/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "atom.h" #include "dc_bios_types.h" #include "include/gpio_service_interface.h" #include "include/grph_object_ctrl_defs.h" #include "include/bios_parser_interface.h" #include "include/i2caux_interface.h" #include "include/logger_interface.h" #include "command_table.h" #include "bios_parser_helper.h" #include "command_table_helper.h" #include "bios_parser.h" #include "bios_parser_types_internal.h" #include "bios_parser_interface.h" #include "bios_parser_common.h" /* TODO remove - only needed for default i2c speed */ #include "dc.h" #define THREE_PERCENT_OF_10000 300 #define LAST_RECORD_TYPE 0xff /* GUID to validate external display connection info table (aka OPM module) */ static const uint8_t ext_display_connection_guid[NUMBER_OF_UCHAR_FOR_GUID] = { 0x91, 0x6E, 0x57, 0x09, 0x3F, 0x6D, 0xD2, 0x11, 0x39, 0x8E, 0x00, 0xA0, 0xC9, 0x69, 0x72, 0x3B}; #define DATA_TABLES(table) (bp->master_data_tbl->ListOfDataTables.table) static void get_atom_data_table_revision( ATOM_COMMON_TABLE_HEADER *atom_data_tbl, struct atom_data_revision *tbl_revision); static uint32_t get_dst_number_from_object(struct bios_parser *bp, ATOM_OBJECT *object); static uint32_t get_src_obj_list(struct bios_parser *bp, ATOM_OBJECT *object, uint16_t **id_list); static uint32_t get_dest_obj_list(struct bios_parser *bp, ATOM_OBJECT *object, uint16_t **id_list); static ATOM_OBJECT *get_bios_object(struct bios_parser *bp, struct graphics_object_id id); static enum bp_result get_gpio_i2c_info(struct bios_parser *bp, ATOM_I2C_RECORD *record, struct graphics_object_i2c_info *info); static ATOM_HPD_INT_RECORD *get_hpd_record(struct bios_parser *bp, ATOM_OBJECT *object); static struct device_id device_type_from_device_id(uint16_t device_id); static uint32_t signal_to_ss_id(enum as_signal_type signal); static uint32_t get_support_mask_for_device_id(struct device_id device_id); static ATOM_ENCODER_CAP_RECORD_V2 *get_encoder_cap_record( struct bios_parser *bp, ATOM_OBJECT *object); #define BIOS_IMAGE_SIZE_OFFSET 2 #define BIOS_IMAGE_SIZE_UNIT 512 /*****************************************************************************/ static bool bios_parser_construct( struct bios_parser *bp, struct bp_init_data *init, enum dce_version dce_version); static uint8_t bios_parser_get_connectors_number( struct dc_bios *dcb); static enum bp_result bios_parser_get_embedded_panel_info( struct dc_bios *dcb, struct embedded_panel_info *info); /*****************************************************************************/ struct dc_bios *bios_parser_create( struct bp_init_data *init, enum dce_version dce_version) { struct bios_parser *bp = NULL; bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL); if (!bp) return NULL; if (bios_parser_construct(bp, init, dce_version)) return &bp->base; kfree(bp); BREAK_TO_DEBUGGER(); return NULL; } static void destruct(struct bios_parser *bp) { kfree(bp->base.bios_local_image); kfree(bp->base.integrated_info); } static void bios_parser_destroy(struct dc_bios **dcb) { struct bios_parser *bp = BP_FROM_DCB(*dcb); if (!bp) { BREAK_TO_DEBUGGER(); return; } destruct(bp); kfree(bp); *dcb = NULL; } static uint8_t get_number_of_objects(struct bios_parser *bp, uint32_t offset) { ATOM_OBJECT_TABLE *table; uint32_t object_table_offset = bp->object_info_tbl_offset + offset; table = GET_IMAGE(ATOM_OBJECT_TABLE, object_table_offset); if (!table) return 0; else return table->ucNumberOfObjects; } static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); return get_number_of_objects(bp, le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset)); } static struct graphics_object_id bios_parser_get_encoder_id( struct dc_bios *dcb, uint32_t i) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct graphics_object_id object_id = dal_graphics_object_id_init( 0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN); uint32_t encoder_table_offset = bp->object_info_tbl_offset + le16_to_cpu(bp->object_info_tbl.v1_1->usEncoderObjectTableOffset); ATOM_OBJECT_TABLE *tbl = GET_IMAGE(ATOM_OBJECT_TABLE, encoder_table_offset); if (tbl && tbl->ucNumberOfObjects > i) { const uint16_t id = le16_to_cpu(tbl->asObjects[i].usObjectID); object_id = object_id_from_bios_object_id(id); } return object_id; } static struct graphics_object_id bios_parser_get_connector_id( struct dc_bios *dcb, uint8_t i) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct graphics_object_id object_id = dal_graphics_object_id_init( 0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN); uint16_t id; uint32_t connector_table_offset = bp->object_info_tbl_offset + le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset); ATOM_OBJECT_TABLE *tbl = GET_IMAGE(ATOM_OBJECT_TABLE, connector_table_offset); if (!tbl) { dm_error("Can't get connector table from atom bios.