/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "ObjectID.h" #include "atomfirmware.h" #include "dc_bios_types.h" #include "include/grph_object_ctrl_defs.h" #include "include/bios_parser_interface.h" #include "include/i2caux_interface.h" #include "include/logger_interface.h" #include "command_table2.h" #include "bios_parser_helper.h" #include "command_table_helper2.h" #include "bios_parser2.h" #include "bios_parser_types_internal2.h" #include "bios_parser_interface.h" #include "bios_parser_common.h" /* Temporarily add in defines until ObjectID.h patch is updated in a few days */ #ifndef GENERIC_OBJECT_ID_BRACKET_LAYOUT #define GENERIC_OBJECT_ID_BRACKET_LAYOUT 0x05 #endif /* GENERIC_OBJECT_ID_BRACKET_LAYOUT */ #ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1 #define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1 \ (GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\ GRAPH_OBJECT_ENUM_ID1 << ENUM_ID_SHIFT |\ GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT) #endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1 */ #ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2 #define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2 \ (GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\ GRAPH_OBJECT_ENUM_ID2 << ENUM_ID_SHIFT |\ GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT) #endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2 */ #define DC_LOGGER \ bp->base.ctx->logger #define LAST_RECORD_TYPE 0xff #define SMU9_SYSPLL0_ID 0 struct i2c_id_config_access { uint8_t bfI2C_LineMux:4; uint8_t bfHW_EngineID:3; uint8_t bfHW_Capable:1; uint8_t ucAccess; }; static enum bp_result get_gpio_i2c_info(struct bios_parser *bp, struct atom_i2c_record *record, struct graphics_object_i2c_info *info); static enum bp_result bios_parser_get_firmware_info( struct dc_bios *dcb, struct dc_firmware_info *info); static enum bp_result bios_parser_get_encoder_cap_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_encoder_cap_info *info); static enum bp_result get_firmware_info_v3_1( struct bios_parser *bp, struct dc_firmware_info *info); static enum bp_result get_firmware_info_v3_2( struct bios_parser *bp, struct dc_firmware_info *info); static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp, struct atom_display_object_path_v2 *object); static struct atom_encoder_caps_record *get_encoder_cap_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object); #define BIOS_IMAGE_SIZE_OFFSET 2 #define BIOS_IMAGE_SIZE_UNIT 512 #define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table) static void destruct(struct bios_parser *bp) { kfree(bp->base.bios_local_image); kfree(bp->base.integrated_info); } static void firmware_parser_destroy(struct dc_bios **dcb) { struct bios_parser *bp = BP_FROM_DCB(*dcb); if (!bp) { BREAK_TO_DEBUGGER(); return; } destruct(bp); kfree(bp); *dcb = NULL; } static void get_atom_data_table_revision( struct atom_common_table_header *atom_data_tbl, struct atom_data_revision *tbl_revision) { if (!tbl_revision) return; /* initialize the revision to 0 which is invalid revision */ tbl_revision->major = 0; tbl_revision->minor = 0; if (!atom_data_tbl) return; tbl_revision->major = (uint32_t) atom_data_tbl->format_revision & 0x3f; tbl_revision->minor = (uint32_t) atom_data_tbl->content_revision & 0x3f; } /* BIOS oject table displaypath is per connector. * There is extra path not for connector. BIOS fill its encoderid as 0 */ static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); unsigned int count = 0; unsigned int i; for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) { if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0) count++; } return count; } static struct graphics_object_id bios_parser_get_encoder_id( struct dc_bios *dcb, uint32_t i) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct graphics_object_id object_id = dal_graphics_object_id_init( 0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN); if (bp->object_info_tbl.v1_4->number_of_path > i) object_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_4->display_path[i].encoderobjid); return object_id; } static struct graphics_object_id bios_parser_get_connector_id( struct dc_bios *dcb, uint8_t i) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct graphics_object_id object_id = dal_graphics_object_id_init( 0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN); struct object_info_table *tbl = &bp->object_info_tbl; struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4; if (v1_4->number_of_path > i) { /* If display_objid is generic object id, the encoderObj * /extencoderobjId should be 0 */ if (v1_4->display_path[i].encoderobjid != 0 && v1_4->display_path[i].display_objid != 0) object_id = object_id_from_bios_object_id( v1_4->display_path[i].display_objid); } return object_id; } /* TODO: GetNumberOfSrc*/ static uint32_t bios_parser_get_dst_number(struct dc_bios *dcb, struct graphics_object_id id) { /* connector has 1 Dest, encoder has 0 Dest */ switch (id.type) { case OBJECT_TYPE_ENCODER: return 0; case OBJECT_TYPE_CONNECTOR: return 1; default: return 0; } } /* removed getSrcObjList, getDestObjList*/ static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb, struct graphics_object_id object_id, uint32_t index, struct graphics_object_id *src_object_id) { struct bios_parser *bp = BP_FROM_DCB(dcb); unsigned int i; enum bp_result bp_result = BP_RESULT_BADINPUT; struct graphics_object_id obj_id = {0}; struct object_info_table *tbl = &bp->object_info_tbl; if (!src_object_id) return bp_result; switch (object_id.type) { /* Encoder's Source is GPU. BIOS does not provide GPU, since all * displaypaths point to same GPU (0x1100). Hardcode GPU object type */ case OBJECT_TYPE_ENCODER: /* TODO: since num of src must be less than 2. * If found in for loop, should break. * DAL2 implementation may be changed too */ for (i = 0; i < tbl->v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i].encoderobjid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *src_object_id = object_id_from_bios_object_id(0x1100); /* break; */ } } bp_result = BP_RESULT_OK; break; case OBJECT_TYPE_CONNECTOR: for (i = 0; i < tbl->v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i].display_objid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *src_object_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i].encoderobjid); /* break; */ } } bp_result = BP_RESULT_OK; break; default: break; } return bp_result; } static enum bp_result bios_parser_get_dst_obj(struct dc_bios *dcb, struct graphics_object_id object_id, uint32_t index, struct graphics_object_id *dest_object_id) { struct bios_parser *bp = BP_FROM_DCB(dcb); unsigned