/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "dcn10_ipp.h" #include "reg_helper.h" #define REG(reg) \ (ippn10->regs->reg) #undef FN #define FN(reg_name, field_name) \ ippn10->ipp_shift->field_name, ippn10->ipp_mask->field_name #define CTX \ ippn10->base.ctx struct dcn10_input_csc_matrix { enum dc_color_space color_space; uint32_t regval[12]; }; static const struct dcn10_input_csc_matrix dcn10_input_csc_matrix[] = { {COLOR_SPACE_SRGB, {0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} }, {COLOR_SPACE_SRGB_LIMITED, {0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} }, {COLOR_SPACE_YCBCR601, {0x2cdd, 0x2000, 0, 0xe991, 0xe926, 0x2000, 0xf4fd, 0x10ef, 0, 0x2000, 0x38b4, 0xe3a6} }, {COLOR_SPACE_YCBCR601_LIMITED, {0x3353, 0x2568, 0, 0xe400, 0xe5dc, 0x2568, 0xf367, 0x1108, 0, 0x2568, 0x40de, 0xdd3a} }, {COLOR_SPACE_YCBCR709, {0x3265, 0x2000, 0, 0xe6ce, 0xf105, 0x2000, 0xfa01, 0xa7d, 0, 0x2000, 0x3b61, 0xe24f} }, {COLOR_SPACE_YCBCR709_LIMITED, {0x39a6, 0x2568, 0, 0xe0d6, 0xeedd, 0x2568, 0xf925, 0x9a8, 0, 0x2568, 0x43ee, 0xdbb2} } }; enum dcn10_input_csc_select { INPUT_CSC_SELECT_BYPASS = 0, INPUT_CSC_SELECT_ICSC, INPUT_CSC_SELECT_COMA }; static void dcn10_program_input_csc( struct input_pixel_processor *ipp, enum dc_color_space color_space, enum dcn10_input_csc_select select) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); int i; int arr_size = sizeof(dcn10_input_csc_matrix)/sizeof(struct dcn10_input_csc_matrix); const uint32_t *regval = NULL; uint32_t selection = 1; if (select == INPUT_CSC_SELECT_BYPASS) { REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0); return; } for (i = 0; i < arr_size; i++) if (dcn10_input_csc_matrix[i].color_space == color_space) { regval = dcn10_input_csc_matrix[i].regval; break; } if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } if (select == INPUT_CSC_SELECT_COMA) selection = 2; REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, selection); if (select == INPUT_CSC_SELECT_ICSC) { /*R*/ REG_SET_2(CM_ICSC_C11_C12, 0, CM_ICSC_C11, regval[0], CM_ICSC_C12, regval[1]); regval += 2; REG_SET_2(CM_ICSC_C13_C14, 0, CM_ICSC_C13, regval[0], CM_ICSC_C14, regval[1]); /*G*/ regval += 2; REG_SET_2(CM_ICSC_C21_C22, 0, CM_ICSC_C21, regval[0], CM_ICSC_C22, regval[1]); regval += 2; REG_SET_2(CM_ICSC_C23_C24, 0, CM_ICSC_C23, regval[0], CM_ICSC_C24, regval[1]); /*B*/ regval += 2; REG_SET_2(CM_ICSC_C31_C32, 0, CM_ICSC_C31, regval[0], CM_ICSC_C32, regval[1]); regval += 2; REG_SET_2(CM_ICSC_C33_C34, 0, CM_ICSC_C33, regval[0], CM_ICSC_C34, regval[1]); } else { /*R*/ REG_SET_2(CM_COMA_C11_C12, 0, CM_COMA_C11, regval[0], CM_COMA_C12, regval[1]); regval += 2; REG_SET_2(CM_COMA_C13_C14, 0, CM_COMA_C13, regval[0], CM_COMA_C14, regval[1]); /*G*/ regval += 2; REG_SET_2(CM_COMA_C21_C22, 0, CM_COMA_C21, regval[0], CM_COMA_C22, regval[1]); regval += 2; REG_SET_2(CM_COMA_C23_C24, 0, CM_COMA_C23, regval[0], CM_COMA_C24, regval[1]); /*B*/ regval += 2; REG_SET_2(CM_COMA_C31_C32, 0, CM_COMA_C31, regval[0], CM_COMA_C32, regval[1]); regval += 2; REG_SET_2(CM_COMA_C33_C34, 0, CM_COMA_C33, regval[0], CM_COMA_C34, regval[1]); } } /*program de gamma RAM B*/ static void dcn10_ipp_program_degamma_lutb_settings( struct input_pixel_processor *ipp, const struct pwl_params *params) { const struct gamma_curve *curve; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_SET_2(CM_DGAM_RAMB_START_CNTL_B, 0, CM_DGAM_RAMB_EXP_REGION_START_B, params->arr_points[0].custom_float_x, CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(CM_DGAM_RAMB_START_CNTL_G, 