/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include #include "dm_services.h" #include "core_types.h" #include "dce_aux.h" #include "dce/dce_11_0_sh_mask.h" #include "dm_event_log.h" #include "dm_helpers.h" #include "dmub/inc/dmub_cmd.h" #define CTX \ aux110->base.ctx #define REG(reg_name)\ (aux110->regs->reg_name) #define DC_LOGGER \ engine->ctx->logger #define DC_TRACE_LEVEL_MESSAGE(...) do { } while (0) #define IS_DC_I2CAUX_LOGGING_ENABLED() (false) #define LOG_FLAG_Error_I2cAux LOG_ERROR #define LOG_FLAG_I2cAux_DceAux LOG_I2C_AUX #include "reg_helper.h" #undef FN #define FN(reg_name, field_name) \ aux110->shift->field_name, aux110->mask->field_name #define FROM_AUX_ENGINE(ptr) \ container_of((ptr), struct aux_engine_dce110, base) #define FROM_ENGINE(ptr) \ FROM_AUX_ENGINE(container_of((ptr), struct dce_aux, base)) #define FROM_AUX_ENGINE_ENGINE(ptr) \ container_of((ptr), struct dce_aux, base) enum { AUX_INVALID_REPLY_RETRY_COUNTER = 1, AUX_TIMED_OUT_RETRY_COUNTER = 2, AUX_DEFER_RETRY_COUNTER = 6 }; #define TIME_OUT_INCREMENT 1016 #define TIME_OUT_MULTIPLIER_8 8 #define TIME_OUT_MULTIPLIER_16 16 #define TIME_OUT_MULTIPLIER_32 32 #define TIME_OUT_MULTIPLIER_64 64 #define MAX_TIMEOUT_LENGTH 127 #define DEFAULT_AUX_ENGINE_MULT 0 #define DEFAULT_AUX_ENGINE_LENGTH 69 #define DC_TRACE_LEVEL_MESSAGE(...) do { } while (0) static void release_engine( struct dce_aux *engine) { struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine); dal_ddc_close(engine->ddc); engine->ddc = NULL; REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_DONE_USING_AUX_REG, 1); } #define SW_CAN_ACCESS_AUX 1 #define DMCU_CAN_ACCESS_AUX 2 static bool is_engine_available( struct dce_aux *engine) { struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine); uint32_t value = REG_READ(AUX_ARB_CONTROL); uint32_t field = get_reg_field_value( value, AUX_ARB_CONTROL, AUX_REG_RW_CNTL_STATUS); return (field != DMCU_CAN_ACCESS_AUX); } static bool acquire_engine( struct dce_aux *engine) { struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine); uint32_t value = REG_READ(AUX_ARB_CONTROL); uint32_t field = get_reg_field_value( value, AUX_ARB_CONTROL, AUX_REG_RW_CNTL_STATUS); if (field == DMCU_CAN_ACCESS_AUX) return false; /* enable AUX before request SW to access AUX */ value = REG_READ(AUX_CONTROL); field = get_reg_field_value(value, AUX_CONTROL, AUX_EN); if (field == 0) { set_reg_field_value( value, 1, AUX_CONTROL, AUX_EN); if (REG(AUX_RESET_MASK)) { /*DP_AUX block as part of the enable sequence*/ set_reg_field_value( value, 1, AUX_CONTROL, AUX_RESET); } REG_WRITE(AUX_CONTROL, value); if (REG(AUX_RESET_MASK)) { /*poll HW to make sure reset it done*/ REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 1, 1, 11); set_reg_field_value( value, 0, AUX_CONTROL, AUX_RESET); REG_WRITE(AUX_CONTROL, value); REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 0, 1, 11); } } /*if (field)*/ /* request SW to access AUX */ REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_USE_AUX_REG_REQ, 1); value = REG_READ(AUX_ARB_CONTROL); field = get_reg_field_value( value, AUX_ARB_CONTROL, AUX_REG_RW_CNTL_STATUS); return (field == SW_CAN_ACCESS_AUX); } #define COMPOSE_AUX_SW_DATA_16_20(command, address) \ ((command) | ((0xF0000 & (address)) >> 16)) #define COMPOSE_AUX_SW_DATA_8_15(address) \ ((0xFF00 & (address)) >> 8) #define COMPOSE_AUX_SW_DATA_0_7(address) \ (0xFF & (address)) static void