/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dc.h" #include "dc_dmub_srv.h" #include "../dmub/dmub_srv.h" #include "dm_helpers.h" #include "dc_hw_types.h" #include "core_types.h" #define CTX dc_dmub_srv->ctx #define DC_LOGGER CTX->logger static void dc_dmub_srv_construct(struct dc_dmub_srv *dc_srv, struct dc *dc, struct dmub_srv *dmub) { dc_srv->dmub = dmub; dc_srv->ctx = dc->ctx; } struct dc_dmub_srv *dc_dmub_srv_create(struct dc *dc, struct dmub_srv *dmub) { struct dc_dmub_srv *dc_srv = kzalloc(sizeof(struct dc_dmub_srv), GFP_KERNEL); if (dc_srv == NULL) { BREAK_TO_DEBUGGER(); return NULL; } dc_dmub_srv_construct(dc_srv, dc, dmub); return dc_srv; } void dc_dmub_srv_destroy(struct dc_dmub_srv **dmub_srv) { if (*dmub_srv) { kfree(*dmub_srv); *dmub_srv = NULL; } } void dc_dmub_srv_cmd_queue(struct dc_dmub_srv *dc_dmub_srv, union dmub_rb_cmd *cmd) { struct dmub_srv *dmub = dc_dmub_srv->dmub; struct dc_context *dc_ctx = dc_dmub_srv->ctx; enum dmub_status status; status = dmub_srv_cmd_queue(dmub, cmd); if (status == DMUB_STATUS_OK) return; if (status != DMUB_STATUS_QUEUE_FULL) goto error; /* Execute and wait for queue to become empty again. */ dc_dmub_srv_cmd_execute(dc_dmub_srv); dc_dmub_srv_wait_idle(dc_dmub_srv); /* Requeue the command. */ status = dmub_srv_cmd_queue(dmub, cmd); if (status == DMUB_STATUS_OK) return; error: DC_ERROR("Error queuing DMUB command: status=%d\n", status); dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); } void dc_dmub_srv_cmd_execute(struct dc_dmub_srv *dc_dmub_srv) { struct dmub_srv *dmub = dc_dmub_srv->dmub; struct dc_context *dc_ctx = dc_dmub_srv->ctx; enum dmub_status status; status = dmub_srv_cmd_execute(dmub); if (status != DMUB_STATUS_OK) { DC_ERROR("Error starting DMUB execution: status=%d\n", status); dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); } } void dc_dmub_srv_wait_idle(struct dc_dmub_srv *dc_dmub_srv) { struct dmub_srv *dmub = dc_dmub_srv->dmub; struct dc_context *dc_ctx = dc_dmub_srv->ctx; enum dmub_status status; status = dmub_srv_wait_for_idle(dmub, 100000); if (status != DMUB_STATUS_OK) { DC_ERROR("Error waiting for DMUB idle: status=%d\n", status); dc_dmub_srv_log_diagnostic_data(dc_dmub_srv); } } void dc_dmub_srv_clear_inbox0_ack(struct dc_dmub_srv *dmub_srv) { struct dmub_srv *dmub = dmub_srv->dmub; struct dc_context *dc_ctx = dmub_srv->ctx; enum dmub_status status = DMUB_STATUS_OK; status = dmub_srv_clear_inbox0_ack(dmub); if (status != DMUB_STATUS_OK) { DC_ERROR("Error clearing INBOX0 ack: status=%d\n", status); dc_dmub_srv_log_diagnostic_data(dmub_srv); } } void dc_dmub_srv_wait_for_inbox0_ack(struct dc_dmub_srv *dmub_srv) { struct dmub_srv *dmub = dmub_srv->dmub; struct dc_context *dc_ctx = dmub_srv->ctx; enum dmub_status status = DMUB_STATUS_OK; status = dmub_srv_wait_for_inbox0_ack(dmub, 100000); if (status != DMUB_STATUS_OK) { DC_ERROR("Error waiting for INBOX0 HW Lock Ack\n"); dc_dmub_srv_log_diagnostic_data(dmub_srv); } } void dc_dmub_srv_send_inbox0_cmd(struct dc_dmub_srv *dmub_srv, union dmub_inbox0_data_register data) { struct dmub_srv *dmub = dmub_srv->dmub; struct dc_context *dc_ctx = dmub_srv->ctx; enum dmub_status status = DMUB_STATUS_OK; status = dmub_srv_send_inbox0_cmd(dmub, data); if (status != DMUB_STATUS_OK) { DC_ERROR("Error sending INBOX0 cmd\n"); dc_dmub_srv_log_diagnostic_data(dmub_srv); } } bool dc_dmub_srv_cmd_with_reply_data(struct dc_dmub_srv *dc_dmub_srv, union dmub_rb_cmd *cmd) { struct dmub_srv *dmub; enum dmub_status status; if (!dc_dmub_srv || !dc_dmub_srv->dmub) return false; dmub = dc_dmub_srv->dmub; status = dmub_srv_cmd_with_reply_data(dmub, cmd); if (status != DMUB_STATUS_OK) { DC_LOG_DEBUG("No reply for DMUB command: status=%d\n", status); return false; } return true; } void dc_dmub_srv_wait_phy_init(struct