\n"); return object_id; } if (tbl->ucNumberOfObjects <= i) { dm_error("Can't find connector id %d in connector table of size %d.\n", i, tbl->ucNumberOfObjects); return object_id; } id = le16_to_cpu(tbl->asObjects[i].usObjectID); object_id = object_id_from_bios_object_id(id); return object_id; } static uint32_t bios_parser_get_dst_number(struct dc_bios *dcb, struct graphics_object_id id) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_OBJECT *object = get_bios_object(bp, id); return get_dst_number_from_object(bp, object); } static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb, struct graphics_object_id object_id, uint32_t index, struct graphics_object_id *src_object_id) { uint32_t number; uint16_t *id; ATOM_OBJECT *object; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!src_object_id) return BP_RESULT_BADINPUT; object = get_bios_object(bp, object_id); if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return BP_RESULT_BADINPUT; } number = get_src_obj_list(bp, object, &id); if (number <= index) return BP_RESULT_BADINPUT; *src_object_id = object_id_from_bios_object_id(id[index]); return BP_RESULT_OK; } static enum bp_result bios_parser_get_dst_obj(struct dc_bios *dcb, struct graphics_object_id object_id, uint32_t index, struct graphics_object_id *dest_object_id) { uint32_t number; uint16_t *id = NULL; ATOM_OBJECT *object; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!dest_object_id) return BP_RESULT_BADINPUT; object = get_bios_object(bp, object_id); number = get_dest_obj_list(bp, object, &id); if (number <= index || !id) return BP_RESULT_BADINPUT; *dest_object_id = object_id_from_bios_object_id(id[index]); return BP_RESULT_OK; } static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb, struct graphics_object_id id, struct graphics_object_i2c_info *info) { uint32_t offset; ATOM_OBJECT *object; ATOM_COMMON_RECORD_HEADER *header; ATOM_I2C_RECORD *record; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!info) return BP_RESULT_BADINPUT; object = get_bios_object(bp, id); if (!object) return BP_RESULT_BADINPUT; offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return BP_RESULT_BADBIOSTABLE; if (LAST_RECORD_TYPE == header->ucRecordType || !header->ucRecordSize) break; if (ATOM_I2C_RECORD_TYPE == header->ucRecordType && sizeof(ATOM_I2C_RECORD) <= header->ucRecordSize) { /* get the I2C info */ record = (ATOM_I2C_RECORD *) header; if (get_gpio_i2c_info(bp, record, info) == BP_RESULT_OK) return BP_RESULT_OK; } offset += header->ucRecordSize; } return BP_RESULT_NORECORD; } static enum bp_result get_voltage_ddc_info_v1(uint8_t *i2c_line, ATOM_COMMON_TABLE_HEADER *header, uint8_t *address) { enum bp_result result = BP_RESULT_NORECORD; ATOM_VOLTAGE_OBJECT_INFO *info = (ATOM_VOLTAGE_OBJECT_INFO *) address; uint8_t *voltage_current_object = (uint8_t *) &info->asVoltageObj[0]; while ((address + le16_to_cpu(header->usStructureSize)) > voltage_current_object) { ATOM_VOLTAGE_OBJECT *object = (ATOM_VOLTAGE_OBJECT *) voltage_current_object; if ((object->ucVoltageType == SET_VOLTAGE_INIT_MODE) && (object->ucVoltageType & VOLTAGE_CONTROLLED_BY_I2C_MASK)) { *i2c_line = object->asControl.ucVoltageControlI2cLine ^ 0x90; result = BP_RESULT_OK; break; } voltage_current_object += object->ucSize; } return result; } static enum bp_result get_voltage_ddc_info_v3(uint8_t *i2c_line, uint32_t index, ATOM_COMMON_TABLE_HEADER *header, uint8_t *address) { enum bp_result result = BP_RESULT_NORECORD; ATOM_VOLTAGE_OBJECT_INFO_V3_1 *info = (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *) address; uint8_t *voltage_current_object = (uint8_t *) (&(info->asVoltageObj[0])); while ((address + le16_to_cpu(header->usStructureSize)) > voltage_current_object) { ATOM_I2C_VOLTAGE_OBJECT_V3 *object = (ATOM_I2C_VOLTAGE_OBJECT_V3 *) voltage_current_object; if (object->sHeader.ucVoltageMode == ATOM_INIT_VOLTAGE_REGULATOR) { if (object->sHeader.ucVoltageType == index) { *i2c_line = object->ucVoltageControlI2cLine ^ 0x90; result = BP_RESULT_OK; break; } } voltage_current_object += le16_to_cpu(object->sHeader.usSize); } return result; } static enum bp_result bios_parser_get_thermal_ddc_info( struct dc_bios *dcb, uint32_t i2c_channel_id, struct graphics_object_i2c_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_I2C_ID_CONFIG_ACCESS *config; ATOM_I2C_RECORD record; if (!info) return BP_RESULT_BADINPUT; config = (ATOM_I2C_ID_CONFIG_ACCESS *) &i2c_channel_id; record.sucI2cId.bfHW_Capable = config->sbfAccess.bfHW_Capable; record.sucI2cId.bfI2C_LineMux = config->sbfAccess.bfI2C_LineMux; record.sucI2cId.bfHW_EngineID = config->sbfAccess.bfHW_EngineID; return get_gpio_i2c_info(bp, &record, info); } static enum bp_result bios_parser_get_voltage_ddc_info(struct dc_bios *dcb, uint32_t index, struct graphics_object_i2c_info *info) { uint8_t i2c_line = 0; enum bp_result result = BP_RESULT_NORECORD; uint8_t *voltage_info_address; ATOM_COMMON_TABLE_HEADER *header; struct atom_data_revision revision = {0}; struct bios_parser *bp = BP_FROM_DCB(dcb); if (!DATA_TABLES(VoltageObjectInfo)) return result; voltage_info_address = bios_get_image(&bp->base, DATA_TABLES(VoltageObjectInfo), sizeof(ATOM_COMMON_TABLE_HEADER)); header = (ATOM_COMMON_TABLE_HEADER *) voltage_info_address; get_atom_data_table_revision(header, &revision); switch (revision.major) { case 1: case 2: result = get_voltage_ddc_info_v1(&i2c_line, header, voltage_info_address); break; case 3: if (revision.minor != 1) break; result = get_voltage_ddc_info_v3(&i2c_line, index, header, voltage_info_address); break; } if (result == BP_RESULT_OK) result = bios_parser_get_thermal_ddc_info(dcb, i2c_line, info); return result; } /* TODO: temporary commented out to suppress 'defined but not used' warning */ #if 0 static enum bp_result bios_parser_get_ddc_info_for_i2c_line( struct bios_parser *bp, uint8_t i2c_line, struct graphics_object_i2c_info *info) { uint32_t offset; ATOM_OBJECT *object; ATOM_OBJECT_TABLE *table; uint32_t i; if (!info) return BP_RESULT_BADINPUT; offset = le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset); offset += bp->object_info_tbl_offset; table = GET_IMAGE(ATOM_OBJECT_TABLE, offset); if (!table) return BP_RESULT_BADBIOSTABLE; for (i = 0; i < table->ucNumberOfObjects; i++) { object = &table->asObjects[i]; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return BP_RESULT_BADINPUT; } offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { ATOM_COMMON_RECORD_HEADER *header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return BP_RESULT_BADBIOSTABLE; offset += header->ucRecordSize; if (LAST_RECORD_TYPE == header->ucRecordType || !header->ucRecordSize) break; if (ATOM_I2C_RECORD_TYPE == header->ucRecordType && sizeof(ATOM_I2C_RECORD) <= header->ucRecordSize) { ATOM_I2C_RECORD *record = (ATOM_I2C_RECORD *) header; if (i2c_line != record->sucI2cId.bfI2C_LineMux) continue; /* get the I2C info */ if (get_gpio_i2c_info(bp, record, info) == BP_RESULT_OK) return BP_RESULT_OK; } } } return BP_RESULT_NORECORD; } #endif static enum bp_result bios_parser_get_hpd_info(struct dc_bios *dcb, struct graphics_object_id id, struct graphics_object_hpd_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_OBJECT *object; ATOM_HPD_INT_RECORD *record = NULL; if (!info) return BP_RESULT_BADINPUT; object = get_bios_object(bp, id); if (!object) return BP_RESULT_BADINPUT; record = get_hpd_record(bp, object); if (record != NULL) { info->hpd_int_gpio_uid = record->ucHPDIntGPIOID; info->hpd_active = record->ucPlugged_PinState; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static enum bp_result bios_parser_get_device_tag_record( struct bios_parser *bp, ATOM_OBJECT *object, ATOM_CONNECTOR_DEVICE_TAG_RECORD **record) { ATOM_COMMON_RECORD_HEADER *header; uint32_t offset; offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return BP_RESULT_BADBIOSTABLE; offset += header->ucRecordSize; if (LAST_RECORD_TYPE == header->ucRecordType || !header->ucRecordSize) break; if (ATOM_CONNECTOR_DEVICE_TAG_RECORD_TYPE != header->ucRecordType) continue; if (sizeof(ATOM_CONNECTOR_DEVICE_TAG) > header->ucRecordSize) continue; *record = (ATOM_CONNECTOR_DEVICE_TAG_RECORD *) header; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static enum bp_result bios_parser_get_device_tag( struct dc_bios *dcb, struct graphics_object_id connector_object_id, uint32_t device_tag_index, struct connector_device_tag_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_OBJECT *object; ATOM_CONNECTOR_DEVICE_TAG_RECORD *record = NULL; ATOM_CONNECTOR_DEVICE_TAG *device_tag; if (!info) return BP_RESULT_BADINPUT; /* getBiosObject will return MXM object */ object = get_bios_object(bp, connector_object_id); if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return BP_RESULT_BADINPUT; } if (bios_parser_get_device_tag_record(bp, object, &record) != BP_RESULT_OK) return