submit_channel_request( struct dce_aux *engine, struct aux_request_transaction_data *request) { struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine); uint32_t value; uint32_t length; bool is_write = ((request->type == AUX_TRANSACTION_TYPE_DP) && (request->action == I2CAUX_TRANSACTION_ACTION_DP_WRITE)) || ((request->type == AUX_TRANSACTION_TYPE_I2C) && ((request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) || (request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT))); if (REG(AUXN_IMPCAL)) { /* clear_aux_error */ REG_UPDATE_SEQ_2(AUXN_IMPCAL, AUXN_CALOUT_ERROR_AK, 1, AUXN_CALOUT_ERROR_AK, 0); REG_UPDATE_SEQ_2(AUXP_IMPCAL, AUXP_CALOUT_ERROR_AK, 1, AUXP_CALOUT_ERROR_AK, 0); /* force_default_calibrate */ REG_UPDATE_SEQ_2(AUXN_IMPCAL, AUXN_IMPCAL_ENABLE, 1, AUXN_IMPCAL_OVERRIDE_ENABLE, 0); /* bug? why AUXN update EN and OVERRIDE_EN 1 by 1 while AUX P toggles OVERRIDE? */ REG_UPDATE_SEQ_2(AUXP_IMPCAL, AUXP_IMPCAL_OVERRIDE_ENABLE, 1, AUXP_IMPCAL_OVERRIDE_ENABLE, 0); } REG_UPDATE(AUX_INTERRUPT_CONTROL, AUX_SW_DONE_ACK, 1); REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 0, 10, aux110->polling_timeout_period/10); /* set the delay and the number of bytes to write */ /* The length include * the 4 bit header and the 20 bit address * (that is 3 byte). * If the requested length is non zero this means * an addition byte specifying the length is required. */ length = request->length ? 4 : 3; if (is_write) length += request->length; REG_UPDATE_2(AUX_SW_CONTROL, AUX_SW_START_DELAY, request->delay, AUX_SW_WR_BYTES, length); /* program action and address and payload data (if 'is_write') */ value = REG_UPDATE_4(AUX_SW_DATA, AUX_SW_INDEX, 0, AUX_SW_DATA_RW, 0, AUX_SW_AUTOINCREMENT_DISABLE, 1, AUX_SW_DATA, COMPOSE_AUX_SW_DATA_16_20(request->action, request->address)); value = REG_SET_2(AUX_SW_DATA, value, AUX_SW_AUTOINCREMENT_DISABLE, 0, AUX_SW_DATA, COMPOSE_AUX_SW_DATA_8_15(request->address)); value = REG_SET(AUX_SW_DATA, value, AUX_SW_DATA, COMPOSE_AUX_SW_DATA_0_7(request->address)); if (request->length) { value = REG_SET(AUX_SW_DATA, value, AUX_SW_DATA, request->length - 1); } if (is_write) { /* Load the HW buffer with the Data to be sent. * This is relevant for write operation. * For read, the data recived data will be * processed in process_channel_reply(). */ uint32_t i = 0; while (i < request->length) { value = REG_SET(AUX_SW_DATA, value, AUX_SW_DATA, request->data[i]); ++i; } } REG_UPDATE(AUX_SW_CONTROL, AUX_SW_GO, 1); EVENT_LOG_AUX_REQ(engine->ddc->pin_data->en, EVENT_LOG_AUX_ORIGIN_NATIVE, request->action, request->address, request->length, request->data); } static int read_channel_reply(struct dce_aux *engine, uint32_t size, uint8_t *buffer, uint8_t *reply_result, uint32_t *sw_status) { struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine); uint32_t bytes_replied; uint32_t reply_result_32; *sw_status = REG_GET(AUX_SW_STATUS, AUX_SW_REPLY_BYTE_COUNT, &bytes_replied); /* In case HPD is LOW, exit AUX transaction */ if ((*sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK)) return -1; /* Need at least the status byte */ if (!bytes_replied) return -1; REG_UPDATE_SEQ_3(AUX_SW_DATA, AUX_SW_INDEX, 0, AUX_SW_AUTOINCREMENT_DISABLE, 1, AUX_SW_DATA_RW, 1); REG_GET(AUX_SW_DATA, AUX_SW_DATA, &reply_result_32); reply_result_32 = reply_result_32 >> 4; if (reply_result != NULL) *reply_result = (uint8_t)reply_result_32; if (reply_result_32 == 