dc_dmub_srv *dc_dmub_srv) { struct dmub_srv *dmub = dc_dmub_srv->dmub; struct dc_context *dc_ctx = dc_dmub_srv->ctx; enum dmub_status status; for (;;) { /* Wait up to a second for PHY init. */ status = dmub_srv_wait_for_phy_init(dmub, 1000000); if (status == DMUB_STATUS_OK) /* Initialization OK */ break; DC_ERROR("DMCUB PHY init failed: status=%d\n", status); ASSERT(0); if (status != DMUB_STATUS_TIMEOUT) /* * Server likely initialized or we don't have * DMCUB HW support - this won't end. */ break; /* Continue spinning so we don't hang the ASIC. */ } } bool dc_dmub_srv_notify_stream_mask(struct dc_dmub_srv *dc_dmub_srv, unsigned int stream_mask) { struct dmub_srv *dmub; const uint32_t timeout = 30; if (!dc_dmub_srv || !dc_dmub_srv->dmub) return false; dmub = dc_dmub_srv->dmub; return dmub_srv_send_gpint_command( dmub, DMUB_GPINT__IDLE_OPT_NOTIFY_STREAM_MASK, stream_mask, timeout) == DMUB_STATUS_OK; } bool dc_dmub_srv_is_restore_required(struct dc_dmub_srv *dc_dmub_srv) { struct dmub_srv *dmub; struct dc_context *dc_ctx; union dmub_fw_boot_status boot_status; enum dmub_status status; if (!dc_dmub_srv || !dc_dmub_srv->dmub) return false; dmub = dc_dmub_srv->dmub; dc_ctx = dc_dmub_srv->ctx; status = dmub_srv_get_fw_boot_status(dmub, &boot_status); if (status != DMUB_STATUS_OK) { DC_ERROR("Error querying DMUB boot status: error=%d\n", status); return false; } return boot_status.bits.restore_required; } bool dc_dmub_srv_get_dmub_outbox0_msg(const struct dc *dc, struct dmcub_trace_buf_entry *entry) { struct dmub_srv *dmub = dc->ctx->dmub_srv->dmub; return dmub_srv_get_outbox0_msg(dmub, entry); } void dc_dmub_trace_event_control(struct dc *dc, bool enable) { dm_helpers_dmub_outbox_interrupt_control(dc->ctx, enable); } void dc_dmub_srv_drr_update_cmd(struct dc *dc, uint32_t tg_inst, uint32_t vtotal_min, uint32_t vtotal_max) { union dmub_rb_cmd cmd = { 0 }; cmd.drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; cmd.drr_update.header.sub_type = DMUB_CMD__FAMS_DRR_UPDATE; cmd.drr_update.dmub_optc_state_req.v_total_max = vtotal_max; cmd.drr_update.dmub_optc_state_req.v_total_min = vtotal_min; cmd.drr_update.dmub_optc_state_req.tg_inst = tg_inst; cmd.drr_update.header.payload_bytes = sizeof(cmd.drr_update) - sizeof(cmd.drr_update.header); // Send the command to the DMCUB. dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd); dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv); dc_dmub_srv_wait_idle(dc->ctx->dmub_srv); } void dc_dmub_srv_set_drr_manual_trigger_cmd(struct dc *dc, uint32_t tg_inst) { union dmub_rb_cmd cmd = { 0 }; cmd.drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; // TODO: Uncomment once FW headers are promoted //cmd.drr_update.header.sub_type = DMUB_CMD__FAMS_SET_MANUAL_TRIGGER; cmd.drr_update.dmub_optc_state_req.tg_inst = tg_inst; cmd.drr_update.header.payload_bytes = sizeof(cmd.drr_update) - sizeof(cmd.drr_update.header); // Send the command to the DMCUB. dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd); dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv); dc_dmub_srv_wait_idle(dc->ctx->dmub_srv); } static uint8_t dc_dmub_srv_get_pipes_for_stream(struct dc *dc, struct dc_stream_state *stream) { uint8_t pipes = 0; int i = 0; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) pipes = i; } return pipes; } static int dc_dmub_srv_get_timing_generator_offset(struct dc *dc, struct dc_stream_state *stream) { int tg_inst = 0; int i = 0; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) { tg_inst = pipe->stream_res.tg->inst; break; } } return tg_inst; } bool dc_dmub_srv_p_state_delegate(struct dc *dc, bool should_manage_pstate, struct dc_state *context) { union dmub_rb_cmd cmd = { 0 }; struct dmub_cmd_fw_assisted_mclk_switch_config *config_data = &cmd.fw_assisted_mclk_switch.config_data; int i = 0; int ramp_up_num_steps = 1; // TODO: Ramp is currently disabled. Reenable it. uint8_t visual_confirm_enabled = dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS; if (dc == NULL) return false; // Format command. cmd.fw_assisted_mclk_switch.