BP_RESULT_NORECORD; if (device_tag_index >= record->ucNumberOfDevice) return BP_RESULT_NORECORD; device_tag = &record->asDeviceTag[device_tag_index]; info->acpi_device = le32_to_cpu(device_tag->ulACPIDeviceEnum); info->dev_id = device_type_from_device_id(le16_to_cpu(device_tag->usDeviceID)); return BP_RESULT_OK; } static enum bp_result get_firmware_info_v1_4( struct bios_parser *bp, struct dc_firmware_info *info); static enum bp_result get_firmware_info_v2_1( struct bios_parser *bp, struct dc_firmware_info *info); static enum bp_result get_firmware_info_v2_2( struct bios_parser *bp, struct dc_firmware_info *info); static enum bp_result bios_parser_get_firmware_info( struct dc_bios *dcb, struct dc_firmware_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_BADBIOSTABLE; ATOM_COMMON_TABLE_HEADER *header; struct atom_data_revision revision; if (info && DATA_TABLES(FirmwareInfo)) { header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(FirmwareInfo)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 1: switch (revision.minor) { case 4: result = get_firmware_info_v1_4(bp, info); break; default: break; } break; case 2: switch (revision.minor) { case 1: result = get_firmware_info_v2_1(bp, info); break; case 2: result = get_firmware_info_v2_2(bp, info); break; default: break; } break; default: break; } } return result; } static enum bp_result get_firmware_info_v1_4( struct bios_parser *bp, struct dc_firmware_info *info) { ATOM_FIRMWARE_INFO_V1_4 *firmware_info = GET_IMAGE(ATOM_FIRMWARE_INFO_V1_4, DATA_TABLES(FirmwareInfo)); if (!info) return BP_RESULT_BADINPUT; if (!firmware_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); /* Pixel clock pll information. We need to convert from 10KHz units into * KHz units */ info->pll_info.crystal_frequency = le16_to_cpu(firmware_info->usReferenceClock) * 10; info->pll_info.min_input_pxl_clk_pll_frequency = le16_to_cpu(firmware_info->usMinPixelClockPLL_Input) * 10; info->pll_info.max_input_pxl_clk_pll_frequency = le16_to_cpu(firmware_info->usMaxPixelClockPLL_Input) * 10; info->pll_info.min_output_pxl_clk_pll_frequency = le32_to_cpu(firmware_info->ulMinPixelClockPLL_Output) * 10; info->pll_info.max_output_pxl_clk_pll_frequency = le32_to_cpu(firmware_info->ulMaxPixelClockPLL_Output) * 10; if (firmware_info->usFirmwareCapability.sbfAccess.MemoryClockSS_Support) /* Since there is no information on the SS, report conservative * value 3% for bandwidth calculation */ /* unit of 0.01% */ info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000; if (firmware_info->usFirmwareCapability.sbfAccess.EngineClockSS_Support) /* Since there is no information on the SS,report conservative * value 3% for bandwidth calculation */ /* unit of 0.01% */ info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000; return BP_RESULT_OK; } static enum bp_result get_ss_info_v3_1( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info); static enum bp_result get_firmware_info_v2_1( struct bios_parser *bp, struct dc_firmware_info *info) { ATOM_FIRMWARE_INFO_V2_1 *firmwareInfo = GET_IMAGE(ATOM_FIRMWARE_INFO_V2_1, DATA_TABLES(FirmwareInfo)); struct spread_spectrum_info internalSS; uint32_t index; if (!info) return BP_RESULT_BADINPUT; if (!firmwareInfo) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); /* Pixel clock pll information. We need to convert from 10KHz units into * KHz units */ info->pll_info.crystal_frequency = le16_to_cpu(firmwareInfo->usCoreReferenceClock) * 10; info->pll_info.min_input_pxl_clk_pll_frequency = le16_to_cpu(firmwareInfo->usMinPixelClockPLL_Input) * 10; info->pll_info.max_input_pxl_clk_pll_frequency = le16_to_cpu(firmwareInfo->usMaxPixelClockPLL_Input) * 10; info->pll_info.min_output_pxl_clk_pll_frequency = le32_to_cpu(firmwareInfo->ulMinPixelClockPLL_Output) * 10; info->pll_info.max_output_pxl_clk_pll_frequency = le32_to_cpu(firmwareInfo->ulMaxPixelClockPLL_Output) * 10; info->default_display_engine_pll_frequency = le32_to_cpu(firmwareInfo->ulDefaultDispEngineClkFreq) * 10; info->external_clock_source_frequency_for_dp = le16_to_cpu(firmwareInfo->usUniphyDPModeExtClkFreq) * 10; info->min_allowed_bl_level = firmwareInfo->ucMinAllowedBL_Level; /* There should be only one entry in the SS info table for Memory Clock */ index = 0; if (firmwareInfo->usFirmwareCapability.sbfAccess.MemoryClockSS_Support) /* Since there is no information for external SS, report * conservative value 3% for bandwidth calculation */ /* unit of 0.01% */ info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000; else if (get_ss_info_v3_1(bp, ASIC_INTERNAL_MEMORY_SS, index, &internalSS) == BP_RESULT_OK) { if (internalSS.spread_spectrum_percentage) { info->feature.memory_clk_ss_percentage = internalSS.spread_spectrum_percentage; if (internalSS.type.CENTER_MODE) { /* if it is centermode, the exact SS Percentage * will be round up of half of the percentage * reported in the SS table */ ++info->feature.memory_clk_ss_percentage; info->feature.memory_clk_ss_percentage /= 2; } } } /* There should be only one entry in the SS info table for Engine Clock */ index = 1; if (firmwareInfo->usFirmwareCapability.sbfAccess.EngineClockSS_Support) /* Since there is no information for external SS, report * conservative value 3% for bandwidth calculation */ /* unit of 0.01% */ info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000; else if (get_ss_info_v3_1(bp, ASIC_INTERNAL_ENGINE_SS, index, &internalSS) == BP_RESULT_OK) { if (internalSS.spread_spectrum_percentage) { info->feature.engine_clk_ss_percentage = internalSS.spread_spectrum_percentage; if (internalSS.type.CENTER_MODE) { /* if it is centermode, the exact SS Percentage * will be round up of half of the percentage * reported in the SS table */ ++info->feature.engine_clk_ss_percentage; info->feature.engine_clk_ss_percentage /= 2; } } } return BP_RESULT_OK; } static enum bp_result get_firmware_info_v2_2( struct bios_parser *bp, struct dc_firmware_info *info) { ATOM_FIRMWARE_INFO_V2_2 *firmware_info; struct spread_spectrum_info internal_ss; uint32_t index; if (!info) return BP_RESULT_BADINPUT; firmware_info = GET_IMAGE(ATOM_FIRMWARE_INFO_V2_2, DATA_TABLES(FirmwareInfo)); if (!firmware_info) return BP_RESULT_BADBIOSTABLE; memset(info, 0, sizeof(*info)); /* Pixel clock pll information. We need to convert from 10KHz units into * KHz units */ info->pll_info.crystal_frequency = le16_to_cpu(firmware_info->usCoreReferenceClock) * 10; info->pll_info.min_input_pxl_clk_pll_frequency = le16_to_cpu(firmware_info->usMinPixelClockPLL_Input) * 10; info->pll_info.max_input_pxl_clk_pll_frequency = le16_to_cpu(firmware_info->usMaxPixelClockPLL_Input) * 10; info->pll_info.min_output_pxl_clk_pll_frequency = le32_to_cpu(firmware_info->ulMinPixelClockPLL_Output) * 10; info->pll_info.max_output_pxl_clk_pll_frequency = le32_to_cpu(firmware_info->ulMaxPixelClockPLL_Output) * 10; info->default_display_engine_pll_frequency = le32_to_cpu(firmware_info->ulDefaultDispEngineClkFreq) * 10; info->external_clock_source_frequency_for_dp = le16_to_cpu(firmware_info->usUniphyDPModeExtClkFreq) * 10; /* There should be only one entry in the SS info table for Memory Clock */ index = 0; if (firmware_info->usFirmwareCapability.sbfAccess.MemoryClockSS_Support) /* Since there is no information for external SS, report * conservative value 3% for bandwidth calculation */ /* unit of 0.01% */ info->feature.memory_clk_ss_percentage = THREE_PERCENT_OF_10000; else if (get_ss_info_v3_1(bp, ASIC_INTERNAL_MEMORY_SS, index, &internal_ss) == BP_RESULT_OK) { if (internal_ss.spread_spectrum_percentage) { info->feature.memory_clk_ss_percentage = internal_ss.spread_spectrum_percentage; if (internal_ss.type.CENTER_MODE) { /* if it is centermode, the exact SS Percentage * will be round up of half of the percentage * reported in the SS table */ ++info->feature.memory_clk_ss_percentage; info->feature.memory_clk_ss_percentage /= 2; } } } /* There should be only one entry in the SS info table for Engine Clock */ index = 1; if (firmware_info->usFirmwareCapability.sbfAccess.EngineClockSS_Support) /* Since there is no information for external SS, report * conservative value 3% for bandwidth calculation */ /* unit of 0.01% */ info->feature.engine_clk_ss_percentage = THREE_PERCENT_OF_10000; else if (get_ss_info_v3_1(bp, ASIC_INTERNAL_ENGINE_SS, index, &internal_ss) == BP_RESULT_OK) { if (internal_ss.spread_spectrum_percentage) { info->feature.engine_clk_ss_percentage = internal_ss.spread_spectrum_percentage; if (internal_ss.type.CENTER_MODE) { /* if it is centermode, the exact SS Percentage * will be round up of half of the percentage * reported in the SS table */ ++info->feature.engine_clk_ss_percentage; info->feature.engine_clk_ss_percentage /= 2; } } } /* Remote Display */ info->remote_display_config = firmware_info->ucRemoteDisplayConfig; /* Is allowed minimum BL level */ info->min_allowed_bl_level = firmware_info->ucMinAllowedBL_Level; /* Used starting from CI */ info->smu_gpu_pll_output_freq = (uint32_t) (le32_to_cpu(firmware_info->ulGPUPLL_OutputFreq) * 10); return BP_RESULT_OK; } static enum bp_result get_ss_info_v3_1( struct