int i; enum bp_result bp_result = BP_RESULT_BADINPUT; struct graphics_object_id obj_id = {0}; struct object_info_table *tbl = &bp->object_info_tbl; if (!dest_object_id) return BP_RESULT_BADINPUT; switch (object_id.type) { case OBJECT_TYPE_ENCODER: /* TODO: since num of src must be less than 2. * If found in for loop, should break. * DAL2 implementation may be changed too */ for (i = 0; i < tbl->v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i].encoderobjid); if (object_id.type == obj_id.type && object_id.id == obj_id.id && object_id.enum_id == obj_id.enum_id) { *dest_object_id = object_id_from_bios_object_id( tbl->v1_4->display_path[i].display_objid); /* break; */ } } bp_result = BP_RESULT_OK; break; default: break; } return bp_result; } /* from graphics_object_id, find display path which includes the object_id */ static struct atom_display_object_path_v2 *get_bios_object( struct bios_parser *bp, struct graphics_object_id id) { unsigned int i; struct graphics_object_id obj_id = {0}; switch (id.type) { case OBJECT_TYPE_ENCODER: for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_4->display_path[i].encoderobjid); if (id.type == obj_id.type && id.id == obj_id.id && id.enum_id == obj_id.enum_id) return &bp->object_info_tbl.v1_4->display_path[i]; } case OBJECT_TYPE_CONNECTOR: case OBJECT_TYPE_GENERIC: /* Both Generic and Connector Object ID * will be stored on display_objid */ for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) { obj_id = object_id_from_bios_object_id( bp->object_info_tbl.v1_4->display_path[i].display_objid ); if (id.type == obj_id.type && id.id == obj_id.id && id.enum_id == obj_id.enum_id) return &bp->object_info_tbl.v1_4->display_path[i]; } default: return NULL; } } static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb, struct graphics_object_id id, struct graphics_object_i2c_info *info) { uint32_t offset; struct atom_display_object_path_v2 *object; struct atom_common_record_header *header; struct atom_i2c_record *record; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!info) return BP_RESULT_BADINPUT; object = get_bios_object(bp, id); if (!object) return BP_RESULT_BADINPUT; offset = object->disp_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return BP_RESULT_BADBIOSTABLE; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type == ATOM_I2C_RECORD_TYPE && sizeof(struct atom_i2c_record) <= header->record_size) { /* get the I2C info */ record = (struct atom_i2c_record *) header; if (get_gpio_i2c_info(bp, record, info) == BP_RESULT_OK) return BP_RESULT_OK; } offset += header->record_size; } return BP_RESULT_NORECORD; } static enum bp_result get_gpio_i2c_info( struct bios_parser *bp, struct atom_i2c_record *record, struct graphics_object_i2c_info *info) { struct atom_gpio_pin_lut_v2_1 *header; uint32_t count = 0; unsigned int table_index = 0; if (!info) return BP_RESULT_BADINPUT; /* get the GPIO_I2C info */ if (!DATA_TABLES(gpio_pin_lut)) return BP_RESULT_BADBIOSTABLE; header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1, DATA_TABLES(gpio_pin_lut)); if (!header) return BP_RESULT_BADBIOSTABLE; if (sizeof(struct atom_common_table_header) + sizeof(struct atom_gpio_pin_assignment) > le16_to_cpu(header->table_header.structuresize)) return BP_RESULT_BADBIOSTABLE; /* TODO: is version change? */ if (header->table_header.content_revision != 1) return BP_RESULT_UNSUPPORTED; /* get data count */ count = (le16_to_cpu(header->table_header.structuresize) - sizeof(struct atom_common_table_header)) / sizeof(struct atom_gpio_pin_assignment); table_index = record->i2c_id & I2C_HW_LANE_MUX; if (count < table_index) { bool find_valid = false; for (table_index = 0; table_index < count; table_index++) { if (((record->i2c_id & I2C_HW_CAP) == ( header->gpio_pin[table_index].gpio_id & I2C_HW_CAP)) && ((record->i2c_id & I2C_HW_ENGINE_ID_MASK) == (header->gpio_pin[table_index].gpio_id & I2C_HW_ENGINE_ID_MASK)) && ((record->i2c_id & I2C_HW_LANE_MUX) == (header->gpio_pin[table_index].gpio_id & I2C_HW_LANE_MUX))) { /* still valid */ find_valid = true; break; } } /* If we don't find the entry that we are looking for then * we will return BP_Result_BadBiosTable. */ if (find_valid == false) return BP_RESULT_BADBIOSTABLE; } /* get the GPIO_I2C_INFO */ info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false; info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX; info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4; info->i2c_slave_address = record->i2c_slave_addr; /* TODO: check how to get register offset for en, Y, etc. */ info->gpio_info.clk_a_register_index = le16_to_cpu( header->gpio_pin[table_index].data_a_reg_index); info->gpio_info.clk_a_shift = header->gpio_pin[table_index].gpio_bitshift; return BP_RESULT_OK; } static enum bp_result get_voltage_ddc_info_v4( uint8_t *i2c_line, uint32_t index, struct atom_common_table_header *header, uint8_t *address) { enum bp_result result = BP_RESULT_NORECORD; struct atom_voltage_objects_info_v4_1 *info = (struct atom_voltage_objects_info_v4_1 *) address; uint8_t *voltage_current_object = (uint8_t *) (&(info->voltage_object[0])); while ((address + le16_to_cpu(header->structuresize)) > voltage_current_object) { struct atom_i2c_voltage_object_v4 *object = (struct atom_i2c_voltage_object_v4 *) voltage_current_object; if (object->header.voltage_mode == ATOM_INIT_VOLTAGE_REGULATOR) { if (object->header.voltage_type == index) { *i2c_line = object->i2c_id ^ 0x90; result = BP_RESULT_OK; break; } } voltage_current_object += le16_to_cpu(object->header.object_size); } return result; } static enum bp_result bios_parser_get_thermal_ddc_info( struct dc_bios *dcb, uint32_t i2c_channel_id, struct graphics_object_i2c_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct i2c_id_config_access *config; struct atom_i2c_record record; if (!info) return BP_RESULT_BADINPUT; config = (struct i2c_id_config_access *) &i2c_channel_id; record.i2c_id = config->bfHW_Capable; record.i2c_id |= config->bfI2C_LineMux; record.i2c_id |= config->bfHW_EngineID; return get_gpio_i2c_info(bp, &record, info); } static enum bp_result bios_parser_get_voltage_ddc_info(struct dc_bios *dcb, uint32_t index, struct graphics_object_i2c_info *info) { uint8_t i2c_line = 0; enum bp_result result = BP_RESULT_NORECORD; uint8_t *voltage_info_address; struct atom_common_table_header *header; struct atom_data_revision revision = {0}; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!DATA_TABLES(voltageobject_info)) return result; voltage_info_address = bios_get_image(&bp->base, DATA_TABLES(voltageobject_info), sizeof(struct atom_common_table_header)); header = (struct atom_common_table_header *) voltage_info_address; get_atom_data_table_revision(header, &revision); switch (revision.major) { case 4: if (revision.minor != 1) break; result = get_voltage_ddc_info_v4(&i2c_line, index, header, voltage_info_address); break; } if (result == BP_RESULT_OK) result = bios_parser_get_thermal_ddc_info(dcb, i2c_line, info); return result; } static enum bp_result bios_parser_get_hpd_info( struct dc_bios *dcb, struct graphics_object_id id, struct graphics_object_hpd_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; struct atom_hpd_int_record *record = NULL; if (!info) return BP_RESULT_BADINPUT; object = get_bios_object(bp, id); if (!object) return BP_RESULT_BADINPUT; record = get_hpd_record(bp, object); if (record != NULL) { info->hpd_int_gpio_uid = record->pin_id; info->hpd_active = record->plugin_pin_state; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static struct atom_hpd_int_record *get_hpd_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->disp_recordoffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type == ATOM_HPD_INT_RECORD_TYPE && sizeof(struct atom_hpd_int_record) <= header->record_size) return (struct atom_hpd_int_record *) header; offset += header->record_size; } return NULL; } /** * bios_parser_get_gpio_pin_info * Get GpioPin information of input gpio id * * @param gpio_id, GPIO ID * @param info, GpioPin information structure * @return Bios parser result code * @note * to get the GPIO PIN INFO, we need: * 1. get the GPIO_ID from other object table, see GetHPDInfo() * 2. in DATA_TABLE.GPIO_Pin_LUT, search all records, * to get the registerA offset/mask */ static enum bp_result bios_parser_get_gpio_pin_info( struct dc_bios *dcb, uint32_t gpio_id, struct gpio_pin_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_gpio_pin_lut_v2_1 *header; uint32_t count = 0; uint32_t i = 0; if (!DATA_TABLES(gpio_pin_lut)) return BP_RESULT_BADBIOSTABLE; header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1, DATA_TABLES(gpio_pin_lut)); if (!header) return BP_RESULT_BADBIOSTABLE; if (sizeof(struct atom_common_table_header) + sizeof(struct atom_gpio_pin_lut_v2_1) > le16_to_cpu(header->table_header.structuresize)) return BP_RESULT_BADBIOSTABLE; if (header->table_header.content_revision != 1) return BP_RESULT_UNSUPPORTED; /* Temporary hard code gpio pin info */ #if defined(FOR_SIMNOW_BOOT) { struct atom_gpio_pin_assignment gpio_pin[8] = { {0x5db5, 0, 0, 1, 0}, {0x5db5, 8, 8, 2, 0}, {0x5db5, 0x10, 0x10, 3, 0}, {0x5db5, 0x18, 0x14, 4, 0}, {0x5db5, 0x1A, 0x18, 5, 0}, {0x5db5, 0x1C, 0x1C, 6, 0}, }; count = 6; memmove(header->gpio_pin, gpio_pin, sizeof(gpio_pin)); } #else count = (le16_to_cpu(header->table_header.structuresize) - sizeof(struct atom_common_table_header)) / sizeof(struct atom_gpio_pin_assignment); #endif for (i = 0; i < count; ++i) { if (header->gpio_pin[i].gpio_id != gpio_id) continue; info->offset = (uint32_t) le16_to_cpu( header->gpio_pin[i].data_a_reg_index); info->offset_y = info->offset + 2; info->offset_en = info->offset + 1; info->offset_mask = info->offset - 1; info->mask = (uint32_t) (1 << header->gpio_pin[i].gpio_bitshift); info->mask_y = info->mask + 2; info->mask_en = info->mask + 1; info->mask_mask = info->mask - 1; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static struct device_id device_type_from_device_id(uint16_t device_id) { struct device_id result_device_id; result_device_id.raw_device_tag = device_id; switch (device_id) { case ATOM_DISPLAY_LCD1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_LCD; result_device_id.enum_id = 1; break; case ATOM_DISPLAY_DFP1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 1; break; case ATOM_DISPLAY_DFP2_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 2; break; case ATOM_DISPLAY_DFP3_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 3; break; case ATOM_DISPLAY_DFP4_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 4; break; case ATOM_DISPLAY_DFP5_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 5; break; case ATOM_DISPLAY_DFP6_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 6; break; default: BREAK_TO_DEBUGGER(); /* Invalid device Id */ result_device_id.device_type = DEVICE_TYPE_UNKNOWN; result_device_id.enum_id = 0; } return result_device_id; } static enum bp_result bios_parser_get_device_tag( struct dc_bios *dcb, struct graphics_object_id connector_object_id, uint32_t device_tag_index, struct connector_device_tag_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; if (!info) return BP_RESULT_BADINPUT; /* getBiosObject will return MXM object */ object = get_bios_object(bp, connector_object_id); if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return BP_RESULT_BADINPUT; } info->acpi_device = 0; /* BIOS no longer provides this */ info->dev_id = device_type_from_device_id(object->device_tag); return BP_RESULT_OK; } static enum bp_result get_ss_info_v4_1( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL; if (!ss_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; ss_info->type.STEP_AND_DELAY_INFO = false; ss_info->spread_percentage_divider = 1000; /* BIOS no longer uses target clock. Always enable for now */ ss_info->target_clock_range = 0xffffffff; switch (id) { case AS_SIGNAL_TYPE_DVI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dvi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dvi_ss_rate_10hz * 10; if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; break; case AS_SIGNAL_TYPE_HDMI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->hdmi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->hdmi_ss_rate_10hz * 10; if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; break; /* TODO LVDS not support anymore? */ case AS_SIGNAL_TYPE_DISPLAY_PORT: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dp_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dp_ss_rate_10hz * 10; if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; break; case AS_SIGNAL_TYPE_GPU_PLL: /* atom_firmware: DAL only get data from dce_info table. * if data within smu_info is needed for DAL, VBIOS should * copy it into dce_info */ result = BP_RESULT_UNSUPPORTED; break; default: result = BP_RESULT_UNSUPPORTED; } return result; } static enum bp_result get_ss_info_v4_2( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info) { enum bp_result result = BP_RESULT_OK; struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL; struct atom_smu_info_v3_1 *smu_info = NULL; if (!ss_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_BADBIOSTABLE; if (!DATA_TABLES(smu_info)) return BP_RESULT_BADBIOSTABLE; disp_cntl_tbl = GET_IMAGE(struct atom_display_controller_info_v4_2, DATA_TABLES(dce_info)); if (!disp_cntl_tbl) return BP_RESULT_BADBIOSTABLE; smu_info = GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info)); if (!smu_info) return BP_RESULT_BADBIOSTABLE; ss_info->type.STEP_AND_DELAY_INFO = false; ss_info->spread_percentage_divider = 1000; /* BIOS no longer uses target clock. Always enable for now */ ss_info->target_clock_range = 0xffffffff; switch (id) { case AS_SIGNAL_TYPE_DVI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->dvi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->dvi_ss_rate_10hz * 10; if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; break; case AS_SIGNAL_TYPE_HDMI: ss_info->spread_spectrum_percentage = disp_cntl_tbl->hdmi_ss_percentage; ss_info->spread_spectrum_range = disp_cntl_tbl->hdmi_ss_rate_10hz * 10; if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; break; /* TODO LVDS not support anymore? */ case AS_SIGNAL_TYPE_DISPLAY_PORT: ss_info->spread_spectrum_percentage = smu_info->gpuclk_ss_percentage; ss_info->spread_spectrum_range = smu_info->gpuclk_ss_rate_10hz * 10; if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE) ss_info->type.CENTER_MODE = true; break; case AS_SIGNAL_TYPE_GPU_PLL: /* atom_firmware: DAL only get data from dce_info table. * if data within smu_info is needed for DAL, VBIOS should * copy it into dce_info */ result = BP_RESULT_UNSUPPORTED; break; default: result = BP_RESULT_UNSUPPORTED; } return result; } /** * bios_parser_get_spread_spectrum_info * Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or * ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info * ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info * ver 3.1, * there is only one entry for each signal /ss id. However, there is * no planning of supporting multiple spread Sprectum entry for EverGreen * @param [in] this * @param [in] signal, ASSignalType to be converted to info index * @param [in] index, number of entries that match the converted info index * @param [out] ss_info, sprectrum information structure, * @return Bios parser result code */ static enum bp_result bios_parser_get_spread_spectrum_info( struct dc_bios *dcb, enum as_signal_type signal, uint32_t index, struct spread_spectrum_info *ss_info) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_UNSUPPORTED; struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!ss_info) /* check for bad input */ return BP_RESULT_BADINPUT; if (!DATA_TABLES(dce_info)) return BP_RESULT_UNSUPPORTED; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(dce_info)); get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 4: switch (tbl_revision.minor) { case 1: return get_ss_info_v4_1(bp, signal, index, ss_info); case 2: return get_ss_info_v4_2(bp, signal, index, ss_info); default: break; } break; default: break; } /* there can not be more then one entry for SS Info table */ return result; } static enum bp_result get_embedded_panel_info_v2_1( struct bios_parser *bp, struct embedded_panel_info *info) { struct lcd_info_v2_1 *lvds; if (!info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(lcd_info)) return BP_RESULT_UNSUPPORTED; lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info)); if (!lvds) return BP_RESULT_BADBIOSTABLE; /* TODO: previous vv1_3, should v2_1 */ if (!((lvds->table_header.format_revision == 2) && (lvds->table_header.content_revision >= 1))) return BP_RESULT_UNSUPPORTED; memset(info, 0, sizeof(struct embedded_panel_info)); /* We need to convert from 10KHz units into KHz units */ info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10; /* usHActive does not include borders, according to VBIOS team */ info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active); /* usHBlanking_Time includes borders, so we should really be * subtractingborders duing this translation, but LVDS generally * doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders */ info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time); /* usVActive does not include borders, according to VBIOS team*/ info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active); /* usVBlanking_Time includes borders, so we should really be * subtracting borders duing this translation, but LVDS generally * doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders */ info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time); info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset); info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width); info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset); info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth); info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border; info->lcd_timing.vertical_border = lvds->lcd_timing.v_border; /* not provided by VBIOS */ info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0; info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo & ATOM_HSYNC_POLARITY); info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo & ATOM_VSYNC_POLARITY); /* not provided by VBIOS */ info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0; info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo & ATOM_H_REPLICATIONBY2); info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo & ATOM_V_REPLICATIONBY2); info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo & ATOM_COMPOSITESYNC); info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE); /* not provided by VBIOS*/ info->lcd_timing.misc_info.DOUBLE_CLOCK = 0; /* not provided by VBIOS*/ info->ss_id = 0; info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID); return BP_RESULT_OK; } static enum bp_result bios_parser_get_embedded_panel_info( struct dc_bios *dcb, struct embedded_panel_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_common_table_header *header; struct atom_data_revision tbl_revision; if (!DATA_TABLES(lcd_info)) return BP_RESULT_FAILURE; header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info)); if (!header) return BP_RESULT_BADBIOSTABLE; get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 2: switch (tbl_revision.minor) { case 1: return get_embedded_panel_info_v2_1(bp, info); default: break; } default: break; } return BP_RESULT_FAILURE; } static uint32_t get_support_mask_for_device_id(struct device_id device_id) { enum dal_device_type device_type = device_id.device_type; uint32_t enum_id = device_id.enum_id; switch (device_type) { case DEVICE_TYPE_LCD: switch (enum_id) { case 1: return ATOM_DISPLAY_LCD1_SUPPORT; default: break; } break; case DEVICE_TYPE_DFP: switch (enum_id) { case 1: return ATOM_DISPLAY_DFP1_SUPPORT; case 2: return ATOM_DISPLAY_DFP2_SUPPORT; case 3: return ATOM_DISPLAY_DFP3_SUPPORT; case 4: return ATOM_DISPLAY_DFP4_SUPPORT; case 