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; cmd.fw_assisted_mclk_switch.header.sub_type = DMUB_CMD__FAMS_SETUP_FW_CTRL; cmd.fw_assisted_mclk_switch.config_data.fams_enabled = should_manage_pstate; cmd.fw_assisted_mclk_switch.config_data.visual_confirm_enabled = visual_confirm_enabled; for (i = 0; context && i < context->stream_count; i++) { struct dc_stream_state *stream = context->streams[i]; uint8_t min_refresh_in_hz = (stream->timing.min_refresh_in_uhz + 999999) / 1000000; int tg_inst = dc_dmub_srv_get_timing_generator_offset(dc, stream); config_data->pipe_data[tg_inst].pix_clk_100hz = stream->timing.pix_clk_100hz; config_data->pipe_data[tg_inst].min_refresh_in_hz = min_refresh_in_hz; config_data->pipe_data[tg_inst].max_ramp_step = ramp_up_num_steps; config_data->pipe_data[tg_inst].pipes = dc_dmub_srv_get_pipes_for_stream(dc, stream); } cmd.fw_assisted_mclk_switch.header.payload_bytes = sizeof(cmd.fw_assisted_mclk_switch) - sizeof(cmd.fw_assisted_mclk_switch.header); // Send the command to the DMCUB. dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd); dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv); dc_dmub_srv_wait_idle(dc->ctx->dmub_srv); return true; } void dc_dmub_srv_query_caps_cmd(struct dmub_srv *dmub) { union dmub_rb_cmd cmd = { 0 }; enum dmub_status status; if (!dmub) { return; } memset(&cmd, 0, sizeof(cmd)); /* Prepare fw command */ cmd.query_feature_caps.header.type = DMUB_CMD__QUERY_FEATURE_CAPS; cmd.query_feature_caps.header.sub_type = 0; cmd.query_feature_caps.header.ret_status = 1; cmd.query_feature_caps.header.payload_bytes = sizeof(struct dmub_cmd_query_feature_caps_data); /* Send command to fw */ status = dmub_srv_cmd_with_reply_data(dmub, &cmd); ASSERT(status == DMUB_STATUS_OK); /* If command was processed, copy feature caps to dmub srv */ if (status == DMUB_STATUS_OK && cmd.query_feature_caps.header.ret_status == 0) { memcpy(&dmub->feature_caps, &cmd.query_feature_caps.query_feature_caps_data, sizeof(struct dmub_feature_caps)); } } #ifdef CONFIG_DRM_AMD_DC_DCN /** * *********************************************************************************************** * populate_subvp_cmd_drr_info: Helper to populate DRR pipe info for the DMCUB subvp command * * Populate the DMCUB SubVP command with DRR pipe info. All the information required for calculating * the SubVP + DRR microschedule is populated here. * * High level algorithm: * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe * 2. Calculate the min and max vtotal which supports SubVP + DRR microschedule * 3. Populate the drr_info with the min and max supported vtotal values * * @param [in] dc: current dc state * @param [in] subvp_pipe: pipe_ctx for the SubVP pipe * @param [in] vblank_pipe: pipe_ctx for the DRR pipe * @param [in] pipe_data: Pipe data which stores the VBLANK/DRR info * * @return: void * * *********************************************************************************************** */ static void populate_subvp_cmd_drr_info(struct dc *dc, struct pipe_ctx *subvp_pipe, struct pipe_ctx *vblank_pipe, struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data) { struct dc_crtc_timing *main_timing = &subvp_pipe->stream->timing; struct dc_crtc_timing *phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing; struct dc_crtc_timing *drr_timing = &vblank_pipe->stream->timing; int16_t drr_frame_us = 0; int16_t min_drr_supported_us = 0; int16_t max_drr_supported_us = 0; int16_t max_drr_vblank_us = 0; int16_t max_drr_mallregion_us = 0; int16_t mall_region_us = 0; int16_t