0) { /* ACK */ uint32_t i = 0; /* First byte was already used to get the command status */ --bytes_replied; /* Do not overflow buffer */ if (bytes_replied > size) return -1; while (i < bytes_replied) { uint32_t aux_sw_data_val; REG_GET(AUX_SW_DATA, AUX_SW_DATA, &aux_sw_data_val); buffer[i] = aux_sw_data_val; ++i; } return i; } return 0; } static enum aux_return_code_type get_channel_status( struct dce_aux *engine, uint8_t *returned_bytes) { struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine); uint32_t value; if (returned_bytes == NULL) { /*caller pass NULL pointer*/ ASSERT_CRITICAL(false); return AUX_RET_ERROR_UNKNOWN; } *returned_bytes = 0; /* poll to make sure that SW_DONE is asserted */ REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 1, 10, aux110->polling_timeout_period/10); value = REG_READ(AUX_SW_STATUS); /* in case HPD is LOW, exit AUX transaction */ if ((value & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK)) return AUX_RET_ERROR_HPD_DISCON; /* Note that the following bits are set in 'status.bits' * during CTS 4.2.1.2 (FW 3.3.1): * AUX_SW_RX_MIN_COUNT_VIOL, AUX_SW_RX_INVALID_STOP, * AUX_SW_RX_RECV_NO_DET, AUX_SW_RX_RECV_INVALID_H. * * AUX_SW_RX_MIN_COUNT_VIOL is an internal, * HW debugging bit and should be ignored. */ if (value & AUX_SW_STATUS__AUX_SW_DONE_MASK) { if ((value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_STATE_MASK) || (value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_MASK)) return AUX_RET_ERROR_TIMEOUT; else if ((value & AUX_SW_STATUS__AUX_SW_RX_INVALID_STOP_MASK) || (value & AUX_SW_STATUS__AUX_SW_RX_RECV_NO_DET_MASK) || (value & AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_H_MASK) || (value & AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_L_MASK)) return AUX_RET_ERROR_INVALID_REPLY; *returned_bytes = get_reg_field_value(value, AUX_SW_STATUS, AUX_SW_REPLY_BYTE_COUNT); if (*returned_bytes == 0) return AUX_RET_ERROR_INVALID_REPLY; else { *returned_bytes -= 1; return AUX_RET_SUCCESS; } } else { /*time_elapsed >= aux_engine->timeout_period * AUX_SW_STATUS__AUX_SW_HPD_DISCON = at this point */ ASSERT_CRITICAL(false); return AUX_RET_ERROR_TIMEOUT; } } static bool acquire( struct dce_aux *engine, struct ddc *ddc) { enum gpio_result result; if ((engine == NULL) || !is_engine_available(engine)) return false; result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE, GPIO_DDC_CONFIG_TYPE_MODE_AUX); if (result != GPIO_RESULT_OK) return false; if (!acquire_engine(engine)) { dal_ddc_close(ddc); return false; } engine->ddc = ddc; return true; } void dce110_engine_destroy(struct dce_aux **engine) { struct aux_engine_dce110 *engine110 = FROM_AUX_ENGINE(*engine); kfree(engine110); *engine = NULL; } static uint32_t dce_aux_configure_timeout(struct ddc_service *ddc, uint32_t timeout_in_us) { uint32_t multiplier = 0; uint32_t length = 0; uint32_t prev_length = 0; uint32_t prev_mult = 0; uint32_t prev_timeout_val = 0; struct ddc *ddc_pin = ddc->ddc_pin; struct dce_aux *aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]; struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(aux_engine); /* 1-Update polling timeout period */ aux110->polling_timeout_period = timeout_in_us * SW_AUX_TIMEOUT_PERIOD_MULTIPLIER; /* 2-Update aux timeout period length and multiplier */ if (timeout_in_us == 0) { multiplier = DEFAULT_AUX_ENGINE_MULT; length = DEFAULT_AUX_ENGINE_LENGTH; } else if (timeout_in_us <= TIME_OUT_INCREMENT) { multiplier = 0; length = timeout_in_us/TIME_OUT_MULTIPLIER_8; if (timeout_in_us % TIME_OUT_MULTIPLIER_8 != 0) length++; } else if (timeout_in_us <= 2 * TIME_OUT_INCREMENT) { multiplier = 1; length = timeout_in_us/TIME_OUT_MULTIPLIER_16; if (timeout_in_us % TIME_OUT_MULTIPLIER_16 != 0) length++; } else if (timeout_in_us <= 4 * TIME_OUT_INCREMENT) { multiplier = 2; length = timeout_in_us/TIME_OUT_MULTIPLIER_32; if (timeout_in_us % TIME_OUT_MULTIPLIER_32 != 0) length++; } else if (timeout_in_us > 4 * TIME_OUT_INCREMENT) { multiplier = 3; length = timeout_in_us/TIME_OUT_MULTIPLIER_64; if (timeout_in_us % TIME_OUT_MULTIPLIER_64 != 0) length++; } length = (length < MAX_TIMEOUT_LENGTH) ? length : MAX_TIMEOUT_LENGTH; REG_GET_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, &prev_length, AUX_RX_TIMEOUT_LEN_MUL, &prev_mult); switch (prev_mult) { case 0: prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_8; break; case 1: prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_16; break; case 2: prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_32; break; case 3: prev_timeout_val = prev_length * TIME_OUT_MULTIPLIER_64; break; default: prev_timeout_val = DEFAULT_AUX_ENGINE_LENGTH * TIME_OUT_MULTIPLIER_8; break; } REG_UPDATE_SEQ_2(AUX_DPHY_RX_CONTROL1, AUX_RX_TIMEOUT_LEN, length, AUX_RX_TIMEOUT_LEN_MUL, multiplier); return prev_timeout_val; } static struct dce_aux_funcs aux_functions = { .configure_timeout = NULL, .destroy = NULL, }; struct dce_aux *dce110_aux_engine_construct(struct aux_engine_dce110 *aux_engine110, struct dc_context *ctx, uint32_t inst, uint32_t timeout_period, const struct dce110_aux_registers *regs, const struct dce110_aux_registers_mask *mask, const struct dce110_aux_registers_shift *shift, bool is_ext_aux_timeout_configurable) { aux_engine110->base.ddc = NULL; aux_engine110->base.ctx = ctx; aux_engine110->base.delay = 0; aux_engine110->base.max_defer_write_retry = 0; aux_engine110->base.inst = inst; aux_engine110->polling_timeout_period = timeout_period; aux_engine110->regs = regs; aux_engine110->mask = mask; aux_engine110->shift = shift; aux_engine110->base.funcs = &aux_functions; if (is_ext_aux_timeout_configurable) aux_engine110->base.funcs->configure_timeout = &dce_aux_configure_timeout; return &aux_engine110->base; } static enum i2caux_transaction_action i2caux_action_from_payload(struct aux_payload *payload) { if (payload->i2c_over_aux) { if (payload->write_status_update) { if (payload->mot) return I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST_MOT; else return I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST; } if (payload->write) { if (payload->mot) return I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT; else return I2CAUX_TRANSACTION_ACTION_I2C_WRITE; } if (payload->mot) return I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT; return I2CAUX_TRANSACTION_ACTION_I2C_READ; } if (payload->write) return I2CAUX_TRANSACTION_ACTION_DP_WRITE; return I2CAUX_TRANSACTION_ACTION_DP_READ; } int dce_aux_transfer_raw(struct ddc_service *ddc, struct aux_payload *payload, enum aux_return_code_type *operation_result) { struct ddc *ddc_pin = ddc->ddc_pin; struct dce_aux *aux_engine; struct aux_request_transaction_data aux_req; struct aux_reply_transaction_data aux_rep; uint8_t returned_bytes = 0; int res = -1; uint32_t status; memset(&aux_req, 0, sizeof(aux_req)); memset(&aux_rep, 