5: return ATOM_DISPLAY_DFP5_SUPPORT; case 6: return ATOM_DISPLAY_DFP6_SUPPORT; default: break; } break; default: break; }; /* Unidentified device ID, return empty support mask. */ return 0; } static bool bios_parser_is_device_id_supported( struct dc_bios *dcb, struct device_id id) { struct bios_parser *bp = BP_FROM_DCB(dcb); uint32_t mask = get_support_mask_for_device_id(id); return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) & mask) != 0; } static void bios_parser_post_init( struct dc_bios *dcb) { /* TODO for OPM module. Need implement later */ } static uint32_t bios_parser_get_ss_entry_number( struct dc_bios *dcb, enum as_signal_type signal) { /* TODO: DAL2 atomfirmware implementation does not need this. * why DAL3 need this? */ return 1; } static enum bp_result bios_parser_transmitter_control( struct dc_bios *dcb, struct bp_transmitter_control *cntl) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.transmitter_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.transmitter_control(bp, cntl); } static enum bp_result bios_parser_encoder_control( struct dc_bios *dcb, struct bp_encoder_control *cntl) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.dig_encoder_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.dig_encoder_control(bp, cntl); } static enum bp_result bios_parser_set_pixel_clock( struct dc_bios *dcb, struct bp_pixel_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_pixel_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_pixel_clock(bp, bp_params); } static enum bp_result bios_parser_set_dce_clock( struct dc_bios *dcb, struct bp_set_dce_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_dce_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_dce_clock(bp, bp_params); } static unsigned int bios_parser_get_smu_clock_info( struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.get_smu_clock_info) return BP_RESULT_FAILURE; return bp->cmd_tbl.get_smu_clock_info(bp, 0); } static enum bp_result bios_parser_program_crtc_timing( struct dc_bios *dcb, struct bp_hw_crtc_timing_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_crtc_timing) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_crtc_timing(bp, bp_params); } static enum bp_result bios_parser_enable_crtc( struct dc_bios *dcb, enum controller_id id, bool enable) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_crtc) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_crtc(bp, id, enable); } static enum bp_result bios_parser_crtc_source_select( struct dc_bios *dcb, struct bp_crtc_source_select *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.select_crtc_source) return BP_RESULT_FAILURE; return bp->cmd_tbl.select_crtc_source(bp, bp_params); } static enum bp_result bios_parser_enable_disp_power_gating( struct dc_bios *dcb, enum controller_id controller_id, enum bp_pipe_control_action action) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_disp_power_gating) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id, action); } static bool bios_parser_is_accelerated_mode( struct dc_bios *dcb) { return bios_is_accelerated_mode(dcb); } static uint32_t bios_parser_get_vga_enabled_displays( struct dc_bios *bios) { return bios_get_vga_enabled_displays(bios); } /** * bios_parser_set_scratch_critical_state * * @brief * update critical state bit in VBIOS scratch register * * @param * bool - to set or reset state */ static void bios_parser_set_scratch_critical_state( struct dc_bios *dcb, bool state) { bios_set_scratch_critical_state(dcb, state); } static enum bp_result bios_parser_get_firmware_info( struct dc_bios *dcb, struct dc_firmware_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_BADBIOSTABLE; struct atom_common_table_header *header; struct atom_data_revision revision; if (info && DATA_TABLES(firmwareinfo)) { header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(firmwareinfo)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 3: switch (revision.minor) { case 1: result = get_firmware_info_v3_1(bp, info); break; case 2: result = get_firmware_info_v3_2(bp, info); break; case 3: result = get_firmware_info_v3_2(bp, info); break; default: break; } break; default: break; } } return result; } static enum bp_result get_firmware_info_v3_1( struct bios_parser *bp, struct dc_firmware_info *info) { struct atom_firmware_info_v3_1 *firmware_info; struct atom_display_controller_info_v4_1 *dce_info = NULL; if (!info) return BP_RESULT_BADINPUT; firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1, DATA_TABLES(firmwareinfo)); dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!firmware_info || !dce_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); /* Pixel clock pll information. */ /* We need to convert from 10KHz units into KHz units */ info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10; info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10; /* 27MHz for Vega10: */ info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10; /* Hardcode frequency if BIOS gives no DCE Ref Clk */ if (info->pll_info.crystal_frequency == 0) info->pll_info.crystal_frequency = 27000; /*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/ info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10; info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10; /* Get GPU PLL VCO Clock */ if (bp->cmd_tbl.get_smu_clock_info != NULL) { /* VBIOS gives in 10KHz */ info->smu_gpu_pll_output_freq = bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10; } return BP_RESULT_OK; } static enum bp_result get_firmware_info_v3_2( struct bios_parser *bp, struct dc_firmware_info *info) { struct atom_firmware_info_v3_2 *firmware_info; struct atom_display_controller_info_v4_1 *dce_info = NULL; struct atom_common_table_header *header; struct atom_data_revision revision; struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL; struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL; if (!info) return BP_RESULT_BADINPUT; firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2, DATA_TABLES(firmwareinfo)); dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1, DATA_TABLES(dce_info)); if (!firmware_info || !dce_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(smu_info)); get_atom_data_table_revision(header, &revision); if (revision.minor == 2) { /* Vega12 */ smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2, DATA_TABLES(smu_info)); if (!smu_info_v3_2) return BP_RESULT_BADBIOSTABLE; info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10; } else if (revision.minor == 3) { /* Vega20 */ smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3, DATA_TABLES(smu_info)); if (!smu_info_v3_3) return