prefetch_us = 0; int16_t subvp_active_us = 0; int16_t drr_active_us = 0; int16_t min_vtotal_supported = 0; int16_t max_vtotal_supported = 0; pipe_data->pipe_config.vblank_data.drr_info.drr_in_use = true; pipe_data->pipe_config.vblank_data.drr_info.use_ramping = false; // for now don't use ramping pipe_data->pipe_config.vblank_data.drr_info.drr_window_size_ms = 4; // hardcode 4ms DRR window for now drr_frame_us = div64_s64(drr_timing->v_total * drr_timing->h_total, (int64_t)(drr_timing->pix_clk_100hz * 100) * 1000000); // P-State allow width and FW delays already included phantom_timing->v_addressable mall_region_us = div64_s64(phantom_timing->v_addressable * phantom_timing->h_total, (int64_t)(phantom_timing->pix_clk_100hz * 100) * 1000000); min_drr_supported_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; min_vtotal_supported = div64_s64(drr_timing->pix_clk_100hz * 100 * (div64_s64((int64_t)min_drr_supported_us, 1000000)), (int64_t)drr_timing->h_total); prefetch_us = div64_s64((phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total, (int64_t)(phantom_timing->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us); subvp_active_us = div64_s64(main_timing->v_addressable * main_timing->h_total, (int64_t)(main_timing->pix_clk_100hz * 100) * 1000000); drr_active_us = div64_s64(drr_timing->v_addressable * drr_timing->h_total, (int64_t)(drr_timing->pix_clk_100hz * 100) * 1000000); max_drr_vblank_us = div64_s64((int64_t)(subvp_active_us - prefetch_us - drr_active_us), 2) + drr_active_us; max_drr_mallregion_us = subvp_active_us - prefetch_us - mall_region_us; max_drr_supported_us = max_drr_vblank_us > max_drr_mallregion_us ? max_drr_vblank_us : max_drr_mallregion_us; max_vtotal_supported = div64_s64(drr_timing->pix_clk_100hz * 100 * (div64_s64((int64_t)max_drr_supported_us, 1000000)), (int64_t)drr_timing->h_total); pipe_data->pipe_config.vblank_data.drr_info.min_vtotal_supported = min_vtotal_supported; pipe_data->pipe_config.vblank_data.drr_info.max_vtotal_supported = max_vtotal_supported; } /** * *********************************************************************************************** * populate_subvp_cmd_vblank_pipe_info: Helper to populate VBLANK pipe info for the DMUB subvp command * * Populate the DMCUB SubVP command with VBLANK pipe info. All the information required to calculate * the microschedule for SubVP + VBLANK case is stored in the pipe_data (subvp_data and vblank_data). * Also check if the VBLANK pipe is a DRR display -- if it is make a call to populate drr_info. * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] cmd: DMUB cmd to be populated with SubVP info * @param [in] vblank_pipe: pipe_ctx for the VBLANK pipe * @param [in] cmd_pipe_index: index for the pipe array in DMCUB SubVP cmd * * @return: void * * *********************************************************************************************** */ static void populate_subvp_cmd_vblank_pipe_info(struct dc *dc, struct dc_state *context, union dmub_rb_cmd *cmd, struct pipe_ctx *vblank_pipe, uint8_t cmd_pipe_index) { uint32_t i; struct pipe_ctx *pipe = NULL; struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[cmd_pipe_index]; // Find the SubVP pipe for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; // We check for master pipe, but it shouldn't matter since we only need // the pipe for timing info (stream should be same for any pipe splits) if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) continue; // Find the SubVP pipe if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) break; } pipe_data->mode = VBLANK; pipe_data->pipe_config.vblank_data.pix_clk_100hz = vblank_pipe->stream->timing.pix_clk_100hz; pipe_data->pipe_config.vblank_data.vblank_start = vblank_pipe->stream->timing.v_total - vblank_pipe->stream->timing.v_front_porch; pipe_data->pipe_config.vblank_data.vtotal = vblank_pipe->stream->timing.v_total; pipe_data->pipe_config.vblank_data.htotal = vblank_pipe->stream->timing.h_total; pipe_data->pipe_config.vblank_data.vblank_pipe_index = vblank_pipe->pipe_idx; pipe_data->pipe_config.vblank_data.vstartup_start = vblank_pipe->pipe_dlg_param.vstartup_start; pipe_data->pipe_config.vblank_data.vblank_end = vblank_pipe->stream->timing.v_total - vblank_pipe->stream->timing.v_front_porch - vblank_pipe->stream->timing.v_addressable; if (vblank_pipe->stream->ignore_msa_timing_param) populate_subvp_cmd_drr_info(dc, pipe, vblank_pipe, pipe_data); } /** * *********************************************************************************************** * update_subvp_prefetch_end_to_mall_start: Helper for SubVP + SubVP case * * For SubVP + SubVP, we use a single vertical interrupt to start the microschedule for both * SubVP pipes. In order for this to work correctly, the MALL REGION of both SubVP pipes must * start at the same time. This function lengthens the prefetch end to mall start delay of the * SubVP pipe that has the shorter prefetch so that both MALL REGION's will start at the same time. * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] cmd: DMUB cmd to be populated with SubVP info * @param [in] subvp_pipes: Array of SubVP pipes (should always be length 2) * * @return: void * * *********************************************************************************************** */ static void update_subvp_prefetch_end_to_mall_start(struct dc *dc, struct dc_state *context, union dmub_rb_cmd *cmd, struct pipe_ctx *subvp_pipes[]) { uint32_t subvp0_prefetch_us = 0; uint32_t subvp1_prefetch_us = 0; uint32_t prefetch_delta_us = 0; struct dc_crtc_timing *phantom_timing0 = &subvp_pipes[0]->stream->mall_stream_config.paired_stream->timing; struct dc_crtc_timing *phantom_timing1 = &subvp_pipes[1]->stream->mall_stream_config.paired_stream->timing; struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = NULL; subvp0_prefetch_us = div64_s64((phantom_timing0->v_total - phantom_timing0->v_front_porch) * phantom_timing0->h_total, (int64_t)(phantom_timing0->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us); subvp1_prefetch_us = div64_s64((phantom_timing1->v_total - phantom_timing1->v_front_porch) * phantom_timing1->h_total, (int64_t)(phantom_timing1->pix_clk_100hz * 100) * 1000000 + dc->caps.subvp_prefetch_end_to_mall_start_us); // Whichever SubVP PIPE has the smaller prefetch (including the prefetch end to mall start time) // should increase it's prefetch time to match the other if (subvp0_prefetch_us > subvp1_prefetch_us) { pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[1]; prefetch_delta_us = subvp0_prefetch_us - subvp1_prefetch_us; pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines = div64_s64(((div64_s64((int64_t)(dc->caps.subvp_prefetch_end_to_mall_start_us + prefetch_delta_us), 1000000)) * (phantom_timing1->pix_clk_100hz * 100) + phantom_timing1->h_total - 1), (int64_t)phantom_timing1->h_total); } else if (subvp1_prefetch_us > subvp0_prefetch_us) { pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[0]; prefetch_delta_us = subvp1_prefetch_us - subvp0_prefetch_us; pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines = div64_s64(((div64_s64((int64_t)(dc->caps.subvp_prefetch_end_to_mall_start_us + prefetch_delta_us), 1000000)) * (phantom_timing0->pix_clk_100hz * 100) + phantom_timing0->h_total - 1), (int64_t)phantom_timing0->h_total); } } /** * *************************************************************************************** * setup_subvp_dmub_command: Helper to populate the SubVP pipe info for the DMUB subvp command * * Populate the DMCUB SubVP command with SubVP pipe info. All the information required to * calculate the