0, CM_DGAM_RAMB_EXP_REGION_START_G, params->arr_points[0].custom_float_x, CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_G, 0); REG_SET_2(CM_DGAM_RAMB_START_CNTL_R, 0, CM_DGAM_RAMB_EXP_REGION_START_R, params->arr_points[0].custom_float_x, CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_R, 0); REG_SET(CM_DGAM_RAMB_SLOPE_CNTL_B, 0, CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B, params->arr_points[0].custom_float_slope); REG_SET(CM_DGAM_RAMB_SLOPE_CNTL_G, 0, CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G, params->arr_points[0].custom_float_slope); REG_SET(CM_DGAM_RAMB_SLOPE_CNTL_R, 0, CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R, params->arr_points[0].custom_float_slope); REG_SET(CM_DGAM_RAMB_END_CNTL1_B, 0, CM_DGAM_RAMB_EXP_REGION_END_B, params->arr_points[1].custom_float_x); REG_SET_2(CM_DGAM_RAMB_END_CNTL2_B, 0, CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B, params->arr_points[1].custom_float_y, CM_DGAM_RAMB_EXP_REGION_END_BASE_B, params->arr_points[2].custom_float_slope); REG_SET(CM_DGAM_RAMB_END_CNTL1_G, 0, CM_DGAM_RAMB_EXP_REGION_END_G, params->arr_points[1].custom_float_x); REG_SET_2(CM_DGAM_RAMB_END_CNTL2_G, 0, CM_DGAM_RAMB_EXP_REGION_END_SLOPE_G, params->arr_points[1].custom_float_y, CM_DGAM_RAMB_EXP_REGION_END_BASE_G, params->arr_points[2].custom_float_slope); REG_SET(CM_DGAM_RAMB_END_CNTL1_R, 0, CM_DGAM_RAMB_EXP_REGION_END_R, params->arr_points[1].custom_float_x); REG_SET_2(CM_DGAM_RAMB_END_CNTL2_R, 0, CM_DGAM_RAMB_EXP_REGION_END_SLOPE_R, params->arr_points[1].custom_float_y, CM_DGAM_RAMB_EXP_REGION_END_BASE_R, params->arr_points[2].custom_float_slope); curve = params->arr_curve_points; REG_SET_4(CM_DGAM_RAMB_REGION_0_1, 0, CM_DGAM_RAMB_EXP_REGION0_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION1_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_2_3, 0, CM_DGAM_RAMB_EXP_REGION2_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION3_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_4_5, 0, CM_DGAM_RAMB_EXP_REGION4_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION5_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_6_7, 0, CM_DGAM_RAMB_EXP_REGION6_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION7_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_8_9, 0, CM_DGAM_RAMB_EXP_REGION8_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION9_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_10_11, 0, CM_DGAM_RAMB_EXP_REGION10_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION11_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_12_13, 0, CM_DGAM_RAMB_EXP_REGION12_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION13_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMB_REGION_14_15, 0, CM_DGAM_RAMB_EXP_REGION14_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMB_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMB_EXP_REGION15_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMB_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num); } /*program de gamma RAM A*/ static void dcn10_ipp_program_degamma_luta_settings( struct input_pixel_processor *ipp, const struct pwl_params *params) { const struct gamma_curve *curve; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_SET_2(CM_DGAM_RAMA_START_CNTL_B, 0, CM_DGAM_RAMA_EXP_REGION_START_B, params->arr_points[0].custom_float_x, CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(CM_DGAM_RAMA_START_CNTL_G, 