bios_parser *bp, uint32_t id, uint32_t index, struct spread_spectrum_info *ss_info) { ATOM_ASIC_INTERNAL_SS_INFO_V3 *ss_table_header_include; ATOM_ASIC_SS_ASSIGNMENT_V3 *tbl; uint32_t table_size; uint32_t i; uint32_t table_index = 0; if (!ss_info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(ASIC_InternalSS_Info)) return BP_RESULT_UNSUPPORTED; ss_table_header_include = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V3, DATA_TABLES(ASIC_InternalSS_Info)); table_size = (le16_to_cpu(ss_table_header_include->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3); tbl = (ATOM_ASIC_SS_ASSIGNMENT_V3 *) &ss_table_header_include->asSpreadSpectrum[0]; memset(ss_info, 0, sizeof(struct spread_spectrum_info)); for (i = 0; i < table_size; i++) { if (tbl[i].ucClockIndication != (uint8_t) id) continue; if (table_index != index) { table_index++; continue; } /* VBIOS introduced new defines for Version 3, same values as * before, so now use these new ones for Version 3. * Shouldn't affect field VBIOS's V3 as define values are still * same. * #define SS_MODE_V3_CENTRE_SPREAD_MASK 0x01 * #define SS_MODE_V3_EXTERNAL_SS_MASK 0x02 * Old VBIOS defines: * #define ATOM_SS_CENTRE_SPREAD_MODE_MASK 0x00000001 * #define ATOM_EXTERNAL_SS_MASK 0x00000002 */ if (SS_MODE_V3_EXTERNAL_SS_MASK & tbl[i].ucSpreadSpectrumMode) ss_info->type.EXTERNAL = true; if (SS_MODE_V3_CENTRE_SPREAD_MASK & tbl[i].ucSpreadSpectrumMode) ss_info->type.CENTER_MODE = true; /* Older VBIOS (in field) always provides SS percentage in 0.01% * units set Divider to 100 */ ss_info->spread_percentage_divider = 100; /* #define SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK 0x10 */ if (SS_MODE_V3_PERCENTAGE_DIV_BY_1000_MASK & tbl[i].ucSpreadSpectrumMode) ss_info->spread_percentage_divider = 1000; ss_info->type.STEP_AND_DELAY_INFO = false; /* convert [10KHz] into [KHz] */ ss_info->target_clock_range = le32_to_cpu(tbl[i].ulTargetClockRange) * 10; ss_info->spread_spectrum_percentage = (uint32_t)le16_to_cpu(tbl[i].usSpreadSpectrumPercentage); ss_info->spread_spectrum_range = (uint32_t)(le16_to_cpu(tbl[i].usSpreadRateIn10Hz) * 10); return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static enum bp_result bios_parser_transmitter_control( struct dc_bios *dcb, struct bp_transmitter_control *cntl) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.transmitter_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.transmitter_control(bp, cntl); } static enum bp_result bios_parser_encoder_control( struct dc_bios *dcb, struct bp_encoder_control *cntl) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.dig_encoder_control) return BP_RESULT_FAILURE; return bp->cmd_tbl.dig_encoder_control(bp, cntl); } static enum bp_result bios_parser_adjust_pixel_clock( struct dc_bios *dcb, struct bp_adjust_pixel_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.adjust_display_pll) return BP_RESULT_FAILURE; return bp->cmd_tbl.adjust_display_pll(bp, bp_params); } static enum bp_result bios_parser_set_pixel_clock( struct dc_bios *dcb, struct bp_pixel_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_pixel_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_pixel_clock(bp, bp_params); } static enum bp_result bios_parser_set_dce_clock( struct dc_bios *dcb, struct bp_set_dce_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_dce_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_dce_clock(bp, bp_params); } static enum bp_result bios_parser_enable_spread_spectrum_on_ppll( struct dc_bios *dcb, struct bp_spread_spectrum_parameters *bp_params, bool enable) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_spread_spectrum_on_ppll) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_spread_spectrum_on_ppll( bp, bp_params, enable); } static enum bp_result bios_parser_program_crtc_timing( struct dc_bios *dcb, struct bp_hw_crtc_timing_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.set_crtc_timing) return BP_RESULT_FAILURE; return bp->cmd_tbl.set_crtc_timing(bp, bp_params); } static enum bp_result bios_parser_program_display_engine_pll( struct dc_bios *dcb, struct bp_pixel_clock_parameters *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.program_clock) return BP_RESULT_FAILURE; return bp->cmd_tbl.program_clock(bp, bp_params); } static enum bp_result bios_parser_enable_crtc( struct dc_bios *dcb, enum controller_id id, bool enable) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_crtc) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_crtc(bp, id, enable); } static enum bp_result