { if (stream->out_transfer_func->type == TF_TYPE_HWPWL) params = &stream->out_transfer_func->pwl; else if (pipe_ctx->stream->out_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS && cm_helper_translate_curve_to_hw_format( stream->out_transfer_func, &mpc->blender_params, false)) params = &mpc->blender_params; /* * there is no ROM */ if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED) BREAK_TO_DEBUGGER(); } /* * if above if is not executed then 'params' equal to 0 and set in bypass */ mpc->funcs->set_output_gamma(mpc, mpcc_id, params); return true; } bool dcn20_set_blend_lut( struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; bool result = true; struct pwl_params *blend_lut = NULL; if (plane_state->blend_tf) { if (plane_state->blend_tf->type == TF_TYPE_HWPWL) blend_lut = &plane_state->blend_tf->pwl; else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format( plane_state->blend_tf, &dpp_base->regamma_params, false); blend_lut = &dpp_base->regamma_params; } } result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut); return result; } bool dcn20_set_shaper_3dlut( struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; bool result = true; struct pwl_params *shaper_lut = NULL; if (plane_state->in_shaper_func) { if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL) shaper_lut = &plane_state->in_shaper_func->pwl; else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_hw_format( plane_state->in_shaper_func, &dpp_base->shaper_params, true); shaper_lut = &dpp_base->shaper_params; } } result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut); if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1) result = dpp_base->funcs->dpp_program_3dlut(dpp_base, &plane_state->lut3d_func->lut_3d); else result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL); return result; } bool dcn20_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dce_hwseq *hws = dc->hwseq; struct dpp *dpp_base = pipe_ctx->plane_res.dpp; const struct dc_transfer_func *tf = NULL; bool result = true; bool use_degamma_ram = false; if (dpp_base == NULL || plane_state == NULL) return false; hws->funcs.set_shaper_3dlut(pipe_ctx, plane_state); hws->funcs.set_blend_lut(pipe_ctx, plane_state); if (plane_state->in_transfer_func) tf = plane_state->in_transfer_func; if (tf == NULL) { dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); return true; } if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS) use_degamma_ram = true; if (use_degamma_ram == true) { if (tf->type == TF_TYPE_HWPWL) dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &tf->pwl); else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) { cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params); dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params); } return true; } /* handle here the optimized cases when de-gamma ROM could be used. * */ if (tf->type == TF_TYPE_PREDEFINED) { switch (tf->tf) { case TRANSFER_FUNCTION_SRGB: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB); break; case TRANSFER_FUNCTION_BT709: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC); break; case TRANSFER_FUNCTION_LINEAR: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); break; case TRANSFER_FUNCTION_PQ: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL); cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params); dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params); result = true; break; default: result = false; break; } } else if (tf->type == TF_TYPE_BYPASS) dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); else { /* * if we are here, we did not handle correctly. * fix is required for this use case */ BREAK_TO_DEBUGGER(); dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); } return result; } void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx) { struct pipe_ctx *odm_pipe; int opp_cnt = 1; int opp_inst[MAX_PIPES] = { pipe_ctx->stream_res.opp->inst }; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { opp_inst[opp_cnt] = odm_pipe->stream_res.opp->inst; opp_cnt++; } if (opp_cnt > 1) pipe_ctx->stream_res.tg->funcs->set_odm_combine( pipe_ctx->stream_res.tg, opp_inst, opp_cnt, &pipe_ctx->stream->timing); else pipe_ctx->stream_res.tg->funcs->set_odm_bypass( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); } void dcn20_blank_pixel_data( struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank) { struct tg_color black_color = {0}; struct stream_resource *stream_res = &pipe_ctx->stream_res; struct dc_stream_state *stream = pipe_ctx->stream; enum dc_color_space color_space = stream->output_color_space; enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR; enum controller_dp_color_space test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED; struct pipe_ctx *odm_pipe; int odm_cnt = 1; int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right; int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top; if (stream->link->test_pattern_enabled) return; /* get opp dpg blank color */ color_space_to_black_color(dc, color_space, &black_color); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) odm_cnt++; width = width / odm_cnt; if (blank) { dc->hwss.set_abm_immediate_disable(pipe_ctx); if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE) { test_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES; test_pattern_color_space = CONTROLLER_DP_COLOR_SPACE_RGB; } } else { test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE; } dc->hwss.set_disp_pattern_generator(dc, pipe_ctx, test_pattern, test_pattern_color_space, stream->timing.display_color_depth, &black_color, width, height, 0); for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { dc->hwss.set_disp_pattern_generator(dc, odm_pipe, dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE && blank ? CONTROLLER_DP_TEST_PATTERN_COLORRAMP : test_pattern, test_pattern_color_space, stream->timing.display_color_depth, &black_color, width, height, 0); } if (!blank && dc->debug.enable_single_display_2to1_odm_policy) { /* when exiting dynamic ODM need to reinit DPG state for unused pipes */ struct pipe_ctx *old_odm_pipe = dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx].next_odm_pipe; odm_pipe = pipe_ctx->next_odm_pipe; while (old_odm_pipe) { if (!odm_pipe || old_odm_pipe->pipe_idx != odm_pipe->pipe_idx) dc->hwss.set_disp_pattern_generator(dc, old_odm_pipe, CONTROLLER_DP_TEST_PATTERN_VIDEOMODE, CONTROLLER_DP_COLOR_SPACE_UDEFINED, COLOR_DEPTH_888, NULL, 0, 0, 0); old_odm_pipe = old_odm_pipe->next_odm_pipe; if (odm_pipe) odm_pipe = odm_pipe->next_odm_pipe; } } if (!blank) if (stream_res->abm) { dc->hwss.set_pipe(pipe_ctx); stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level); } } static void dcn20_power_on_plane_resources( struct dce_hwseq *hws, struct pipe_ctx *pipe_ctx) { DC_LOGGER_INIT(hws->ctx->logger); if (hws->funcs.dpp_root_clock_control) hws->funcs.dpp_root_clock_control(hws, pipe_ctx->plane_res.dpp->inst, true); if (REG(DC_IP_REQUEST_CNTL)) { REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); if (hws->funcs.dpp_pg_control) hws->funcs.dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true); if (hws->funcs.hubp_pg_control) hws->funcs.hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); DC_LOG_DEBUG( "Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst); } } static void dcn20_enable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { //if (dc->debug.sanity_checks) { // dcn10_verify_allow_pstate_change_high(dc); //} dcn20_power_on_plane_resources(dc->hwseq, pipe_ctx); /* enable DCFCLK current DCHUB */ pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true); /* initialize HUBP on power up */ pipe_ctx->plane_res.hubp->funcs->hubp_init(pipe_ctx->plane_res.hubp); /* make sure OPP_PIPE_CLOCK_EN = 1 */ pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, true); /* TODO: enable/disable in dm as per update type. if (plane_state) { DC_LOG_DC(dc->ctx->logger, "Pipe:%d 0x%x: addr hi:0x%x, " "addr low:0x%x, " "src: %d, %d, %d," " %d; dst: %d, %d, %d, %d;\n", pipe_ctx->pipe_idx, plane_state, plane_state->address.grph.addr.high_part, plane_state->address.grph.addr.low_part, plane_state->src_rect.x, plane_state->src_rect.y, plane_state->src_rect.width, plane_state->src_rect.height, plane_state->dst_rect.x, plane_state->dst_rect.y, plane_state->dst_rect.width, plane_state->dst_rect.height); DC_LOG_DC(dc->ctx->logger, "Pipe %d: width, height, x, y format:%d\n" "viewport:%d, %d, %d, %d\n" "recout: %d, %d, %d, %d\n", pipe_ctx->pipe_idx, plane_state->format, pipe_ctx->plane_res.scl_data.viewport.width, pipe_ctx->plane_res.scl_data.viewport.height, pipe_ctx->plane_res.scl_data.viewport.x, pipe_ctx->plane_res.scl_data.viewport.y, pipe_ctx->plane_res.scl_data.recout.width, pipe_ctx->plane_res.scl_data.recout.height, pipe_ctx->plane_res.scl_data.recout.x, pipe_ctx->plane_res.scl_data.recout.y); print_rq_dlg_ttu(dc, pipe_ctx); } */ if (dc->vm_pa_config.valid) { struct vm_system_aperture_param apt; apt.sys_default.quad_part = 0; apt.sys_low.quad_part = dc->vm_pa_config.system_aperture.start_addr; apt.sys_high.quad_part = dc->vm_pa_config.system_aperture.end_addr; // Program system aperture settings pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt); } if (!pipe_ctx->top_pipe && pipe_ctx->plane_state && pipe_ctx->plane_state->flip_int_enabled && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int) pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp); // if (dc->debug.sanity_checks) { // dcn10_verify_allow_pstate_change_high(dc); // } } void dcn20_pipe_control_lock( struct dc *dc, struct pipe_ctx *pipe, bool lock) { struct pipe_ctx *temp_pipe; bool flip_immediate = false; /* use TG master update lock to lock everything on the TG * therefore only top pipe need to lock */ if (!pipe || pipe->top_pipe) return; if (pipe->plane_state != NULL) flip_immediate = pipe->plane_state->flip_immediate; if (pipe->stream_res.gsl_group > 0) { temp_pipe = pipe->bottom_pipe; while (!flip_immediate && temp_pipe) { if (temp_pipe->plane_state != NULL) flip_immediate = temp_pipe->plane_state->flip_immediate; temp_pipe = temp_pipe->bottom_pipe; } } if (flip_immediate && lock) { const int TIMEOUT_FOR_FLIP_PENDING = 100000; int i; temp_pipe = pipe; while (temp_pipe) { if (temp_pipe->plane_state && temp_pipe->plane_state->flip_immediate) { for (i = 0; i < TIMEOUT_FOR_FLIP_PENDING; ++i) { if (!temp_pipe->plane_res.hubp->funcs->hubp_is_flip_pending(temp_pipe->plane_res.hubp)) break; udelay(1); } /* no reason it should take this long for immediate flips */ ASSERT(i != TIMEOUT_FOR_FLIP_PENDING); } temp_pipe = temp_pipe->bottom_pipe; } } /* In flip immediate and pipe splitting case, we need to use GSL * for synchronization. Only do setup on locking and on flip type change. */ if (lock && (pipe->bottom_pipe != NULL || !flip_immediate)) if ((flip_immediate && pipe->stream_res.gsl_group == 0) || (!flip_immediate && pipe->stream_res.gsl_group > 0)) dcn20_setup_gsl_group_as_lock(dc, pipe, flip_immediate); if (pipe->plane_state != NULL) flip_immediate = pipe->plane_state->flip_immediate; temp_pipe = pipe->bottom_pipe; while (flip_immediate && temp_pipe) { if (temp_pipe->plane_state != NULL) flip_immediate = temp_pipe->plane_state->flip_immediate; temp_pipe = temp_pipe->bottom_pipe; } if (!lock && pipe->stream_res.gsl_group > 0 && pipe->plane_state && !flip_immediate) dcn20_setup_gsl_group_as_lock(dc, pipe, false); if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) { union dmub_hw_lock_flags hw_locks = { 0 }; struct dmub_hw_lock_inst_flags inst_flags = { 0 }; hw_locks.bits.lock_pipe = 1; inst_flags.otg_inst = pipe->stream_res.tg->inst; if (pipe->plane_state != NULL) hw_locks.bits.triple_buffer_lock = pipe->plane_state->triplebuffer_flips; dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv, lock, &hw_locks, &inst_flags); } else if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) { if (lock) pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg); else pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg); } else { if (lock) pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); else pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); } } static void dcn20_detect_pipe_changes(struct pipe_ctx *old_pipe, struct pipe_ctx *new_pipe) { new_pipe->update_flags.raw = 0; /* If non-phantom pipe is being transitioned to a phantom pipe, * set disable and return immediately. This is because the pipe * that was previously in use must be fully disabled before we * can "enable" it as a phantom pipe (since the OTG will certainly * be different). The post_unlock sequence will set the correct * update flags to enable the phantom pipe. */ if (old_pipe->plane_state && !old_pipe->plane_state->is_phantom && new_pipe->plane_state && new_pipe->plane_state->is_phantom) { new_pipe->update_flags.bits.disable = 1; return; } /* Exit on unchanged, unused pipe */ if (!old_pipe->plane_state && !new_pipe->plane_state) return; /* Detect pipe enable/disable */ if (!old_pipe->plane_state && new_pipe->plane_state) { new_pipe->update_flags.bits.enable = 1; new_pipe->update_flags.bits.mpcc = 1; new_pipe->update_flags.bits.dppclk = 1; new_pipe->update_flags.bits.hubp_interdependent = 1; new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1; new_pipe->update_flags.bits.unbounded_req = 1; new_pipe->update_flags.bits.gamut_remap = 1; new_pipe->update_flags.bits.scaler = 1; new_pipe->update_flags.bits.viewport = 1; new_pipe->update_flags.bits.det_size = 1; if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) { new_pipe->update_flags.bits.odm = 1; new_pipe->update_flags.bits.global_sync = 1; } return; } /* For SubVP we need to unconditionally enable because any phantom pipes are * always removed then newly added for every full updates whenever SubVP is in use. * The remove-add sequence of the phantom pipe always results in the pipe * being blanked in enable_stream_timing (DPG). */ if (new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) new_pipe->update_flags.bits.enable = 1; /* Phantom pipes are effectively disabled, if the pipe was previously phantom * we have to enable */ if (old_pipe->plane_state && old_pipe->plane_state->is_phantom && new_pipe->plane_state && !new_pipe->plane_state->is_phantom) new_pipe->update_flags.bits.enable = 1; if (old_pipe->plane_state && !new_pipe->plane_state) { new_pipe->update_flags.bits.disable = 1; return; } /* Detect plane change */ if (old_pipe->plane_state != new_pipe->plane_state) { new_pipe->update_flags.bits.plane_changed = true; } /* Detect top pipe only changes */ if (!new_pipe->top_pipe && !new_pipe->prev_odm_pipe) { /* Detect odm changes */ if ((old_pipe->next_odm_pipe && new_pipe->next_odm_pipe && old_pipe->next_odm_pipe->pipe_idx != new_pipe->next_odm_pipe->pipe_idx) || (!old_pipe->next_odm_pipe && new_pipe->next_odm_pipe) || (old_pipe->next_odm_pipe && !new_pipe->next_odm_pipe) || old_pipe->stream_res.opp != new_pipe->stream_res.opp) new_pipe->update_flags.bits.odm = 1; /* Detect global sync changes */ if (old_pipe->pipe_dlg_param.vready_offset != new_pipe->pipe_dlg_param.vready_offset || old_pipe->pipe_dlg_param.vstartup_start != new_pipe->pipe_dlg_param.vstartup_start || old_pipe->pipe_dlg_param.vupdate_offset != new_pipe->pipe_dlg_param.vupdate_offset || old_pipe->pipe_dlg_param.vupdate_width != new_pipe->pipe_dlg_param.vupdate_width) new_pipe->update_flags.bits.global_sync = 1; } if (old_pipe->det_buffer_size_kb != new_pipe->det_buffer_size_kb) new_pipe->update_flags.bits.det_size = 1; /* * Detect opp / tg change, only set on change, not on enable * Assume mpcc inst = pipe index, if not this code needs to be updated * since mpcc is what is affected by these. In fact all of our sequence * makes this assumption at the moment with how hubp reset is matched to * same index mpcc reset. */ if (old_pipe->stream_res.opp != new_pipe->stream_res.opp) new_pipe->update_flags.bits.opp_changed = 1; if (old_pipe->stream_res.tg != new_pipe->stream_res.tg) new_pipe->update_flags.bits.tg_changed = 1; /* * Detect mpcc blending changes, only dpp inst and opp matter here, * mpccs getting removed/inserted update connected ones during their own * programming */ if (old_pipe->plane_res.dpp != new_pipe->plane_res.dpp || old_pipe->stream_res.opp != new_pipe->stream_res.opp) new_pipe->update_flags.bits.mpcc = 1; /* Detect dppclk change */ if (old_pipe->plane_res.bw.dppclk_khz != new_pipe->plane_res.bw.dppclk_khz) new_pipe->update_flags.bits.dppclk = 1; /* Check for scl update */ if (memcmp(&old_pipe->plane_res.scl_data, &new_pipe->plane_res.scl_data, sizeof(struct scaler_data))) new_pipe->update_flags.bits.scaler = 1; /* Check for vp update */ if (memcmp(&old_pipe->plane_res.scl_data.viewport, &new_pipe->plane_res.scl_data.viewport, sizeof(struct rect)) || memcmp(&old_pipe->plane_res.scl_data.viewport_c, &new_pipe->plane_res.scl_data.viewport_c, sizeof(struct rect))) new_pipe->update_flags.bits.viewport = 1; /* Detect dlg/ttu/rq updates */ { struct _vcs_dpi_display_dlg_regs_st old_dlg_attr = old_pipe->dlg_regs; struct _vcs_dpi_display_ttu_regs_st old_ttu_attr = old_pipe->ttu_regs; struct _vcs_dpi_display_dlg_regs_st *new_dlg_attr = &new_pipe->dlg_regs; struct _vcs_dpi_display_ttu_regs_st *new_ttu_attr = &new_pipe->ttu_regs; /* Detect pipe interdependent updates */ if (old_dlg_attr.dst_y_prefetch != new_dlg_attr->dst_y_prefetch || old_dlg_attr.vratio_prefetch != new_dlg_attr->vratio_prefetch || old_dlg_attr.vratio_prefetch_c != new_dlg_attr->vratio_prefetch_c || old_dlg_attr.dst_y_per_vm_vblank != new_dlg_attr->dst_y_per_vm_vblank || old_dlg_attr.dst_y_per_row_vblank != new_dlg_attr->dst_y_per_row_vblank || old_dlg_attr.dst_y_per_vm_flip != new_dlg_attr->dst_y_per_vm_flip || old_dlg_attr.dst_y_per_row_flip != new_dlg_attr->dst_y_per_row_flip || old_dlg_attr.refcyc_per_meta_chunk_vblank_l != new_dlg_attr->refcyc_per_meta_chunk_vblank_l || old_dlg_attr.refcyc_per_meta_chunk_vblank_c != new_dlg_attr->refcyc_per_meta_chunk_vblank_c || old_dlg_attr.refcyc_per_meta_chunk_flip_l != new_dlg_attr->refcyc_per_meta_chunk_flip_l || old_dlg_attr.refcyc_per_line_delivery_pre_l != new_dlg_attr->refcyc_per_line_delivery_pre_l || old_dlg_attr.refcyc_per_line_delivery_pre_c != new_dlg_attr->refcyc_per_line_delivery_pre_c || old_ttu_attr.refcyc_per_req_delivery_pre_l != new_ttu_attr->refcyc_per_req_delivery_pre_l || old_ttu_attr.refcyc_per_req_delivery_pre_c != new_ttu_attr->refcyc_per_req_delivery_pre_c || old_ttu_attr.refcyc_per_req_delivery_pre_cur0 != new_ttu_attr->refcyc_per_req_delivery_pre_cur0 || old_ttu_attr.refcyc_per_req_delivery_pre_cur1 != new_ttu_attr->refcyc_per_req_delivery_pre_cur1 || old_ttu_attr.min_ttu_vblank != new_ttu_attr->min_ttu_vblank || old_ttu_attr.qos_level_flip != new_ttu_attr->qos_level_flip) { old_dlg_attr.dst_y_prefetch = new_dlg_attr->dst_y_prefetch; old_dlg_attr.vratio_prefetch = new_dlg_attr->vratio_prefetch; old_dlg_attr.vratio_prefetch_c = new_dlg_attr->vratio_prefetch_c; old_dlg_attr.dst_y_per_vm_vblank = new_dlg_attr->dst_y_per_vm_vblank; old_dlg_attr.dst_y_per_row_vblank = new_dlg_attr->dst_y_per_row_vblank; old_dlg_attr.dst_y_per_vm_flip = new_dlg_attr->dst_y_per_vm_flip; old_dlg_attr.dst_y_per_row_flip = new_dlg_attr->dst_y_per_row_flip; old_dlg_attr.refcyc_per_meta_chunk_vblank_l = new_dlg_attr->refcyc_per_meta_chunk_vblank_l; old_dlg_attr.refcyc_per_meta_chunk_vblank_c = new_dlg_attr->refcyc_per_meta_chunk_vblank_c; old_dlg_attr.refcyc_per_meta_chunk_flip_l = new_dlg_attr->refcyc_per_meta_chunk_flip_l; old_dlg_attr.refcyc_per_line_delivery_pre_l = new_dlg_attr->refcyc_per_line_delivery_pre_l; old_dlg_attr.refcyc_per_line_delivery_pre_c = new_dlg_attr->refcyc_per_line_delivery_pre_c; old_ttu_attr.refcyc_per_req_delivery_pre_l = new_ttu_attr->refcyc_per_req_delivery_pre_l; old_ttu_attr.refcyc_per_req_delivery_pre_c = new_ttu_attr->refcyc_per_req_delivery_pre_c; old_ttu_attr.refcyc_per_req_delivery_pre_cur0 = new_ttu_attr->refcyc_per_req_delivery_pre_cur0; old_ttu_attr.refcyc_per_req_delivery_pre_cur1 = new_ttu_attr->refcyc_per_req_delivery_pre_cur1; old_ttu_attr.min_ttu_vblank = new_ttu_attr->min_ttu_vblank; old_ttu_attr.qos_level_flip = new_ttu_attr->qos_level_flip; new_pipe->update_flags.bits.hubp_interdependent = 1; } /* Detect any other updates to ttu/rq/dlg */ if (memcmp(&old_dlg_attr, &new_pipe->dlg_regs, sizeof(old_dlg_attr)) || memcmp(&old_ttu_attr, &new_pipe->ttu_regs, sizeof(old_ttu_attr)) || memcmp(&old_pipe->rq_regs, &new_pipe->rq_regs, sizeof(old_pipe->rq_regs))) new_pipe->update_flags.bits.hubp_rq_dlg_ttu = 1; } if (old_pipe->unbounded_req != new_pipe->unbounded_req) new_pipe->update_flags.bits.unbounded_req = 1; } static void dcn20_update_dchubp_dpp( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; struct dc_plane_state *plane_state = pipe_ctx->plane_state; struct dccg *dccg = dc->res_pool->dccg; bool viewport_changed = false; if (pipe_ctx->update_flags.bits.dppclk) dpp->funcs->dpp_dppclk_control(dpp, false, true); if (pipe_ctx->update_flags.bits.enable) dccg->funcs->update_dpp_dto(dccg, dpp->inst, pipe_ctx->plane_res.bw.dppclk_khz); /* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG * VTG is within DCHUBBUB which is commond block share by each pipe HUBP. * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG */ if (pipe_ctx->update_flags.bits.hubp_rq_dlg_ttu) { hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst); hubp->funcs->hubp_setup( hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs, &pipe_ctx->rq_regs, &pipe_ctx->pipe_dlg_param); } if (pipe_ctx->update_flags.bits.unbounded_req && hubp->funcs->set_unbounded_requesting) hubp->funcs->set_unbounded_requesting(hubp, pipe_ctx->unbounded_req); if (pipe_ctx->update_flags.bits.hubp_interdependent) hubp->funcs->hubp_setup_interdependent( hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs); if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.plane_changed || plane_state->update_flags.bits.bpp_change || plane_state->update_flags.bits.input_csc_change || plane_state->update_flags.bits.color_space_change || plane_state->update_flags.bits.coeff_reduction_change) { struct dc_bias_and_scale bns_params = {0}; // program the input csc dpp->funcs->dpp_setup(dpp, plane_state->format, EXPANSION_MODE_ZERO, plane_state->input_csc_color_matrix, plane_state->color_space, NULL); if (dpp->funcs->dpp_program_bias_and_scale) { //TODO :for CNVC set scale and bias registers if necessary build_prescale_params(&bns_params, plane_state); dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params); } } if (pipe_ctx->update_flags.bits.mpcc || pipe_ctx->update_flags.bits.plane_changed || plane_state->update_flags.bits.global_alpha_change || plane_state->update_flags.bits.per_pixel_alpha_change) { // MPCC inst is equal to pipe index in practice int mpcc_inst = hubp->inst; int opp_inst; int opp_count = dc->res_pool->pipe_count; for (opp_inst = 0; opp_inst < opp_count; opp_inst++) { if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) { dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst); dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false; break; } } hws->funcs.update_mpcc(dc, pipe_ctx); } if (pipe_ctx->update_flags.bits.scaler || plane_state->update_flags.bits.scaling_change || plane_state->update_flags.bits.position_change || plane_state->update_flags.bits.per_pixel_alpha_change || pipe_ctx->stream->update_flags.bits.scaling) { pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->plane_state->per_pixel_alpha; ASSERT(pipe_ctx->plane_res.scl_data.lb_params.depth == LB_PIXEL_DEPTH_36BPP); /* scaler configuration */ pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler( pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data); } if (pipe_ctx->update_flags.bits.viewport || (context == dc->current_state && plane_state->update_flags.bits.position_change) || (context == dc->current_state && plane_state->update_flags.bits.scaling_change) || (context == dc->current_state && pipe_ctx->stream->update_flags.bits.scaling)) { hubp->funcs->mem_program_viewport( hubp, &pipe_ctx->plane_res.scl_data.viewport, &pipe_ctx->plane_res.scl_data.viewport_c); viewport_changed = true; } /* Any updates are handled in dc interface, just need to apply existing for plane enable */ if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed || pipe_ctx->update_flags.bits.scaler || viewport_changed == true) && pipe_ctx->stream->cursor_attributes.address.quad_part != 0) { dc->hwss.set_cursor_position(pipe_ctx); dc->hwss.set_cursor_attribute(pipe_ctx); if (dc->hwss.set_cursor_sdr_white_level) dc->hwss.set_cursor_sdr_white_level(pipe_ctx); } /* Any updates are handled in dc interface, just need * to apply existing for plane enable / opp change */ if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed || pipe_ctx->update_flags.bits.plane_changed || pipe_ctx->stream->update_flags.bits.gamut_remap || pipe_ctx->stream->update_flags.bits.out_csc) { /* dpp/cm gamut remap*/ dc->hwss.program_gamut_remap(pipe_ctx); /*call the dcn2 method which uses mpc csc*/ dc->hwss.program_output_csc(dc, pipe_ctx, pipe_ctx->stream->output_color_space, pipe_ctx->stream->csc_color_matrix.matrix, hubp->opp_id); } if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.plane_changed || pipe_ctx->update_flags.bits.opp_changed || plane_state->update_flags.bits.pixel_format_change || plane_state->update_flags.bits.horizontal_mirror_change || plane_state->update_flags.bits.rotation_change || plane_state->update_flags.bits.swizzle_change || plane_state->update_flags.bits.dcc_change || plane_state->update_flags.bits.bpp_change || plane_state->update_flags.bits.scaling_change || plane_state->update_flags.bits.plane_size_change) { struct plane_size size = plane_state->plane_size; size.surface_size = pipe_ctx->plane_res.scl_data.viewport; hubp->funcs->hubp_program_surface_config( hubp, plane_state->format, &plane_state->tiling_info, &size, plane_state->rotation, &plane_state->dcc, plane_state->horizontal_mirror, 0); hubp->power_gated = false; } if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.plane_changed || plane_state->update_flags.bits.addr_update) hws->funcs.update_plane_addr(dc, pipe_ctx); if (pipe_ctx->update_flags.bits.enable) hubp->funcs->set_blank(hubp, false); /* If the stream paired with this plane is phantom, the plane is also phantom */ if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM && hubp->funcs->phantom_hubp_post_enable) hubp->funcs->phantom_hubp_post_enable(hubp); } static int calculate_vready_offset_for_group(struct pipe_ctx *pipe) { struct pipe_ctx *other_pipe; int vready_offset = pipe->pipe_dlg_param.vready_offset; /* Always use the largest vready_offset of all connected pipes */ for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } return vready_offset; } static void dcn20_program_pipe( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; /* Only need to unblank on top pipe */ if ((pipe_ctx->update_flags.bits.enable || pipe_ctx->stream->update_flags.bits.abm_level) && !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe) hws->funcs.blank_pixel_data(dc, pipe_ctx, !pipe_ctx->plane_state->visible); /* Only update TG on top pipe */ if (pipe_ctx->update_flags.bits.global_sync && !pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe) { pipe_ctx->stream_res.tg->funcs->program_global_sync( pipe_ctx->stream_res.tg, calculate_vready_offset_for_group(pipe_ctx), pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width); if (pipe_ctx->stream->mall_stream_config.type != SUBVP_PHANTOM) pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE); pipe_ctx->stream_res.tg->funcs->set_vtg_params( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true); if (hws->funcs.setup_vupdate_interrupt) hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx); } if (pipe_ctx->update_flags.bits.odm) hws->funcs.update_odm(dc, context, pipe_ctx); if (pipe_ctx->update_flags.bits.enable) { dcn20_enable_plane(dc, pipe_ctx, context); if (dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes) dc->res_pool->hubbub->funcs->force_wm_propagate_to_pipes(dc->res_pool->hubbub); } if (dc->res_pool->hubbub->funcs->program_det_size && pipe_ctx->update_flags.bits.det_size) dc->res_pool->hubbub->funcs->program_det_size( dc->res_pool->hubbub, pipe_ctx->plane_res.hubp->inst, pipe_ctx->det_buffer_size_kb); if (pipe_ctx->update_flags.raw || pipe_ctx->plane_state->update_flags.raw || pipe_ctx->stream->update_flags.raw) dcn20_update_dchubp_dpp(dc, pipe_ctx, context); if (pipe_ctx->update_flags.bits.enable || pipe_ctx->plane_state->update_flags.bits.hdr_mult) hws->funcs.set_hdr_multiplier(pipe_ctx); if (pipe_ctx->update_flags.bits.enable || pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change || pipe_ctx->plane_state->update_flags.bits.gamma_change) hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state); /* dcn10_translate_regamma_to_hw_format takes 750us to finish * only do gamma programming for powering on, internal memcmp to avoid * updating on slave planes */ if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.plane_changed || pipe_ctx->stream->update_flags.bits.out_tf || pipe_ctx->plane_state->update_flags.bits.output_tf_change) hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream); /* If the pipe has been enabled or has a different opp, we * should reprogram the fmt. This deals with cases where * interation between mpc and odm combine on different streams * causes a different pipe to be chosen to odm combine with. */ if (pipe_ctx->update_flags.bits.enable || pipe_ctx->update_flags.bits.opp_changed) { pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion( pipe_ctx->stream_res.opp, COLOR_SPACE_YCBCR601, pipe_ctx->stream->timing.display_color_depth, pipe_ctx->stream->signal); pipe_ctx->stream_res.opp->funcs->opp_program_fmt( pipe_ctx->stream_res.opp, &pipe_ctx->stream->bit_depth_params, &pipe_ctx->stream->clamping); } /* Set ABM pipe after other pipe configurations done */ if (pipe_ctx->plane_state->visible) { if (pipe_ctx->stream_res.abm) { dc->hwss.set_pipe(pipe_ctx); pipe_ctx->stream_res.abm->funcs->set_abm_level(pipe_ctx->stream_res.abm, pipe_ctx->stream->abm_level); } } } void dcn20_program_front_end_for_ctx( struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; DC_LOGGER_INIT(dc->ctx->logger); /* Carry over GSL groups in case the context is changing. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream == old_pipe_ctx->stream) pipe_ctx->stream_res.gsl_group = old_pipe_ctx->stream_res.gsl_group; } if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) { for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->plane_state) { ASSERT(!pipe_ctx->plane_state->triplebuffer_flips); /*turn off triple buffer for full update*/ dc->hwss.program_triplebuffer( dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); } } } /* Set pipe update flags and lock pipes */ for (i = 0; i < dc->res_pool->pipe_count; i++) dcn20_detect_pipe_changes(&dc->current_state->res_ctx.pipe_ctx[i], &context->res_ctx.pipe_ctx[i]); /* When disabling phantom pipes, turn on phantom OTG first (so we can get double * buffer updates properly) */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *stream = dc->current_state->res_ctx.pipe_ctx[i].stream; if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && stream && dc->current_state->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) { struct timing_generator *tg = dc->current_state->res_ctx.pipe_ctx[i].stream_res.tg; if (tg->funcs->enable_crtc) tg->funcs->enable_crtc(tg); } } /* OTG blank before disabling all front ends */ for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable && !context->res_ctx.pipe_ctx[i].top_pipe && !context->res_ctx.pipe_ctx[i].prev_odm_pipe && context->res_ctx.pipe_ctx[i].stream) hws->funcs.blank_pixel_data(dc, &context->res_ctx.pipe_ctx[i], true); /* Disconnect mpcc */ for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable || context->res_ctx.pipe_ctx[i].update_flags.bits.opp_changed) { struct hubbub *hubbub = dc->res_pool->hubbub; /* Phantom pipe DET should be 0, but if a pipe in use is being transitioned to phantom * then we want to do the programming here (effectively it's being disabled). If we do * the programming later the DET won't be updated until the OTG for the phantom pipe is * turned on (i.e. in an MCLK switch) which can come in too late and cause issues with * DET allocation. */ if (hubbub->funcs->program_det_size && (context->res_ctx.pipe_ctx[i].update_flags.bits.disable || (context->res_ctx.pipe_ctx[i].plane_state && context->res_ctx.pipe_ctx[i].plane_state->is_phantom))) hubbub->funcs->program_det_size(hubbub, dc->current_state->res_ctx.pipe_ctx[i].plane_res.hubp->inst, 0); hws->funcs.plane_atomic_disconnect(dc, &dc->current_state->res_ctx.pipe_ctx[i]); DC_LOG_DC("Reset mpcc for pipe %d\n", dc->current_state->res_ctx.pipe_ctx[i].pipe_idx); } /* * Program all updated pipes, order matters for mpcc setup. Start with * top pipe and program all pipes that follow in order */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->plane_state && !pipe->top_pipe) { while (pipe) { if (hws->funcs.program_pipe) hws->funcs.program_pipe(dc, pipe, context); else { /* Don't program phantom pipes in the regular front end programming sequence. * There is an MPO transition case where a pipe being used by a video plane is * transitioned directly to be a phantom pipe when closing the MPO video. However * the phantom pipe will program a new HUBP_VTG_SEL (update takes place right away), * but the MPO still exists until the double buffered update of the main pipe so we * will get a frame of underflow if the phantom pipe is programmed here. */ if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) dcn20_program_pipe(dc, pipe, context); } pipe = pipe->bottom_pipe; } } /* Program secondary blending tree and writeback pipes */ pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->top_pipe && !pipe->prev_odm_pipe && pipe->stream && pipe->stream->num_wb_info > 0 && (pipe->update_flags.raw || (pipe->plane_state && pipe->plane_state->update_flags.raw) || pipe->stream->update_flags.raw) && hws->funcs.program_all_writeback_pipes_in_tree) hws->funcs.program_all_writeback_pipes_in_tree(dc, pipe->stream, context); /* Avoid underflow by check of pipe line read when adding 2nd plane. */ if (hws->wa.wait_hubpret_read_start_during_mpo_transition && !pipe->top_pipe && pipe->stream && pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start && dc->current_state->stream_status[0].plane_count == 1 && context->stream_status[0].plane_count > 1) { pipe->plane_res.hubp->funcs->hubp_wait_pipe_read_start(pipe->plane_res.hubp); } /* when dynamic ODM is active, pipes must be reconfigured when all planes are * disabled, as some transitions will leave software and hardware state * mismatched. */ if (dc->debug.enable_single_display_2to1_odm_policy && pipe->stream && pipe->update_flags.bits.disable && !pipe->prev_odm_pipe && hws->funcs.update_odm) hws->funcs.update_odm(dc, context, pipe); } } void dcn20_post_unlock_program_front_end( struct dc *dc, struct dc_state *context) { int i; const unsigned int TIMEOUT_FOR_PIPE_ENABLE_MS = 100; struct dce_hwseq *hwseq = dc->hwseq; DC_LOGGER_INIT(dc->ctx->logger); for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]); /* * If we are enabling a pipe, we need to wait for pending clear as this is a critical * part of the enable operation otherwise, DM may request an immediate flip which * will cause HW to perform an "immediate enable" (as opposed to "vsync enable") which * is unsupported on DCN. */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // Don't check flip pending on phantom pipes if (pipe->plane_state && !pipe->top_pipe && pipe->update_flags.bits.enable && pipe->stream->mall_stream_config.type != SUBVP_PHANTOM) { struct hubp *hubp = pipe->plane_res.hubp; int j = 0; for (j = 0; j < TIMEOUT_FOR_PIPE_ENABLE_MS*1000 && hubp->funcs->hubp_is_flip_pending(hubp); j++) udelay(1); } } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (pipe->plane_state && !pipe->top_pipe) { /* Program phantom pipe here to prevent a frame of underflow in the MPO transition * case (if a pipe being used for a video plane transitions to a phantom pipe, it * can underflow due to HUBP_VTG_SEL programming if done in the regular front end * programming sequence). */ while (pipe) { if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { /* When turning on the phantom pipe we want to run through the * entire enable sequence, so apply all the "enable" flags. */ if (dc->hwss.apply_update_flags_for_phantom) dc->hwss.apply_update_flags_for_phantom(pipe); if (dc->hwss.update_phantom_vp_position) dc->hwss.update_phantom_vp_position(dc, context, pipe); dcn20_program_pipe(dc, pipe, context); } pipe = pipe->bottom_pipe; } } } /* P-State support transitions: * Natural -> FPO: P-State disabled in prepare, force disallow anytime is safe * FPO -> Natural: Unforce anytime after FW disable is safe (P-State will assert naturally) * Unsupported -> FPO: P-State enabled in optimize, force disallow anytime is safe * FPO -> Unsupported: P-State disabled in prepare, unforce disallow anytime is safe * FPO <-> SubVP: Force disallow is maintained on the FPO / SubVP pipes */ if (hwseq && hwseq->funcs.update_force_pstate) dc->hwseq->funcs.update_force_pstate(dc, context); /* Only program the MALL registers after all the main and phantom pipes * are done programming. */ if (hwseq->funcs.program_mall_pipe_config) hwseq->funcs.program_mall_pipe_config(dc, context); /* WA to apply WM setting*/ if (hwseq->wa.DEGVIDCN21) dc->res_pool->hubbub->funcs->apply_DEDCN21_147_wa(dc->res_pool->hubbub); /* WA for stutter underflow during MPO transitions when adding 2nd plane */ if (hwseq->wa.disallow_self_refresh_during_multi_plane_transition) { if (dc->current_state->stream_status[0].plane_count == 1 && context->stream_status[0].plane_count > 1) { struct timing_generator *tg = dc->res_pool->timing_generators[0]; dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, false); hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = true; hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame = tg->funcs->get_frame_count(tg); } } } void dcn20_prepare_bandwidth( struct dc *dc, struct dc_state *context) { struct hubbub *hubbub = dc->res_pool->hubbub; unsigned int compbuf_size_kb = 0; unsigned int cache_wm_a = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns; unsigned int i; dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, context, false); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // At optimize don't restore the original watermark value if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) { context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; break; } } /* program dchubbub watermarks: * For assigning wm_optimized_required, use |= operator since we don't want * to clear the value if the optimize has not happened yet */ dc->wm_optimized_required |= hubbub->funcs->program_watermarks(hubbub, &context->bw_ctx.bw.dcn.watermarks, dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, false); // Restore the real watermark so we can commit the value to DMCUB // DMCUB uses the "original" watermark value in SubVP MCLK switch context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = cache_wm_a; /* decrease compbuf size */ if (hubbub->funcs->program_compbuf_size) { if (context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes) { compbuf_size_kb = context->bw_ctx.dml.ip.min_comp_buffer_size_kbytes; dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.dml.ip.min_comp_buffer_size_kbytes); } else { compbuf_size_kb = context->bw_ctx.bw.dcn.compbuf_size_kb; dc->wm_optimized_required |= (compbuf_size_kb != dc->current_state->bw_ctx.bw.dcn.compbuf_size_kb); } hubbub->funcs->program_compbuf_size(hubbub, compbuf_size_kb, false); } } void dcn20_optimize_bandwidth( struct dc *dc, struct