0, CM_DGAM_RAMA_EXP_REGION_START_G, params->arr_points[0].custom_float_x, CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_G, 0); REG_SET_2(CM_DGAM_RAMA_START_CNTL_R, 0, CM_DGAM_RAMA_EXP_REGION_START_R, params->arr_points[0].custom_float_x, CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_R, 0); REG_SET(CM_DGAM_RAMA_SLOPE_CNTL_B, 0, CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B, params->arr_points[0].custom_float_slope); REG_SET(CM_DGAM_RAMA_SLOPE_CNTL_G, 0, CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G, params->arr_points[0].custom_float_slope); REG_SET(CM_DGAM_RAMA_SLOPE_CNTL_R, 0, CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R, params->arr_points[0].custom_float_slope); REG_SET(CM_DGAM_RAMA_END_CNTL1_B, 0, CM_DGAM_RAMA_EXP_REGION_END_B, params->arr_points[1].custom_float_x); REG_SET_2(CM_DGAM_RAMA_END_CNTL2_B, 0, CM_DGAM_RAMA_EXP_REGION_END_SLOPE_B, params->arr_points[1].custom_float_y, CM_DGAM_RAMA_EXP_REGION_END_BASE_B, params->arr_points[2].custom_float_slope); REG_SET(CM_DGAM_RAMA_END_CNTL1_G, 0, CM_DGAM_RAMA_EXP_REGION_END_G, params->arr_points[1].custom_float_x); REG_SET_2(CM_DGAM_RAMA_END_CNTL2_G, 0, CM_DGAM_RAMA_EXP_REGION_END_SLOPE_G, params->arr_points[1].custom_float_y, CM_DGAM_RAMA_EXP_REGION_END_BASE_G, params->arr_points[2].custom_float_slope); REG_SET(CM_DGAM_RAMA_END_CNTL1_R, 0, CM_DGAM_RAMA_EXP_REGION_END_R, params->arr_points[1].custom_float_x); REG_SET_2(CM_DGAM_RAMA_END_CNTL2_R, 0, CM_DGAM_RAMA_EXP_REGION_END_SLOPE_R, params->arr_points[1].custom_float_y, CM_DGAM_RAMA_EXP_REGION_END_BASE_R, params->arr_points[2].custom_float_slope); curve = params->arr_curve_points; REG_SET_4(CM_DGAM_RAMA_REGION_0_1, 0, CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_2_3, 0, CM_DGAM_RAMA_EXP_REGION2_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION3_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_4_5, 0, CM_DGAM_RAMA_EXP_REGION4_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION5_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_6_7, 0, CM_DGAM_RAMA_EXP_REGION6_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION7_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_8_9, 0, CM_DGAM_RAMA_EXP_REGION8_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION9_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_10_11, 0, CM_DGAM_RAMA_EXP_REGION10_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION11_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_12_13, 0, CM_DGAM_RAMA_EXP_REGION12_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION13_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(CM_DGAM_RAMA_REGION_14_15, 0, CM_DGAM_RAMA_EXP_REGION14_LUT_OFFSET, curve[0].offset, CM_DGAM_RAMA_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num, CM_DGAM_RAMA_EXP_REGION15_LUT_OFFSET, curve[1].offset, CM_DGAM_RAMA_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num); } static void ipp_power_on_degamma_lut( struct input_pixel_processor *ipp, bool power_on) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, power_on == true ? 