BP_RESULT_BADBIOSTABLE; info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10; } // We need to convert from 10KHz units into KHz units. info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10; /* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */ info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10; /* Hardcode frequency if BIOS gives no DCE Ref Clk */ if (info->pll_info.crystal_frequency == 0) { if (revision.minor == 2) info->pll_info.crystal_frequency = 27000; else if (revision.minor == 3) info->pll_info.crystal_frequency = 100000; } /*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/ info->dp_phy_ref_clk = dce_info->dpphy_refclk_10khz * 10; info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10; /* Get GPU PLL VCO Clock */ if (bp->cmd_tbl.get_smu_clock_info != NULL) { if (revision.minor == 2) info->smu_gpu_pll_output_freq = bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10; else if (revision.minor == 3) info->smu_gpu_pll_output_freq = bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10; } return BP_RESULT_OK; } static enum bp_result bios_parser_get_encoder_cap_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_encoder_cap_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct atom_display_object_path_v2 *object; struct atom_encoder_caps_record *record = NULL; if (!info) return BP_RESULT_BADINPUT; object = get_bios_object(bp, object_id); if (!object) return BP_RESULT_BADINPUT; record = get_encoder_cap_record(bp, object); if (!record) return BP_RESULT_NORECORD; info->DP_HBR2_CAP = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0; info->DP_HBR2_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0; info->DP_HBR3_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0; info->HDMI_6GB_EN = (record->encodercaps & ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0; return BP_RESULT_OK; } static struct atom_encoder_caps_record *get_encoder_cap_record( struct bios_parser *bp, struct atom_display_object_path_v2 *object) { struct atom_common_record_header *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = object->encoder_recordoffset + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(struct atom_common_record_header, offset); if (!header) return NULL; offset += header->record_size; if (header->record_type == LAST_RECORD_TYPE || !header->record_size) break; if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE) continue; if (sizeof(struct atom_encoder_caps_record) <= header->record_size) return (struct atom_encoder_caps_record *)header; } return NULL; } /* * get_integrated_info_v11 * * @brief * Get V8 integrated BIOS information * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result get_integrated_info_v11( struct bios_parser *bp, struct integrated_info *info) { struct atom_integrated_system_info_v1_11 *info_v11; uint32_t i; info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11, DATA_TABLES(integratedsysteminfo)); if (info_v11 == NULL) return BP_RESULT_BADBIOSTABLE; info->gpu_cap_info = le32_to_cpu(info_v11->gpucapinfo); /* * system_config: Bit[0] = 0 : PCIE power gating disabled * = 1 : PCIE power gating enabled * Bit[1] = 0 : DDR-PLL shut down disabled * = 1 : DDR-PLL shut down enabled * Bit[2] = 0 : DDR-PLL power down disabled * = 1 : DDR-PLL power down enabled */ info->system_config = le32_to_cpu(info_v11->system_config); info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo); info->memory_type = info_v11->memorytype; info->ma_channel_number = info_v11->umachannelnumber; info->lvds_ss_percentage = le16_to_cpu(info_v11->lvds_ss_percentage); info->lvds_sspread_rate_in_10hz = le16_to_cpu(info_v11->lvds_ss_rate_10hz); info->hdmi_ss_percentage = le16_to_cpu(info_v11->hdmi_ss_percentage); info->hdmi_sspread_rate_in_10hz = le16_to_cpu(info_v11->hdmi_ss_rate_10hz); info->dvi_ss_percentage = le16_to_cpu(info_v11->dvi_ss_percentage); info->dvi_sspread_rate_in_10_hz = le16_to_cpu(info_v11->dvi_ss_rate_10hz); info->lvds_misc = info_v11->lvds_misc; for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) { info->ext_disp_conn_info.gu_id[i] = info_v11->extdispconninfo.guid[i]; } for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) { info->ext_disp_conn_info.path[i].device_connector_id = object_id_from_bios_object_id( le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid)); info->ext_disp_conn_info.path[i].ext_encoder_obj_id = object_id_from_bios_object_id( le16_to_cpu( info_v11->extdispconninfo.path[i].ext_encoder_objid)); info->ext_disp_conn_info.path[i].device_tag = le16_to_cpu( info_v11->extdispconninfo.path[i].device_tag); info->ext_disp_conn_info.path[i].device_acpi_enum = le16_to_cpu( info_v11->extdispconninfo.path[i].device_acpi_enum); info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index = info_v11->extdispconninfo.path[i].auxddclut_index; info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index = info_v11->extdispconninfo.path[i].hpdlut_index; info->ext_disp_conn_info.path[i].channel_mapping.raw = info_v11->extdispconninfo.path[i].channelmapping; info->ext_disp_conn_info.path[i].caps = le16_to_cpu(info_v11->extdispconninfo.path[i].caps); } info->ext_disp_conn_info.checksum = info_v11->extdispconninfo.checksum; info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr; info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum; for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) { info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) { info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr; info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum; for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) { info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) { info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr; info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum; for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) { info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) { info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr; info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum; for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) { info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index = info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex; info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val = info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal; } info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum; for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) { info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index = info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex; info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val = info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal; } /** TODO - review **/ #if 0 info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock) * 10; info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10; info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10; for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { /* Convert [10KHz] into [KHz] */ info->disp_clk_voltage[i].max_supported_clk = le32_to_cpu(info_v11->sDISPCLK_Voltage[i]. ulMaximumSupportedCLK) * 10; info->disp_clk_voltage[i].voltage_index = le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex); } info->boot_up_req_display_vector = le32_to_cpu(info_v11->ulBootUpReqDisplayVector); info->boot_up_nb_voltage = le16_to_cpu(info_v11->usBootUpNBVoltage); info->ext_disp_conn_info_offset = le16_to_cpu(info_v11->usExtDispConnInfoOffset); info->gmc_restore_reset_time = le32_to_cpu(info_v11->ulGMCRestoreResetTime); info->minimum_n_clk = le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]); for (i = 1; i < 4; ++i) info->minimum_n_clk = info->minimum_n_clk < le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ? info->minimum_n_clk : le32_to_cpu( info_v11->ulNbpStateNClkFreq[i]); info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk); info->ddr_dll_power_up_time = le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime); info->ddr_pll_power_up_time = le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime); info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType); info->max_lvds_pclk_freq_in_single_link = le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink); info->max_lvds_pclk_freq_in_single_link = le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink); info->lvds_pwr_on_seq_dig_on_to_de_in_4ms = info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms; info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms = info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms; info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms = info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms; info->lvds_pwr_off_seq_vary_bl_to_de_in4ms = info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms; info->lvds_pwr_off_seq_de_to_dig_on_in4ms = info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms; info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms = info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms; info->lvds_off_to_on_delay_in_4ms = info_v11->ucLVDSOffToOnDelay_in4Ms; info->lvds_bit_depth_control_val = le32_to_cpu(info_v11->ulLCDBitDepthControlVal); for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) { /* Convert [10KHz] into [KHz] */ info->avail_s_clk[i].supported_s_clk = le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK) * 10; info->avail_s_clk[i].voltage_index = le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex); info->avail_s_clk[i].voltage_id = le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID); } #endif /* TODO*/ return BP_RESULT_OK; } /* * construct_integrated_info * * @brief * Get integrated BIOS information based on table revision * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result construct_integrated_info( struct bios_parser *bp, struct integrated_info *info) { enum bp_result result = BP_RESULT_BADBIOSTABLE; struct atom_common_table_header *header; struct atom_data_revision revision; struct clock_voltage_caps temp = {0, 0}; uint32_t i; uint32_t j; if (info && DATA_TABLES(integratedsysteminfo)) { header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(integratedsysteminfo)); get_atom_data_table_revision(header, &revision); /* Don't need to check major revision as they are all 1 */ switch (revision.minor) { case 11: result = get_integrated_info_v11(bp, info); break; default: return result; } } if (result != BP_RESULT_OK) return result; /* Sort voltage table from low to high*/ for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { for (j = i; j > 0; --j) { if (info->disp_clk_voltage[j].max_supported_clk < info->disp_clk_voltage[j-1].max_supported_clk ) { /* swap j and j - 1*/ temp = info->disp_clk_voltage[j-1]; info->disp_clk_voltage[j-1] = info->disp_clk_voltage[j]; info->disp_clk_voltage[j] = temp; } } } return result; } static struct integrated_info *bios_parser_create_integrated_info( struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct integrated_info *info = NULL; info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL); if (info == NULL) { ASSERT_CRITICAL(0); return NULL; } if (construct_integrated_info(bp, info) == BP_RESULT_OK) return info; kfree(info); return NULL; } static enum bp_result update_slot_layout_info( struct dc_bios *dcb, unsigned int i, struct slot_layout_info *slot_layout_info) { unsigned int record_offset; unsigned int j; struct atom_display_object_path_v2 *object; struct atom_bracket_layout_record *record; struct atom_common_record_header *record_header; enum bp_result result; struct bios_parser *bp; struct object_info_table *tbl; struct display_object_info_table_v1_4 *v1_4; record = NULL; record_header = NULL; result = BP_RESULT_NORECORD; bp = BP_FROM_DCB(dcb); tbl = &bp->object_info_tbl; v1_4 = tbl->v1_4; object = &v1_4->display_path[i]; record_offset = (unsigned int) (object->disp_recordoffset) + (unsigned int)(bp->object_info_tbl_offset); for (;;) { record_header = (struct atom_common_record_header *) GET_IMAGE(struct atom_common_record_header, record_offset); if (record_header == NULL) { result = BP_RESULT_BADBIOSTABLE; break; } /* the end of the list */ if (record_header->record_type == 0xff || record_header->record_size == 0) { break; } if (record_header->record_type == ATOM_BRACKET_LAYOUT_RECORD_TYPE && sizeof(struct atom_bracket_layout_record) <= record_header->record_size) { record = (struct atom_bracket_layout_record *) (record_header); result = BP_RESULT_OK; break; } record_offset += record_header->record_size; } /* return if the record not found */ if (result != BP_RESULT_OK) return result; /* get slot sizes */ slot_layout_info->length = record->bracketlen; slot_layout_info->width = record->bracketwidth; /* get info for each connector in the slot */ slot_layout_info->num_of_connectors = record->conn_num; for (j = 0; j < slot_layout_info->num_of_connectors; ++j) { slot_layout_info->connectors[j].connector_type = (enum connector_layout_type) (record->conn_info[j].connector_type); switch (record->conn_info[j].connector_type) { case CONNECTOR_TYPE_DVI_D: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_DVI_D; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_DVI; break; case CONNECTOR_TYPE_HDMI: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_HDMI; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_HDMI; break; case