microschedule for the SubVP pipe is stored in the pipe_data of the DMCUB * SubVP command. * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] cmd: DMUB cmd to be populated with SubVP info * @param [in] subvp_pipe: pipe_ctx for the SubVP pipe * @param [in] cmd_pipe_index: index for the pipe array in DMCUB SubVP cmd * * @return: void * * *************************************************************************************** */ static void populate_subvp_cmd_pipe_info(struct dc *dc, struct dc_state *context, union dmub_rb_cmd *cmd, struct pipe_ctx *subvp_pipe, uint8_t cmd_pipe_index) { uint32_t j; struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[cmd_pipe_index]; struct dc_crtc_timing *main_timing = &subvp_pipe->stream->timing; struct dc_crtc_timing *phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing; pipe_data->mode = SUBVP; pipe_data->pipe_config.subvp_data.pix_clk_100hz = subvp_pipe->stream->timing.pix_clk_100hz; pipe_data->pipe_config.subvp_data.htotal = subvp_pipe->stream->timing.h_total; pipe_data->pipe_config.subvp_data.vtotal = subvp_pipe->stream->timing.v_total; pipe_data->pipe_config.subvp_data.main_vblank_start = main_timing->v_total - main_timing->v_front_porch; pipe_data->pipe_config.subvp_data.main_vblank_end = main_timing->v_total - main_timing->v_front_porch - main_timing->v_addressable; pipe_data->pipe_config.subvp_data.mall_region_lines = phantom_timing->v_addressable; pipe_data->pipe_config.subvp_data.main_pipe_index = subvp_pipe->pipe_idx; // Prefetch lines is equal to VACTIVE + BP + VSYNC pipe_data->pipe_config.subvp_data.prefetch_lines = phantom_timing->v_total - phantom_timing->v_front_porch; // Round up pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines = div64_s64(((div64_s64((int64_t)dc->caps.subvp_prefetch_end_to_mall_start_us, 1000000)) * (phantom_timing->pix_clk_100hz * 100) + phantom_timing->h_total - 1), (int64_t)phantom_timing->h_total); pipe_data->pipe_config.subvp_data.processing_delay_lines = div64_s64(((div64_s64((int64_t)dc->caps.subvp_fw_processing_delay_us, 1000000)) * (phantom_timing->pix_clk_100hz * 100) + phantom_timing->h_total - 1), (int64_t)phantom_timing->h_total); // Find phantom pipe index based on phantom stream for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *phantom_pipe = &context->res_ctx.pipe_ctx[j]; if (phantom_pipe->stream == subvp_pipe->stream->mall_stream_config.paired_stream) { pipe_data->pipe_config.subvp_data.phantom_pipe_index = phantom_pipe->pipe_idx; break; } } } /** * *************************************************************************************** * dc_dmub_setup_subvp_dmub_command: Populate the DMCUB SubVP command * * This function loops through each pipe and populates the DMUB * SubVP CMD info based on the pipe (e.g. SubVP, VBLANK). * * @param [in] dc: current dc state * @param [in] context: new dc state * @param [in] cmd: DMUB cmd to be populated with SubVP info * * @return: void * * *************************************************************************************** */ void dc_dmub_setup_subvp_dmub_command(struct dc *dc, struct dc_state *context, bool enable) { uint8_t cmd_pipe_index = 0; uint32_t i, pipe_idx; uint8_t subvp_count = 0; union dmub_rb_cmd cmd; struct pipe_ctx *subvp_pipes[2]; uint32_t wm_val_refclk = 0; memset(&cmd, 0, sizeof(cmd)); // FW command for SUBVP cmd.fw_assisted_mclk_switch_v2.