0:1); } static void ipp_program_degamma_lut( struct input_pixel_processor *ipp, const struct pwl_result_data *rgb, uint32_t num, bool is_ram_a) { uint32_t i; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_EN_MASK, 7); REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0); for (i = 0 ; i < num; i++) { REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg); } } static void dcn10_ipp_enable_cm_block( struct input_pixel_processor *ipp) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_UPDATE(DPP_CONTROL, DPP_CLOCK_ENABLE, 1); REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0); } static void dcn10_ipp_full_bypass(struct input_pixel_processor *ipp) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); /* Input pixel format: ARGB8888 */ REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0, CNVC_SURFACE_PIXEL_FORMAT, 0x8); /* Zero expansion */ REG_SET_3(FORMAT_CONTROL, 0, CNVC_BYPASS, 0, ALPHA_EN, 0, FORMAT_EXPANSION_MODE, 0); /* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */ REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1); /* Setting degamma bypass for now */ REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0); REG_SET(CM_IGAM_CONTROL, 0, CM_IGAM_LUT_MODE, 0); } static void dcn10_ipp_set_degamma( struct input_pixel_processor *ipp, enum ipp_degamma_mode mode) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); dcn10_ipp_enable_cm_block(ipp); switch (mode) { case IPP_DEGAMMA_MODE_BYPASS: /* Setting de gamma bypass for now */ REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0); break; case IPP_DEGAMMA_MODE_HW_sRGB: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1); break; case IPP_DEGAMMA_MODE_HW_xvYCC: REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2); break; default: BREAK_TO_DEBUGGER(); break; } } static bool dcn10_cursor_program_control( struct dcn10_ipp *ippn10, bool pixel_data_invert, enum dc_cursor_color_format color_format) { REG_SET_2(CURSOR_SETTINS, 0, /* no shift of the cursor HDL schedule */ CURSOR0_DST_Y_OFFSET, 0, /* used to shift the cursor chunk request deadline */ CURSOR0_CHUNK_HDL_ADJUST, 3); REG_UPDATE_2(CURSOR0_CONTROL, CUR0_MODE, color_format, CUR0_INVERT_MODE, 0); if (color_format == CURSOR_MODE_MONO) { /* todo: clarify what to program these to */ REG_UPDATE(CURSOR0_COLOR0, CUR0_COLOR0, 0x00000000); REG_UPDATE(CURSOR0_COLOR1, CUR0_COLOR1, 0xFFFFFFFF); } /* TODO: Fixed vs float */ REG_UPDATE_3(FORMAT_CONTROL, CNVC_BYPASS, 0, ALPHA_EN, 1, FORMAT_EXPANSION_MODE, 0); REG_UPDATE(CURSOR0_CONTROL, CUR0_EXPANSION_MODE, 0); if (0 /*attributes->attribute_flags.bits.MIN_MAX_INVERT*/) { REG_UPDATE(CURSOR0_CONTROL, CUR0_MAX, 0 /* TODO */); REG_UPDATE(CURSOR0_CONTROL, CUR0_MIN, 0 /* TODO */); } return true; } enum cursor_pitch { CURSOR_PITCH_64_PIXELS = 0, CURSOR_PITCH_128_PIXELS, CURSOR_PITCH_256_PIXELS }; enum cursor_lines_per_chunk { CURSOR_LINE_PER_CHUNK_2 = 1, CURSOR_LINE_PER_CHUNK_4, CURSOR_LINE_PER_CHUNK_8, CURSOR_LINE_PER_CHUNK_16 }; static enum cursor_pitch dcn10_get_cursor_pitch( unsigned int pitch) { enum cursor_pitch hw_pitch; switch (pitch) { case 64: hw_pitch = CURSOR_PITCH_64_PIXELS; break; case 128: hw_pitch = CURSOR_PITCH_128_PIXELS; break; case 256: hw_pitch = CURSOR_PITCH_256_PIXELS; break; default: DC_ERR("Invalid cursor pitch of %d. " "Only 64/128/256 is supported on DCN.\n", pitch); hw_pitch = CURSOR_PITCH_64_PIXELS; break; } return hw_pitch; } static enum cursor_lines_per_chunk dcn10_get_lines_per_chunk( unsigned int cur_width, enum dc_cursor_color_format format) { enum cursor_lines_per_chunk line_per_chunk; if (format == CURSOR_MODE_MONO) /* impl B. expansion in CUR Buffer reader */ line_per_chunk = CURSOR_LINE_PER_CHUNK_16; else if (cur_width <= 32) line_per_chunk = CURSOR_LINE_PER_CHUNK_16; else if (cur_width <= 64) line_per_chunk = CURSOR_LINE_PER_CHUNK_8; else if (cur_width <= 128) line_per_chunk = CURSOR_LINE_PER_CHUNK_4; else line_per_chunk = CURSOR_LINE_PER_CHUNK_2; return line_per_chunk; } static void dcn10_cursor_set_attributes( struct