0, sizeof(aux_rep)); aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]; if (!acquire(aux_engine, ddc_pin)) { *operation_result = AUX_RET_ERROR_ENGINE_ACQUIRE; return -1; } if (payload->i2c_over_aux) aux_req.type = AUX_TRANSACTION_TYPE_I2C; else aux_req.type = AUX_TRANSACTION_TYPE_DP; aux_req.action = i2caux_action_from_payload(payload); aux_req.address = payload->address; aux_req.delay = 0; aux_req.length = payload->length; aux_req.data = payload->data; submit_channel_request(aux_engine, &aux_req); *operation_result = get_channel_status(aux_engine, &returned_bytes); if (*operation_result == AUX_RET_SUCCESS) { int __maybe_unused bytes_replied = 0; bytes_replied = read_channel_reply(aux_engine, payload->length, payload->data, payload->reply, &status); EVENT_LOG_AUX_REP(aux_engine->ddc->pin_data->en, EVENT_LOG_AUX_ORIGIN_NATIVE, *payload->reply, bytes_replied, payload->data); res = returned_bytes; } else { res = -1; } release_engine(aux_engine); return res; } int dce_aux_transfer_dmub_raw(struct ddc_service *ddc, struct aux_payload *payload, enum aux_return_code_type *operation_result) { struct ddc *ddc_pin = ddc->ddc_pin; if (ddc_pin != NULL) { struct dce_aux *aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]; /* XXX: Workaround to configure ddc channels for aux transactions */ if (!acquire(aux_engine, ddc_pin)) { *operation_result = AUX_RET_ERROR_ENGINE_ACQUIRE; return -1; } release_engine(aux_engine); } return dm_helper_dmub_aux_transfer_sync(ddc->ctx, ddc->link, payload, operation_result); } #define AUX_MAX_RETRIES 7 #define AUX_MIN_DEFER_RETRIES 7 #define AUX_MAX_DEFER_TIMEOUT_MS 50 #define AUX_MAX_I2C_DEFER_RETRIES 7 #define AUX_MAX_INVALID_REPLY_RETRIES 2 #define AUX_MAX_TIMEOUT_RETRIES 3 #define AUX_DEFER_DELAY_FOR_DPIA 4 /*ms*/ static void dce_aux_log_payload(const char *payload_name, unsigned char *payload, uint32_t length, uint32_t max_length_to_log) { if (!IS_DC_I2CAUX_LOGGING_ENABLED()) return; if (payload && length) { char hex_str[128] = {0}; char *hex_str_ptr = &hex_str[0]; uint32_t hex_str_remaining = sizeof(hex_str); unsigned char *payload_ptr = payload; unsigned char *payload_max_to_log_ptr = payload_ptr + min(max_length_to_log, length); unsigned int count; char *padding = ""; while (payload_ptr < payload_max_to_log_ptr) { count = snprintf_count(hex_str_ptr, hex_str_remaining, "%s%02X", padding, *payload_ptr); padding = " "; hex_str_remaining -= count; hex_str_ptr += count; payload_ptr++; } count = snprintf_count(hex_str_ptr, hex_str_remaining, " "); hex_str_remaining -= count; hex_str_ptr += count; payload_ptr = payload; while (payload_ptr < payload_max_to_log_ptr) { count = snprintf_count(hex_str_ptr, hex_str_remaining, "%c", *payload_ptr >= ' ' ? *payload_ptr : '.'); hex_str_remaining -= count; hex_str_ptr += count; payload_ptr++; } DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_VERBOSE, LOG_FLAG_I2cAux_DceAux, "dce_aux_log_payload: %s: length=%u: data: %s%s", payload_name, length, hex_str, (length > max_length_to_log ? " (...)" : " ")); } else { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_VERBOSE, LOG_FLAG_I2cAux_DceAux, "dce_aux_log_payload: %s: length=%u: data: ", payload_name, length); } } bool dce_aux_transfer_with_retries(struct ddc_service *ddc, struct aux_payload *payload) { int i, ret = 0; uint8_t reply; bool payload_reply = true; enum aux_return_code_type operation_result; bool retry_on_defer = false; struct ddc *ddc_pin = ddc->ddc_pin; struct dce_aux *aux_engine = NULL; struct aux_engine_dce110 *aux110 = NULL; uint32_t defer_time_in_ms = 0; int aux_ack_retries = 0, aux_defer_retries = 0, aux_i2c_defer_retries = 0, aux_timeout_retries = 0, aux_invalid_reply_retries = 0, aux_ack_m_retries = 0; if (ddc_pin) { aux_engine = ddc->ctx->dc->res_pool->engines[ddc_pin->pin_data->en]; aux110 = FROM_AUX_ENGINE(aux_engine); } if (!payload->reply) { payload_reply = false; payload->reply = &reply; } for (i = 0; i < AUX_MAX_RETRIES; i++) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: link_index=%u: START: retry %d of %d: address=0x%04x length=%u write=%d mot=%d", ddc && ddc->link ? ddc->link->link_index : UINT_MAX, i + 1, (int)AUX_MAX_RETRIES, payload->address, payload->length, (unsigned int) payload->write, (unsigned int) payload->mot); if (payload->write) dce_aux_log_payload(" write", payload->data, payload->length, 16); ret = dce_aux_transfer_raw(ddc, payload, &operation_result); DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: link_index=%u: END: retry %d of %d: address=0x%04x length=%u write=%d mot=%d: ret=%d operation_result=%d payload->reply=%u", ddc && ddc->link ? ddc->link->link_index : UINT_MAX, i + 1, (int)AUX_MAX_RETRIES, payload->address, payload->length, (unsigned int) payload->write, (unsigned int) payload->mot, ret, (int)operation_result, (unsigned int) *payload->reply); if (!payload->write) dce_aux_log_payload(" read", payload->data, ret > 0 ? ret : 0, 16); switch (operation_result) { case AUX_RET_SUCCESS: aux_timeout_retries = 0; aux_invalid_reply_retries = 0; switch (*payload->reply) { case AUX_TRANSACTION_REPLY_AUX_ACK: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_AUX_ACK"); if (!payload->write && payload->length != ret) { if (++aux_ack_retries >= AUX_MAX_RETRIES) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_ack_retries=%d >= AUX_MAX_RETRIES=%d", aux_defer_retries, AUX_MAX_RETRIES); goto fail; } else udelay(300); } else if (payload->write && ret > 0) { /* sink requested more time to complete the write via AUX_ACKM */ if (++aux_ack_m_retries >= AUX_MAX_RETRIES) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_ack_m_retries=%d >= AUX_MAX_RETRIES=%d", aux_ack_m_retries, AUX_MAX_RETRIES); goto fail; } /* retry reading the write status until complete * NOTE: payload is modified here */ payload->write = false; payload->write_status_update = true; payload->length = 0; udelay(300); } else return true; break; case AUX_TRANSACTION_REPLY_AUX_DEFER: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_AUX_DEFER"); /* polling_timeout_period is in us */ if (aux110) defer_time_in_ms += aux110->polling_timeout_period / 1000; else defer_time_in_ms += AUX_DEFER_DELAY_FOR_DPIA; ++aux_defer_retries; fallthrough; case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER: if (*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER) DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER"); retry_on_defer = true; fallthrough; case AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK: if (*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK) DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_I2C_OVER_AUX_NACK"); if (aux_defer_retries >= AUX_MIN_DEFER_RETRIES && defer_time_in_ms >= AUX_MAX_DEFER_TIMEOUT_MS) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_defer_retries=%d >= AUX_MIN_DEFER_RETRIES=%d && defer_time_in_ms=%d >= AUX_MAX_DEFER_TIMEOUT_MS=%d", aux_defer_retries, AUX_MIN_DEFER_RETRIES, defer_time_in_ms, AUX_MAX_DEFER_TIMEOUT_MS); goto fail; } else { if ((*payload->reply == AUX_TRANSACTION_REPLY_AUX_DEFER) || (*payload->reply == AUX_TRANSACTION_REPLY_I2C_OVER_AUX_DEFER)) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: payload->defer_delay=%u", payload->defer_delay); if (payload->defer_delay > 1) { msleep(payload->defer_delay); defer_time_in_ms += payload->defer_delay; } else if (payload->defer_delay <= 1) { udelay(payload->defer_delay * 1000); defer_time_in_ms += payload->defer_delay; } } } break; case AUX_TRANSACTION_REPLY_I2C_DEFER: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_I2C_DEFER"); aux_defer_retries = 0; if (++aux_i2c_defer_retries >= AUX_MAX_I2C_DEFER_RETRIES) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_i2c_defer_retries=%d >= AUX_MAX_I2C_DEFER_RETRIES=%d", aux_i2c_defer_retries, AUX_MAX_I2C_DEFER_RETRIES); goto fail; } break; case AUX_TRANSACTION_REPLY_AUX_NACK: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_AUX_NACK"); goto fail; case AUX_TRANSACTION_REPLY_HPD_DISCON: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: AUX_TRANSACTION_REPLY_HPD_DISCON"); goto fail; default: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: AUX_RET_SUCCESS: FAILURE: AUX_TRANSACTION_REPLY_* unknown, default case."); goto fail; } break; case AUX_RET_ERROR_INVALID_REPLY: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_ERROR_INVALID_REPLY"); if (++aux_invalid_reply_retries >= AUX_MAX_INVALID_REPLY_RETRIES) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_invalid_reply_retries=%d >= AUX_MAX_INVALID_REPLY_RETRIES=%d", aux_invalid_reply_retries, AUX_MAX_INVALID_REPLY_RETRIES); goto fail; } else udelay(400); break; case AUX_RET_ERROR_TIMEOUT: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: AUX_RET_ERROR_TIMEOUT"); // Check whether a DEFER had occurred before the timeout. // If so, treat timeout as a DEFER. if (retry_on_defer) { if (++aux_defer_retries >= AUX_MIN_DEFER_RETRIES) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_defer_retries=%d >= AUX_MIN_DEFER_RETRIES=%d", aux_defer_retries, AUX_MIN_DEFER_RETRIES); goto fail; } else if (payload->defer_delay > 0) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: payload->defer_delay=%u", payload->defer_delay); msleep(payload->defer_delay); } } else { if (++aux_timeout_retries >= AUX_MAX_TIMEOUT_RETRIES) { DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE: aux_timeout_retries=%d >= AUX_MAX_TIMEOUT_RETRIES=%d", aux_timeout_retries, AUX_MAX_TIMEOUT_RETRIES); goto fail; } else { /* * DP 1.4, 2.8.2: AUX Transaction Response/Reply Timeouts * According to the DP spec there should be 3 retries total * with a 400us wait inbetween each. Hardware already waits * for 550us therefore no wait is required here. */ } } break; case AUX_RET_ERROR_HPD_DISCON: case AUX_RET_ERROR_ENGINE_ACQUIRE: case AUX_RET_ERROR_UNKNOWN: default: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_INFORMATION, LOG_FLAG_I2cAux_DceAux, "dce_aux_transfer_with_retries: Failure: operation_result=%d", (int)operation_result); goto fail; } } fail: DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, LOG_FLAG_Error_I2cAux, "dce_aux_transfer_with_retries: FAILURE"); if (!payload_reply) payload->reply = NULL; DC_TRACE_LEVEL_MESSAGE(DAL_TRACE_LEVEL_ERROR, WPP_BIT_FLAG_DC_ERROR, "AUX transaction failed. Result: %d", operation_result); return false; }