dc_state *context) { struct hubbub *hubbub = dc->res_pool->hubbub; int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; // At optimize don't need to restore the original watermark value if (pipe->stream && pipe->stream->mall_stream_config.type != SUBVP_NONE) { context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; break; } } /* program dchubbub watermarks */ hubbub->funcs->program_watermarks(hubbub, &context->bw_ctx.bw.dcn.watermarks, dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, true); if (dc->clk_mgr->dc_mode_softmax_enabled) if (dc->clk_mgr->clks.dramclk_khz > dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000 && context->bw_ctx.bw.dcn.clk.dramclk_khz <= dc->clk_mgr->bw_params->dc_mode_softmax_memclk * 1000) dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, dc->clk_mgr->bw_params->dc_mode_softmax_memclk); /* increase compbuf size */ if (hubbub->funcs->program_compbuf_size) hubbub->funcs->program_compbuf_size(hubbub, context->bw_ctx.bw.dcn.compbuf_size_kb, true); dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, context, true); if (context->bw_ctx.bw.dcn.clk.zstate_support == DCN_ZSTATE_SUPPORT_ALLOW) { for (i = 0; i < dc->res_pool->pipe_count; ++i) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream && pipe_ctx->plane_res.hubp->funcs->program_extended_blank && pipe_ctx->stream->adjust.v_total_min == pipe_ctx->stream->adjust.v_total_max && pipe_ctx->stream->adjust.v_total_max > pipe_ctx->stream->timing.v_total) pipe_ctx->plane_res.hubp->funcs->program_extended_blank(pipe_ctx->plane_res.hubp, pipe_ctx->dlg_regs.min_dst_y_next_start); } } } bool dcn20_update_bandwidth( struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; /* recalculate DML parameters */ if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) return false; /* apply updated bandwidth parameters */ dc->hwss.prepare_bandwidth(dc, context); /* update hubp configs for all pipes */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->plane_state == NULL) continue; if (pipe_ctx->top_pipe == NULL) { bool blank = !is_pipe_tree_visible(pipe_ctx); pipe_ctx->stream_res.tg->funcs->program_global_sync( pipe_ctx->stream_res.tg, calculate_vready_offset_for_group(pipe_ctx), pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width); pipe_ctx->stream_res.tg->funcs->set_vtg_params( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, false); if (pipe_ctx->prev_odm_pipe == NULL) hws->funcs.blank_pixel_data(dc, pipe_ctx, blank); if (hws->funcs.setup_vupdate_interrupt) hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx); } pipe_ctx->plane_res.hubp->funcs->hubp_setup( pipe_ctx->plane_res.hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs, &pipe_ctx->rq_regs, &pipe_ctx->pipe_dlg_param); } return true; } void dcn20_enable_writeback( struct dc *dc, struct dc_writeback_info *wb_info, struct dc_state *context) { struct dwbc *dwb; struct mcif_wb *mcif_wb; struct timing_generator *optc; ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES); ASSERT(wb_info->wb_enabled); dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst]; /* set the OPTC source mux */ optc = dc->res_pool->timing_generators[dwb->otg_inst]; optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst); /* set MCIF_WB buffer and arbitration configuration */ mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height); mcif_wb->funcs->config_mcif_arb(mcif_wb, &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]); /* Enable MCIF_WB */ mcif_wb->funcs->enable_mcif(mcif_wb); /* Enable DWB */ dwb->funcs->enable(dwb, &wb_info->dwb_params); /* TODO: add sequence to enable/disable warmup */ } void dcn20_disable_writeback( struct dc *dc, unsigned int dwb_pipe_inst) { struct dwbc *dwb; struct mcif_wb *mcif_wb; ASSERT(dwb_pipe_inst < MAX_DWB_PIPES); dwb = dc->res_pool->dwbc[dwb_pipe_inst]; mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst]; dwb->funcs->disable(dwb); mcif_wb->funcs->disable_mcif(mcif_wb); } bool dcn20_wait_for_blank_complete( struct output_pixel_processor *opp) { int counter; for (counter = 0; counter < 1000; counter++) { if (opp->funcs->dpg_is_blanked(opp)) break; udelay(100); } if (counter == 1000) { dm_error("DC: failed to blank crtc!\n"); return false; } return true; } bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; if (!hubp) return false; return hubp->funcs->dmdata_status_done(hubp); } void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; if (pipe_ctx->stream_res.dsc) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, true); while (odm_pipe) { hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, true); odm_pipe = odm_pipe->next_odm_pipe; } } } void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; if (pipe_ctx->stream_res.dsc) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; hws->funcs.dsc_pg_control(hws, pipe_ctx->stream_res.dsc->inst, false); while (odm_pipe) { hws->funcs.dsc_pg_control(hws, odm_pipe->stream_res.dsc->inst, false); odm_pipe = odm_pipe->next_odm_pipe; } } } void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx) { struct dc_dmdata_attributes attr = { 0 }; struct hubp *hubp = pipe_ctx->plane_res.hubp; attr.dmdata_mode = DMDATA_HW_MODE; attr.dmdata_size = dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36; attr.address.quad_part = pipe_ctx->stream->dmdata_address.quad_part; attr.dmdata_dl_delta = 0; attr.dmdata_qos_mode = 0; attr.dmdata_qos_level = 0; attr.dmdata_repeat = 1; /* always repeat */ attr.dmdata_updated = 1; attr.dmdata_sw_data = NULL; hubp->funcs->dmdata_set_attributes(hubp, &attr); } void dcn20_init_vm_ctx( struct dce_hwseq *hws, struct dc *dc, struct dc_virtual_addr_space_config *va_config, int vmid) { struct dcn_hubbub_virt_addr_config config; if (vmid == 0) { ASSERT(0); /* VMID cannot be 0 for vm context */ return; } config.page_table_start_addr = va_config->page_table_start_addr; config.page_table_end_addr = va_config->page_table_end_addr; config.page_table_block_size = va_config->page_table_block_size_in_bytes; config.page_table_depth = va_config->page_table_depth; config.page_table_base_addr = va_config->page_table_base_addr; dc->res_pool->hubbub->funcs->init_vm_ctx(dc->res_pool->hubbub, &config, vmid); } int dcn20_init_sys_ctx(struct dce_hwseq *hws, struct dc *dc, struct dc_phy_addr_space_config *pa_config) { struct dcn_hubbub_phys_addr_config config; config.system_aperture.fb_top = pa_config->system_aperture.fb_top; config.system_aperture.fb_offset = pa_config->system_aperture.fb_offset; config.system_aperture.fb_base = pa_config->system_aperture.fb_base; config.system_aperture.agp_top = pa_config->system_aperture.agp_top; config.system_aperture.agp_bot = pa_config->system_aperture.agp_bot; config.system_aperture.agp_base = pa_config->system_aperture.agp_base; config.gart_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr; config.gart_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr; config.gart_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr; config.page_table_default_page_addr = pa_config->page_table_default_page_addr; return dc->res_pool->hubbub->funcs->init_dchub_sys_ctx(dc->res_pool->hubbub, &config); } static bool patch_address_for_sbs_tb_stereo( struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr) { struct dc_plane_state *plane_state = pipe_ctx->plane_state; bool sec_split = pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state; if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO && (pipe_ctx->stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE || pipe_ctx->stream->timing.timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)) { *addr = plane_state->address.grph_stereo.left_addr; plane_state->address.grph_stereo.left_addr = plane_state->address.grph_stereo.right_addr; return true; } if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE && plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) { plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO; plane_state->address.grph_stereo.right_addr = plane_state->address.grph_stereo.left_addr; plane_state->address.grph_stereo.right_meta_addr = plane_state->address.grph_stereo.left_meta_addr; } return false; } void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx) { bool addr_patched = false; PHYSICAL_ADDRESS_LOC addr; struct dc_plane_state *plane_state = pipe_ctx->plane_state; if (plane_state == NULL) return; addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr); // Call Helper to track VMID use vm_helper_mark_vmid_used(dc->vm_helper, plane_state->address.vmid, pipe_ctx->plane_res.hubp->inst); pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr( pipe_ctx->plane_res.hubp, &plane_state->address, plane_state->flip_immediate); plane_state->status.requested_address = plane_state->address; if (plane_state->flip_immediate) plane_state->status.current_address = plane_state->address; if (addr_patched) pipe_ctx->plane_state->address.grph_stereo.left_addr = addr; } void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx, struct dc_link_settings *link_settings) { struct encoder_unblank_param params = {0}; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct dce_hwseq *hws = link->dc->hwseq; struct pipe_ctx *odm_pipe; params.opp_cnt = 1; for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) { params.opp_cnt++; } /* only 3 items below are used by unblank */ params.timing = pipe_ctx->stream->timing; params.link_settings.link_rate = link_settings->link_rate; if (link->dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */ pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank( pipe_ctx->stream_res.hpo_dp_stream_enc, pipe_ctx->stream_res.tg->inst); } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) { if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1) params.timing.pix_clk_100hz /= 2; pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine( pipe_ctx->stream_res.stream_enc, params.opp_cnt > 1); pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms); } if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { hws->funcs.edp_backlight_control(link, true); } } void dcn20_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct timing_generator *tg = pipe_ctx->stream_res.tg; int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx); if (start_line < 0) start_line = 0; if (tg->funcs->setup_vertical_interrupt2) tg->funcs->setup_vertical_interrupt2(tg, start_line); } static void dcn20_reset_back_end_for_pipe( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { int i; struct dc_link *link = pipe_ctx->stream->link; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); DC_LOGGER_INIT(dc->ctx->logger); if (pipe_ctx->stream_res.stream_enc == NULL) { pipe_ctx->stream = NULL; return; } /* DPMS may already disable or */ /* dpms_off status is incorrect due to fastboot * feature. When system resume from S4 with second * screen only, the dpms_off would be true but * VBIOS lit up eDP, so check link status too. */ if (!pipe_ctx->stream->dpms_off || link->link_status.link_active) dc->link_srv->set_dpms_off(pipe_ctx); else if (pipe_ctx->stream_res.audio) dc->hwss.disable_audio_stream(pipe_ctx); /* free acquired resources */ if (pipe_ctx->stream_res.audio) { /*disable az_endpoint*/ pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); /*free audio*/ if (dc->caps.dynamic_audio == true) { /*we have to dynamic arbitrate the audio endpoints*/ /*we free the resource, need reset is_audio_acquired*/ update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false); pipe_ctx->stream_res.audio = NULL; } } /* by upper caller loop, parent pipe: pipe0, will be reset last. * back end share by all pipes and will be disable only when disable * parent pipe. */ if (pipe_ctx->top_pipe == NULL) { dc->hwss.set_abm_immediate_disable(pipe_ctx); pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg); pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false); if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass) pipe_ctx->stream_res.tg->funcs->set_odm_bypass( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing); if (pipe_ctx->stream_res.tg->funcs->set_drr) pipe_ctx->stream_res.tg->funcs->set_drr( pipe_ctx->stream_res.tg, NULL); /* TODO - convert symclk_ref_cnts for otg to a bit map to solve * the case where the same symclk is shared across multiple otg * instances */ link->phy_state.symclk_ref_cnts.otg = 0; if (link->phy_state.symclk_state == SYMCLK_ON_TX_OFF) { link_hwss->disable_link_output(link, &pipe_ctx->link_res, pipe_ctx->stream->signal); link->phy_state.symclk_state = SYMCLK_OFF_TX_OFF; } } for (i = 0; i < dc->res_pool->pipe_count; i++) if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx) break; if (i == dc->res_pool->pipe_count) return; pipe_ctx->stream = NULL; DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n", pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); } void dcn20_reset_hw_ctx_wrap( struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; /* Reset Back End*/ for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) { struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (!pipe_ctx_old->stream) continue; if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe) continue; if (!pipe_ctx->stream || pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) { struct clock_source *old_clk = pipe_ctx_old->clock_source; dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state); if (hws->funcs.enable_stream_gating) hws->funcs.enable_stream_gating(dc, pipe_ctx_old); if (old_clk) old_clk->funcs->cs_power_down(old_clk); } } } void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; struct mpcc_blnd_cfg blnd_cfg = {0}; bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha; int mpcc_id; struct mpcc *new_mpcc; struct mpc *mpc = dc->res_pool->mpc; struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params); blnd_cfg.overlap_only = false; blnd_cfg.global_gain = 0xff; if (per_pixel_alpha) { blnd_cfg.pre_multiplied_alpha = pipe_ctx->plane_state->pre_multiplied_alpha; if (pipe_ctx->plane_state->global_alpha) { blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN; blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value; } else { blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA; } } else { blnd_cfg.pre_multiplied_alpha = false; blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA; } if (pipe_ctx->plane_state->global_alpha) blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value; else blnd_cfg.global_alpha = 0xff; blnd_cfg.background_color_bpc = 4; blnd_cfg.bottom_gain_mode = 0; blnd_cfg.top_gain = 0x1f000; blnd_cfg.bottom_inside_gain = 0x1f000; blnd_cfg.bottom_outside_gain = 0x1f000; if (pipe_ctx->plane_state->format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA) blnd_cfg.pre_multiplied_alpha = false; /* * TODO: remove hack * Note: currently there is a bug in init_hw such that * on resume from hibernate, BIOS sets up MPCC0, and * we do mpcc_remove but the mpcc cannot go to idle * after remove. This cause us to pick mpcc1 here, * which causes a pstate hang for yet unknown reason. */ mpcc_id = hubp->inst; /* If there is no full update, don't need to touch MPC tree*/ if (!pipe_ctx->plane_state->update_flags.bits.full_update && !pipe_ctx->update_flags.bits.mpcc) { mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id); dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id); return; } /* check if this MPCC is already being used */ new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id); /* remove MPCC if being used */ if (new_mpcc != NULL) mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc); else if (dc->debug.sanity_checks) mpc->funcs->assert_mpcc_idle_before_connect( dc->res_pool->mpc, mpcc_id); /* Call MPC to insert new plane */ new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc, mpc_tree_params, &blnd_cfg, NULL, NULL, hubp->inst, mpcc_id); dc->hwss.update_visual_confirm_color(dc, pipe_ctx, mpcc_id); ASSERT(new_mpcc != NULL); hubp->opp_id = pipe_ctx->stream_res.opp->inst; hubp->mpcc_id = mpcc_id; } static enum phyd32clk_clock_source get_phyd32clk_src(struct dc_link *link) { switch (link->link_enc->transmitter) { case TRANSMITTER_UNIPHY_A: return PHYD32CLKA; case TRANSMITTER_UNIPHY_B: return PHYD32CLKB; case TRANSMITTER_UNIPHY_C: return PHYD32CLKC; case TRANSMITTER_UNIPHY_D: return PHYD32CLKD; case TRANSMITTER_UNIPHY_E: return PHYD32CLKE; default: return PHYD32CLKA; } } static int get_odm_segment_count(struct pipe_ctx *pipe_ctx) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; int count = 1; while (odm_pipe != NULL) { count++; odm_pipe = odm_pipe->next_odm_pipe; } return count; } void dcn20_enable_stream(struct pipe_ctx *pipe_ctx) { enum dc_lane_count lane_count = pipe_ctx->stream->link->cur_link_settings.lane_count; struct dc_crtc_timing *timing = &pipe_ctx->stream->timing; struct dc_link *link = pipe_ctx->stream->link; uint32_t active_total_with_borders; uint32_t early_control = 0; struct timing_generator *tg = pipe_ctx->stream_res.tg; const struct link_hwss *link_hwss = get_link_hwss(link, &pipe_ctx->link_res); struct dc *dc = pipe_ctx->stream->ctx->dc; struct dtbclk_dto_params dto_params = {0}; struct dccg *dccg = dc->res_pool->dccg; enum phyd32clk_clock_source phyd32clk; int dp_hpo_inst; struct dce_hwseq *hws = dc->hwseq; unsigned int k1_div = PIXEL_RATE_DIV_NA; unsigned int k2_div = PIXEL_RATE_DIV_NA; if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { if (dc->hwseq->funcs.setup_hpo_hw_control) dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, true); } if (dc->link_srv->dp_is_128b_132b_signal(pipe_ctx)) { dp_hpo_inst = pipe_ctx->stream_res.hpo_dp_stream_enc->inst; dccg->funcs->set_dpstreamclk(dccg, DTBCLK0, tg->inst, dp_hpo_inst); phyd32clk = get_phyd32clk_src(link); dccg->funcs->enable_symclk32_se(dccg, dp_hpo_inst, phyd32clk); dto_params.otg_inst = tg->inst; dto_params.pixclk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10; dto_params.num_odm_segments = get_odm_segment_count(pipe_ctx); dto_params.timing = &pipe_ctx->stream->timing; dto_params.ref_dtbclk_khz = dc->clk_mgr->funcs->get_dtb_ref_clk_frequency(dc->clk_mgr); dccg->funcs->set_dtbclk_dto(dccg, &dto_params); } if (hws->funcs.calculate_dccg_k1_k2_values && dc->res_pool->dccg->funcs->set_pixel_rate_div) { hws->funcs.calculate_dccg_k1_k2_values(pipe_ctx, &k1_div, &k2_div); dc->res_pool->dccg->funcs->set_pixel_rate_div( dc->res_pool->dccg, pipe_ctx->stream_res.tg->inst, k1_div, k2_div); } link_hwss->setup_stream_encoder(pipe_ctx); if (pipe_ctx->plane_state && pipe_ctx->plane_state->flip_immediate != 1) { if (dc->hwss.program_dmdata_engine) dc->hwss.program_dmdata_engine(pipe_ctx); } dc->hwss.update_info_frame(pipe_ctx); if (dc_is_dp_signal(pipe_ctx->stream->signal)) dc->link_srv->dp_trace_source_sequence(link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME); /* enable early control to avoid corruption on DP monitor*/ active_total_with_borders = timing->h_addressable + timing->h_border_left + timing->h_border_right; if (lane_count != 0) early_control = active_total_with_borders % lane_count; if (early_control == 0) early_control = lane_count; tg->funcs->set_early_control(tg, early_control); if (dc->hwseq->funcs.set_pixels_per_cycle) dc->hwseq->funcs.set_pixels_per_cycle(pipe_ctx); } void dcn20_program_dmdata_engine(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct hubp *hubp = pipe_ctx->plane_res.hubp; bool enable = false; struct stream_encoder *stream_enc = pipe_ctx->stream_res.stream_enc; enum dynamic_metadata_mode mode = dc_is_dp_signal(stream->signal) ? dmdata_dp : dmdata_hdmi; /* if using dynamic meta, don't set up generic infopackets */ if (pipe_ctx->stream->dmdata_address.quad_part != 0) { pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false; enable = true; } if (!hubp) return; if (!stream_enc || !stream_enc->funcs->set_dynamic_metadata) return; stream_enc->funcs->set_dynamic_metadata(stream_enc, enable, hubp->inst, mode); } void dcn20_fpga_init_hw(struct dc *dc) { int i, j; struct dce_hwseq *hws = dc->hwseq; struct resource_pool *res_pool = dc->res_pool; struct dc_state *context = dc->current_state; if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); // Initialize the dccg if (res_pool->dccg->funcs->dccg_init) res_pool->dccg->funcs->dccg_init(res_pool->dccg); //Enable ability to power gate / don't force power on permanently hws->funcs.enable_power_gating_plane(hws, true); // Specific to FPGA dccg and registers REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF); REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF); hws->funcs.dccg_init(hws); REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2); REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1); if (REG(REFCLK_CNTL)) REG_WRITE(REFCLK_CNTL, 0); // /* Blank pixel data with OPP DPG */ for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) dcn20_init_blank(dc, tg); } for (i = 0; i < res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) tg->funcs->lock(tg); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dpp *dpp = res_pool->dpps[i]; dpp->funcs->dpp_reset(dpp); } /* Reset all MPCC muxes */ res_pool->mpc->funcs->mpc_init(res_pool->mpc); /* initialize OPP mpc_tree parameter */ for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst; res_pool->opps[i]->mpc_tree_params.opp_list = NULL; for (j = 0; j < MAX_PIPES; j++) res_pool->opps[i]->mpcc_disconnect_pending[j] = false; } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct hubp *hubp = dc->res_pool->hubps[i]; struct dpp *dpp = dc->res_pool->dpps[i]; pipe_ctx->stream_res.tg = tg; pipe_ctx->pipe_idx = i; pipe_ctx->plane_res.hubp = hubp; pipe_ctx->plane_res.dpp = dpp; pipe_ctx->plane_res.mpcc_inst = dpp->inst; hubp->mpcc_id = dpp->inst; hubp->opp_id = OPP_ID_INVALID; hubp->power_gated = false; pipe_ctx->stream_res.opp = NULL; hubp->funcs->hubp_init(hubp); //dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst; //dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; pipe_ctx->stream_res.opp = dc->res_pool->opps[i]; /*to do*/ hws->funcs.plane_atomic_disconnect(dc, pipe_ctx); } /* initialize DWB pointer to MCIF_WB */ for (i = 0; i < res_pool->res_cap->num_dwb; i++) res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i]; for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; if (tg->funcs->is_tg_enabled(tg)) tg->funcs->unlock(tg); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; dc->hwss.disable_plane(dc, pipe_ctx); pipe_ctx->stream_res.tg = NULL; pipe_ctx->plane_res.hubp = NULL; } for (i = 0; i < dc->res_pool->timing_generator_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; tg->funcs->tg_init(tg); } if (dc->res_pool->hubbub->funcs->init_crb) dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub); } #ifndef TRIM_FSFT bool dcn20_optimize_timing_for_fsft(struct dc *dc, struct dc_crtc_timing *timing, unsigned int max_input_rate_in_khz) { unsigned int old_v_front_porch; unsigned int old_v_total; unsigned int max_input_rate_in_100hz; unsigned long long new_v_total; max_input_rate_in_100hz = max_input_rate_in_khz * 10; if (max_input_rate_in_100hz < timing->pix_clk_100hz) return false; old_v_total = timing->v_total; old_v_front_porch = timing->v_front_porch; timing->fast_transport_output_rate_100hz = timing->pix_clk_100hz; timing->pix_clk_100hz = max_input_rate_in_100hz; new_v_total = div_u64((unsigned long long)old_v_total * max_input_rate_in_100hz, timing->pix_clk_100hz); timing->v_total = new_v_total; timing->v_front_porch = old_v_front_porch + (timing->v_total - old_v_total); return true; } #endif void dcn20_set_disp_pattern_generator(const struct dc *dc, struct pipe_ctx *pipe_ctx, enum controller_dp_test_pattern test_pattern, enum controller_dp_color_space color_space, enum dc_color_depth color_depth, const struct tg_color *solid_color, int width, int height, int offset) { pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(pipe_ctx->stream_res.opp, test_pattern, color_space, color_depth, solid_color, width, height, offset); }