input_pixel_processor *ipp, const struct dc_cursor_attributes *attr) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); enum cursor_pitch hw_pitch = dcn10_get_cursor_pitch(attr->pitch); enum cursor_lines_per_chunk lpc = dcn10_get_lines_per_chunk( attr->width, attr->color_format); ippn10->curs_attr = *attr; REG_UPDATE(CURSOR_SURFACE_ADDRESS_HIGH, CURSOR_SURFACE_ADDRESS_HIGH, attr->address.high_part); REG_UPDATE(CURSOR_SURFACE_ADDRESS, CURSOR_SURFACE_ADDRESS, attr->address.low_part); REG_UPDATE_2(CURSOR_SIZE, CURSOR_WIDTH, attr->width, CURSOR_HEIGHT, attr->height); REG_UPDATE_3(CURSOR_CONTROL, CURSOR_MODE, attr->color_format, CURSOR_PITCH, hw_pitch, CURSOR_LINES_PER_CHUNK, lpc); dcn10_cursor_program_control(ippn10, attr->attribute_flags.bits.INVERT_PIXEL_DATA, attr->color_format); } static void dcn10_cursor_set_position( struct input_pixel_processor *ipp, const struct dc_cursor_position *pos, const struct dc_cursor_mi_param *param) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); int src_x_offset = pos->x - pos->x_hotspot - param->viewport_x_start; uint32_t cur_en = pos->enable ? 1 : 0; uint32_t dst_x_offset = (src_x_offset >= 0) ? src_x_offset : 0; /* * Guard aganst cursor_set_position() from being called with invalid * attributes * * TODO: Look at combining cursor_set_position() and * cursor_set_attributes() into cursor_update() */ if (ippn10->curs_attr.address.quad_part == 0) return; dst_x_offset *= param->ref_clk_khz; dst_x_offset /= param->pixel_clk_khz; ASSERT(param->h_scale_ratio.value); if (param->h_scale_ratio.value) dst_x_offset = dal_fixed31_32_floor(dal_fixed31_32_div( dal_fixed31_32_from_int(dst_x_offset), param->h_scale_ratio)); if (src_x_offset >= (int)param->viewport_width) cur_en = 0; /* not visible beyond right edge*/ if (src_x_offset + (int)ippn10->curs_attr.width < 0) cur_en = 0; /* not visible beyond left edge*/ if (cur_en && REG_READ(CURSOR_SURFACE_ADDRESS) == 0) dcn10_cursor_set_attributes(ipp, &ippn10->curs_attr); REG_UPDATE(CURSOR_CONTROL, CURSOR_ENABLE, cur_en); REG_UPDATE(CURSOR0_CONTROL, CUR0_ENABLE, cur_en); REG_SET_2(CURSOR_POSITION, 0, CURSOR_X_POSITION, pos->x, CURSOR_Y_POSITION, pos->y); REG_SET_2(CURSOR_HOT_SPOT, 0, CURSOR_HOT_SPOT_X, pos->x_hotspot, CURSOR_HOT_SPOT_Y, pos->y_hotspot); REG_SET(CURSOR_DST_OFFSET, 0, CURSOR_DST_X_OFFSET, dst_x_offset); /* TODO Handle surface pixel formats other than 4:4:4 */ } enum pixel_format_description { PIXEL_FORMAT_FIXED = 0, PIXEL_FORMAT_FIXED16, PIXEL_FORMAT_FLOAT }; static void dcn10_setup_format_flags(enum surface_pixel_format input_format,\ enum pixel_format_description *fmt) { if (input_format == SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F || input_format == SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F) *fmt = PIXEL_FORMAT_FLOAT; else if (input_format == SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616) *fmt = PIXEL_FORMAT_FIXED16; else *fmt = PIXEL_FORMAT_FIXED; } static void dcn10_ipp_set_degamma_format_float(struct input_pixel_processor *ipp, bool is_float) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); if (is_float) { REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 3); REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, 1); } else { REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 2); REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, 0); } } static void dcn10_ipp_cnv_setup ( struct input_pixel_processor *ipp, enum surface_pixel_format input_format, enum expansion_mode mode, enum