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH; cmd.fw_assisted_mclk_switch_v2.header.sub_type = DMUB_CMD__HANDLE_SUBVP_CMD; cmd.fw_assisted_mclk_switch_v2.header.payload_bytes = sizeof(cmd.fw_assisted_mclk_switch_v2) - sizeof(cmd.fw_assisted_mclk_switch_v2.header); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->plane_state && !pipe->top_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) subvp_pipes[subvp_count++] = pipe; } if (enable) { // For each pipe that is a "main" SUBVP pipe, fill in pipe data for DMUB SUBVP cmd for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->stream) continue; if (pipe->plane_state && pipe->stream->mall_stream_config.paired_stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN) { populate_subvp_cmd_pipe_info(dc, context, &cmd, pipe, cmd_pipe_index++); } else if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_NONE) { // Don't need to check for ActiveDRAMClockChangeMargin < 0, not valid in cases where // we run through DML without calculating "natural" P-state support populate_subvp_cmd_vblank_pipe_info(dc, context, &cmd, pipe, cmd_pipe_index++); } pipe_idx++; } if (subvp_count == 2) { update_subvp_prefetch_end_to_mall_start(dc, context, &cmd, subvp_pipes); } cmd.fw_assisted_mclk_switch_v2.config_data.pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us; cmd.fw_assisted_mclk_switch_v2.config_data.vertical_int_margin_us = dc->caps.subvp_vertical_int_margin_us; // Store the original watermark value for this SubVP config so we can lower it when the // MCLK switch starts wm_val_refclk = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns * dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000 / 1000; cmd.fw_assisted_mclk_switch_v2.config_data.watermark_a_cache = wm_val_refclk < 0xFFFF ? wm_val_refclk : 0xFFFF; } dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd); dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv); dc_dmub_srv_wait_idle(dc->ctx->dmub_srv); } #endif bool dc_dmub_srv_get_diagnostic_data(struct dc_dmub_srv *dc_dmub_srv, struct dmub_diagnostic_data *diag_data) { if (!dc_dmub_srv || !dc_dmub_srv->dmub || !diag_data) return false; return dmub_srv_get_diagnostic_data(dc_dmub_srv->dmub, diag_data); } void dc_dmub_srv_log_diagnostic_data(struct dc_dmub_srv *dc_dmub_srv) { struct dmub_diagnostic_data diag_data = {0}; if (!dc_dmub_srv || !dc_dmub_srv->dmub) { DC_LOG_ERROR("%s: invalid parameters.", __func__); return; } if (!dc_dmub_srv_get_diagnostic_data(dc_dmub_srv, &diag_data)) { DC_LOG_ERROR("%s: dc_dmub_srv_get_diagnostic_data failed.", __func__); return; } DC_LOG_DEBUG( "DMCUB STATE\n" " dmcub_version : %08x\n" " scratch [0] : %08x\n" " scratch [1] : %08x\n" " scratch [2] : %08x\n" " scratch [3] : %08x\n" " scratch [4] : %08x\n" " scratch [5] : %08x\n" " scratch [6] : %08x\n" " scratch [7] : %08x\n" " scratch [8] : %08x\n" " scratch [9] : %08x\n" " scratch [10] : %08x\n" " scratch [11] : %08x\n" " scratch [12] : %08x\n" " scratch [13] : %08x\n" " scratch [14] : %08x\n" " scratch [15] : %08x\n" " pc : %08x\n" " unk_fault_addr : %08x\n" " inst_fault_addr : %08x\n" " data_fault_addr : %08x\n" " inbox1_rptr : %08x\n" " inbox1_wptr : %08x\n" " inbox1_size : %08x\n" " inbox0_rptr : %08x\n" " inbox0_wptr : %08x\n" " inbox0_size : %08x\n" " is_enabled : %d\n" " is_soft_reset : %d\n" " is_secure_reset : %d\n" " is_traceport_en : %d\n" " is_cw0_en : %d\n" " is_cw6_en : %d\n", diag_data.dmcub_version, diag_data.scratch[0], diag_data.scratch[1], diag_data.scratch[2], diag_data.scratch[3], diag_data.scratch[4], diag_data.scratch[5], diag_data.scratch[6], diag_data.scratch[7], diag_data.scratch[8], diag_data.scratch[9], diag_data.scratch[10], diag_data.scratch[11], diag_data.scratch[12], diag_data.scratch[13], diag_data.scratch[14], diag_data.scratch[15], diag_data.pc, diag_data.undefined_address_fault_addr, diag_data.inst_fetch_fault_addr, diag_data.data_write_fault_addr, diag_data.inbox1_rptr, diag_data.inbox1_wptr, diag_data.inbox1_size, diag_data.inbox0_rptr, diag_data.inbox0_wptr, diag_data.inbox0_size, diag_data.is_dmcub_enabled, diag_data.is_dmcub_soft_reset, diag_data.is_dmcub_secure_reset, diag_data.is_traceport_en, diag_data.is_cw0_enabled, diag_data.is_cw6_enabled); }