CONNECTOR_TYPE_DISPLAY_PORT: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_DP; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_DP; break; case CONNECTOR_TYPE_MINI_DISPLAY_PORT: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_MINI_DP; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_MINI_DP; break; default: slot_layout_info->connectors[j].connector_type = CONNECTOR_LAYOUT_TYPE_UNKNOWN; slot_layout_info->connectors[j].length = CONNECTOR_SIZE_UNKNOWN; } slot_layout_info->connectors[j].position = record->conn_info[j].position; slot_layout_info->connectors[j].connector_id = object_id_from_bios_object_id( record->conn_info[j].connectorobjid); } return result; } static enum bp_result get_bracket_layout_record( struct dc_bios *dcb, unsigned int bracket_layout_id, struct slot_layout_info *slot_layout_info) { unsigned int i; struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result; struct object_info_table *tbl; struct display_object_info_table_v1_4 *v1_4; if (slot_layout_info == NULL) { DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n"); return BP_RESULT_BADINPUT; } tbl = &bp->object_info_tbl; v1_4 = tbl->v1_4; result = BP_RESULT_NORECORD; for (i = 0; i < v1_4->number_of_path; ++i) { if (bracket_layout_id == v1_4->display_path[i].display_objid) { result = update_slot_layout_info(dcb, i, slot_layout_info); break; } } return result; } static enum bp_result bios_get_board_layout_info( struct dc_bios *dcb, struct board_layout_info *board_layout_info) { unsigned int i; struct bios_parser *bp; enum bp_result record_result; const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = { GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1, GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2, 0, 0 }; bp = BP_FROM_DCB(dcb); if (board_layout_info == NULL) { DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n"); return BP_RESULT_BADINPUT; } board_layout_info->num_of_slots = 0; for (i = 0; i < MAX_BOARD_SLOTS; ++i) { record_result = get_bracket_layout_record(dcb, slot_index_to_vbios_id[i], &board_layout_info->slots[i]); if (record_result == BP_RESULT_NORECORD && i > 0) break; /* no more slots present in bios */ else if (record_result != BP_RESULT_OK) return record_result; /* fail */ ++board_layout_info->num_of_slots; } /* all data is valid */ board_layout_info->is_number_of_slots_valid = 1; board_layout_info->is_slots_size_valid = 1; board_layout_info->is_connector_offsets_valid = 1; board_layout_info->is_connector_lengths_valid = 1; return BP_RESULT_OK; } static const struct dc_vbios_funcs vbios_funcs = { .get_connectors_number = bios_parser_get_connectors_number, .get_encoder_id = bios_parser_get_encoder_id, .get_connector_id = bios_parser_get_connector_id, .get_dst_number = bios_parser_get_dst_number, .get_src_obj = bios_parser_get_src_obj, .get_dst_obj = bios_parser_get_dst_obj, .get_i2c_info = bios_parser_get_i2c_info, .get_voltage_ddc_info = bios_parser_get_voltage_ddc_info, .get_thermal_ddc_info = bios_parser_get_thermal_ddc_info, .get_hpd_info = bios_parser_get_hpd_info, .get_device_tag = bios_parser_get_device_tag, .get_firmware_info = bios_parser_get_firmware_info, .get_spread_spectrum_info = bios_parser_get_spread_spectrum_info, .get_ss_entry_number = bios_parser_get_ss_entry_number, .get_embedded_panel_info = bios_parser_get_embedded_panel_info, .get_gpio_pin_info = bios_parser_get_gpio_pin_info, .get_encoder_cap_info = bios_parser_get_encoder_cap_info, .is_device_id_supported = bios_parser_is_device_id_supported, .is_accelerated_mode = bios_parser_is_accelerated_mode, .get_vga_enabled_displays = bios_parser_get_vga_enabled_displays, .set_scratch_critical_state = bios_parser_set_scratch_critical_state, /* COMMANDS */ .encoder_control = bios_parser_encoder_control, .transmitter_control = bios_parser_transmitter_control, .enable_crtc = bios_parser_enable_crtc, .set_pixel_clock = bios_parser_set_pixel_clock, .set_dce_clock = bios_parser_set_dce_clock, .program_crtc_timing = bios_parser_program_crtc_timing, /* .blank_crtc = bios_parser_blank_crtc, */ .crtc_source_select = bios_parser_crtc_source_select, /* .external_encoder_control = bios_parser_external_encoder_control, */ .enable_disp_power_gating = bios_parser_enable_disp_power_gating, .post_init = bios_parser_post_init, .bios_parser_destroy = firmware_parser_destroy, .get_smu_clock_info = bios_parser_get_smu_clock_info, .get_board_layout_info = bios_get_board_layout_info, }; static bool bios_parser_construct( struct bios_parser *bp, struct bp_init_data *init, enum dce_version dce_version) { uint16_t *rom_header_offset = NULL; struct atom_rom_header_v2_2 *rom_header = NULL; struct display_object_info_table_v1_4 *object_info_tbl; struct atom_data_revision tbl_rev = {0}; if (!init) return false; if (!init->bios) return false; bp->base.funcs = &vbios_funcs; bp->base.bios = init->bios; bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT; bp->base.ctx = init->ctx; bp->base.bios_local_image = NULL; rom_header_offset = GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER); if (!rom_header_offset) return false; rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset); if (!rom_header) return false; get_atom_data_table_revision(&rom_header->table_header, &tbl_rev); if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2)) return false; bp->master_data_tbl = GET_IMAGE(struct atom_master_data_table_v2_1, rom_header->masterdatatable_offset); if (!bp->master_data_tbl) return false; bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo); if (!bp->object_info_tbl_offset) return false; object_info_tbl = GET_IMAGE(struct display_object_info_table_v1_4, bp->object_info_tbl_offset); if (!object_info_tbl) return false; get_atom_data_table_revision(&object_info_tbl->table_header, &bp->object_info_tbl.revision); if (bp->object_info_tbl.revision.major == 1 && bp->object_info_tbl.revision.minor >= 4) { struct display_object_info_table_v1_4 *tbl_v1_4; tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4, bp->object_info_tbl_offset); if (!tbl_v1_4) return false; bp->object_info_tbl.v1_4 = tbl_v1_4; } else return false; dal_firmware_parser_init_cmd_tbl(bp); dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version); bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base); return true; } struct dc_bios *firmware_parser_create( struct bp_init_data *init, enum dce_version dce_version) { struct bios_parser *bp = NULL; bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL); if (!bp) return NULL; if (bios_parser_construct(bp, init, dce_version)) return &bp->base; kfree(bp); return NULL; }