ipp_output_format cnv_out_format) { uint32_t pixel_format; uint32_t alpha_en; enum pixel_format_description fmt ; enum dc_color_space color_space; enum dcn10_input_csc_select select; bool is_float; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); bool force_disable_cursor = false; dcn10_setup_format_flags(input_format, &fmt); alpha_en = 1; pixel_format = 0; color_space = COLOR_SPACE_SRGB; select = INPUT_CSC_SELECT_BYPASS; is_float = false; switch (fmt) { case PIXEL_FORMAT_FIXED: case PIXEL_FORMAT_FIXED16: /*when output is float then FORMAT_CONTROL__OUTPUT_FP=1*/ REG_SET_3(FORMAT_CONTROL, 0, CNVC_BYPASS, 0, FORMAT_EXPANSION_MODE, mode, OUTPUT_FP, 0); break; case PIXEL_FORMAT_FLOAT: REG_SET_3(FORMAT_CONTROL, 0, CNVC_BYPASS, 0, FORMAT_EXPANSION_MODE, mode, OUTPUT_FP, 1); is_float = true; break; default: break; } dcn10_ipp_set_degamma_format_float(ipp, is_float); switch (input_format) { case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: pixel_format = 1; break; case SURFACE_PIXEL_FORMAT_GRPH_RGB565: pixel_format = 3; alpha_en = 0; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888: case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888: pixel_format = 8; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010: pixel_format = 10; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: force_disable_cursor = false; pixel_format = 65; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: force_disable_cursor = true; pixel_format = 64; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: force_disable_cursor = true; pixel_format = 67; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: force_disable_cursor = true; pixel_format = 66; color_space = COLOR_SPACE_YCBCR709; select = INPUT_CSC_SELECT_ICSC; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: pixel_format = 22; break; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: pixel_format = 24; break; case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: pixel_format = 25; break; default: break; } REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0, CNVC_SURFACE_PIXEL_FORMAT, pixel_format); REG_UPDATE(FORMAT_CONTROL, ALPHA_EN, alpha_en); dcn10_program_input_csc(ipp, color_space, select); if (force_disable_cursor) { REG_UPDATE(CURSOR_CONTROL, CURSOR_ENABLE, 0); REG_UPDATE(CURSOR0_CONTROL, CUR0_ENABLE, 0); } } static bool dcn10_degamma_ram_inuse(struct input_pixel_processor *ipp, bool *ram_a_inuse) { bool ret = false; uint32_t status_reg = 0; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, &status_reg); if (status_reg == 9) { *ram_a_inuse = true; ret = true; } else if (status_reg == 10) { *ram_a_inuse = false; ret = true; } return ret; } static bool dcn10_ingamma_ram_inuse(struct input_pixel_processor *ipp, bool *ram_a_inuse) { bool in_use = false; uint32_t status_reg = 0; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS, &status_reg); // 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB if (status_reg == 1 || status_reg == 3 || status_reg == 4) { *ram_a_inuse = true; in_use = true; // 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB } else if (status_reg == 2 || status_reg == 5 || status_reg == 6) { *ram_a_inuse = false; in_use = true; } return in_use; } static void dcn10_degamma_ram_select(struct input_pixel_processor *ipp, bool use_ram_a) { struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); if (use_ram_a) REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3); else REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4); } static void dcn10_ipp_set_degamma_pwl(struct input_pixel_processor *ipp, const struct pwl_params *params) { bool is_ram_a = true; ipp_power_on_degamma_lut(ipp, true); dcn10_ipp_enable_cm_block(ipp); dcn10_degamma_ram_inuse(ipp, &is_ram_a); if (is_ram_a == true) dcn10_ipp_program_degamma_lutb_settings(ipp, params); else dcn10_ipp_program_degamma_luta_settings(ipp, params); ipp_program_degamma_lut(ipp, params->rgb_resulted, params->hw_points_num, !is_ram_a); dcn10_degamma_ram_select(ipp, !is_ram_a); } /* * Input gamma LUT currently supports 256 values only. This means input color * can have a maximum of 8 bits per channel (= 256 possible values) in order to * have a one-to-one mapping with the LUT. Truncation will occur with color * values greater than 8 bits. * * In the future, this function should support additional input gamma methods, * such as piecewise linear mapping, and input gamma bypass. */ void dcn10_ipp_program_input_lut( struct input_pixel_processor *ipp, const struct dc_gamma *gamma) { int i; struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp); bool rama_occupied = false; uint32_t ram_num; // Power on LUT memory. REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1); dcn10_ipp_enable_cm_block(ipp); // Determine whether to use RAM A or RAM B dcn10_ingamma_ram_inuse(ipp, &rama_occupied); if (!rama_occupied) REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0); else REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1); // RW mode is 256-entry LUT REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0); // IGAM Input format should be 8 bits per channel. REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0); // Do not mask any R,G,B values REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7); // LUT-256, unsigned, integer, new u0.12 format REG_UPDATE_3( CM_IGAM_CONTROL, CM_IGAM_LUT_FORMAT_R, 3, CM_IGAM_LUT_FORMAT_G, 3, CM_IGAM_LUT_FORMAT_B, 3); // Start at index 0 of IGAM LUT REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0); for (i = 0; i < INPUT_LUT_ENTRIES; i++) { REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, gamma->red[i]); REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, gamma->green[i]); REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR, gamma->blue[i]); } // Power off LUT memory REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0); // Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2); REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num); } /*****************************************/ /* Constructor, Destructor */ /*****************************************/ static void dcn10_ipp_destroy(struct input_pixel_processor **ipp) { dm_free(TO_DCN10_IPP(*ipp)); *ipp = NULL; } static const struct ipp_funcs dcn10_ipp_funcs = { .ipp_cursor_set_attributes = dcn10_cursor_set_attributes, .ipp_cursor_set_position = dcn10_cursor_set_position, .ipp_set_degamma = dcn10_ipp_set_degamma, .ipp_program_input_lut = dcn10_ipp_program_input_lut, .ipp_full_bypass = dcn10_ipp_full_bypass, .ipp_setup = dcn10_ipp_cnv_setup, .ipp_program_degamma_pwl = dcn10_ipp_set_degamma_pwl, .ipp_destroy = dcn10_ipp_destroy }; void dcn10_ipp_construct( struct dcn10_ipp *ippn10, struct dc_context *ctx, int inst, const struct dcn10_ipp_registers *regs, const struct dcn10_ipp_shift *ipp_shift, const struct dcn10_ipp_mask *ipp_mask) { ippn10->base.ctx = ctx; ippn10->base.inst = inst; ippn10->base.funcs = &dcn10_ipp_funcs; ippn10->regs = regs; ippn10->ipp_shift = ipp_shift; ippn10->ipp_mask = ipp_mask; }