bios_parser_crtc_source_select( struct dc_bios *dcb, struct bp_crtc_source_select *bp_params) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.select_crtc_source) return BP_RESULT_FAILURE; return bp->cmd_tbl.select_crtc_source(bp, bp_params); } static enum bp_result bios_parser_enable_disp_power_gating( struct dc_bios *dcb, enum controller_id controller_id, enum bp_pipe_control_action action) { struct bios_parser *bp = BP_FROM_DCB(dcb); if (!bp->cmd_tbl.enable_disp_power_gating) return BP_RESULT_FAILURE; return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id, action); } static bool bios_parser_is_device_id_supported( struct dc_bios *dcb, struct device_id id) { struct bios_parser *bp = BP_FROM_DCB(dcb); uint32_t mask = get_support_mask_for_device_id(id); return (le16_to_cpu(bp->object_info_tbl.v1_1->usDeviceSupport) & mask) != 0; } static enum bp_result bios_parser_crt_control( struct dc_bios *dcb, enum engine_id engine_id, bool enable, uint32_t pixel_clock) { struct bios_parser *bp = BP_FROM_DCB(dcb); uint8_t standard; if (!bp->cmd_tbl.dac1_encoder_control && engine_id == ENGINE_ID_DACA) return BP_RESULT_FAILURE; if (!bp->cmd_tbl.dac2_encoder_control && engine_id == ENGINE_ID_DACB) return BP_RESULT_FAILURE; /* validate params */ switch (engine_id) { case ENGINE_ID_DACA: case ENGINE_ID_DACB: break; default: /* unsupported engine */ return BP_RESULT_FAILURE; } standard = ATOM_DAC1_PS2; /* == ATOM_DAC2_PS2 */ if (enable) { if (engine_id == ENGINE_ID_DACA) { bp->cmd_tbl.dac1_encoder_control(bp, enable, pixel_clock, standard); if (bp->cmd_tbl.dac1_output_control != NULL) bp->cmd_tbl.dac1_output_control(bp, enable); } else { bp->cmd_tbl.dac2_encoder_control(bp, enable, pixel_clock, standard); if (bp->cmd_tbl.dac2_output_control != NULL) bp->cmd_tbl.dac2_output_control(bp, enable); } } else { if (engine_id == ENGINE_ID_DACA) { if (bp->cmd_tbl.dac1_output_control != NULL) bp->cmd_tbl.dac1_output_control(bp, enable); bp->cmd_tbl.dac1_encoder_control(bp, enable, pixel_clock, standard); } else { if (bp->cmd_tbl.dac2_output_control != NULL) bp->cmd_tbl.dac2_output_control(bp, enable); bp->cmd_tbl.dac2_encoder_control(bp, enable, pixel_clock, standard); } } return BP_RESULT_OK; } static ATOM_HPD_INT_RECORD *get_hpd_record(struct bios_parser *bp, ATOM_OBJECT *object) { ATOM_COMMON_RECORD_HEADER *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return NULL; if (LAST_RECORD_TYPE == header->ucRecordType || !header->ucRecordSize) break; if (ATOM_HPD_INT_RECORD_TYPE == header->ucRecordType && sizeof(ATOM_HPD_INT_RECORD) <= header->ucRecordSize) return (ATOM_HPD_INT_RECORD *) header; offset += header->ucRecordSize; } return NULL; } /** * Get I2C information of input object id * * search all records to find the ATOM_I2C_RECORD_TYPE record IR */ static ATOM_I2C_RECORD *get_i2c_record( struct bios_parser *bp, ATOM_OBJECT *object) { uint32_t offset; ATOM_COMMON_RECORD_HEADER *record_header; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { record_header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!record_header) return NULL; if (LAST_RECORD_TYPE == record_header->ucRecordType || 0 == record_header->ucRecordSize) break; if (ATOM_I2C_RECORD_TYPE == record_header->ucRecordType && sizeof(ATOM_I2C_RECORD) <= record_header->ucRecordSize) { return (ATOM_I2C_RECORD *)record_header; } offset += record_header->ucRecordSize; } return NULL; } static enum bp_result get_ss_info_from_ss_info_table( struct bios_parser *bp, uint32_t id, struct spread_spectrum_info *ss_info); static enum bp_result get_ss_info_from_tbl( struct bios_parser *bp, uint32_t id, struct spread_spectrum_info *ss_info); /** * bios_parser_get_spread_spectrum_info * Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or * ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info * ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info ver 3.1, * there is only one entry for each signal /ss id. However, there is * no planning of supporting multiple spread Sprectum entry for EverGreen * @param [in] this * @param [in] signal, ASSignalType to be converted to info index * @param [in] index, number of entries that match the converted info index * @param [out] ss_info, sprectrum information structure, * @return Bios parser result code */ static enum bp_result bios_parser_get_spread_spectrum_info( struct dc_bios *dcb, enum as_signal_type signal, uint32_t index, struct spread_spectrum_info *ss_info) { struct bios_parser *bp = BP_FROM_DCB(dcb); enum bp_result result = BP_RESULT_UNSUPPORTED; uint32_t clk_id_ss = 0; ATOM_COMMON_TABLE_HEADER *header; struct atom_data_revision tbl_revision; if (!ss_info) /* check for bad input */ return BP_RESULT_BADINPUT; /* signal translation */ clk_id_ss = signal_to_ss_id(signal); if (!DATA_TABLES(ASIC_InternalSS_Info)) if (!index) return get_ss_info_from_ss_info_table(bp, clk_id_ss, ss_info); header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(ASIC_InternalSS_Info)); get_atom_data_table_revision(header, &tbl_revision); switch (tbl_revision.major) { case 2: switch (tbl_revision.minor) { case 1: /* there can not be more then one entry for Internal * SS Info table version 2.1 */ if (!index) return get_ss_info_from_tbl(bp, clk_id_ss, ss_info); break; default: break; } break; case 3: switch (tbl_revision.minor) { case 1: return get_ss_info_v3_1(bp, clk_id_ss, index, ss_info); default: break; } break; default: break; } /* there can not be more then one entry for SS Info table */ return result; } static enum bp_result get_ss_info_from_internal_ss_info_tbl_V2_1( struct bios_parser *bp, uint32_t id, struct spread_spectrum_info *info); /** * get_ss_info_from_table * Get spread sprectrum information from the ASIC_InternalSS_Info Ver 2.1 or * SS_Info table from the VBIOS * There can not be more than 1 entry for ASIC_InternalSS_Info Ver 2.1 or * SS_Info. * * @param this * @param id, spread sprectrum info index * @param pSSinfo, sprectrum information structure, * @return Bios parser result code */ static enum bp_result get_ss_info_from_tbl( struct bios_parser *bp, uint32_t id, struct spread_spectrum_info *ss_info) { if (!ss_info) /* check for bad input, if ss_info is not NULL */ return BP_RESULT_BADINPUT; /* for SS_Info table only support DP and LVDS */ if (id == ASIC_INTERNAL_SS_ON_DP || id == ASIC_INTERNAL_SS_ON_LVDS) return get_ss_info_from_ss_info_table(bp, id, ss_info); else return get_ss_info_from_internal_ss_info_tbl_V2_1(bp, id, ss_info); } /** * get_ss_info_from_internal_ss_info_tbl_V2_1 * Get spread sprectrum information from the ASIC_InternalSS_Info table Ver 2.1 * from the VBIOS * There will not be multiple entry for Ver 2.1 * * @param id, spread sprectrum info index * @param pSSinfo, sprectrum information structure, * @return Bios parser result code */ static enum bp_result get_ss_info_from_internal_ss_info_tbl_V2_1( struct bios_parser *bp, uint32_t id, struct spread_spectrum_info *info) { enum bp_result result = BP_RESULT_UNSUPPORTED; ATOM_ASIC_INTERNAL_SS_INFO_V2 *header; ATOM_ASIC_SS_ASSIGNMENT_V2 *tbl; uint32_t tbl_size, i; if (!DATA_TABLES(ASIC_InternalSS_Info)) return result; header = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V2, DATA_TABLES(ASIC_InternalSS_Info)); memset(info, 0, sizeof(struct spread_spectrum_info)); tbl_size = (le16_to_cpu(header->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2); tbl = (ATOM_ASIC_SS_ASSIGNMENT_V2 *) &(header->asSpreadSpectrum[0]); for (i = 0; i < tbl_size; i++) { result = BP_RESULT_NORECORD; if (tbl[i].ucClockIndication != (uint8_t)id) continue; if (ATOM_EXTERNAL_SS_MASK & tbl[i].ucSpreadSpectrumMode) { info->type.EXTERNAL = true; } if (ATOM_SS_CENTRE_SPREAD_MODE_MASK & tbl[i].ucSpreadSpectrumMode) { info->type.CENTER_MODE = true; } info->type.STEP_AND_DELAY_INFO = false; /* convert [10KHz] into [KHz] */ info->target_clock_range = le32_to_cpu(tbl[i].ulTargetClockRange) * 10; info->spread_spectrum_percentage = (uint32_t)le16_to_cpu(tbl[i].usSpreadSpectrumPercentage); info->spread_spectrum_range = (uint32_t)(le16_to_cpu(tbl[i].usSpreadRateIn10Hz) * 10); result = BP_RESULT_OK; break; } return result; } /** * get_ss_info_from_ss_info_table * Get spread sprectrum information from the SS_Info table from the VBIOS * if the pointer to info is NULL, indicate the caller what to know the number * of entries that matches the id * for, the SS_Info table, there should not be more than 1 entry match. * * @param [in] id, spread sprectrum id * @param [out] pSSinfo, sprectrum information structure, * @return Bios parser result code */ static enum bp_result get_ss_info_from_ss_info_table( struct bios_parser *bp, uint32_t id, struct spread_spectrum_info *ss_info) { enum bp_result result = BP_RESULT_UNSUPPORTED; ATOM_SPREAD_SPECTRUM_INFO *tbl; ATOM_COMMON_TABLE_HEADER *header; uint32_t table_size; uint32_t i; uint32_t id_local = SS_ID_UNKNOWN; struct atom_data_revision revision; /* exist of the SS_Info table */ /* check for bad input, pSSinfo can not be NULL */ if (!DATA_TABLES(SS_Info) || !ss_info) return result; header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(SS_Info)); get_atom_data_table_revision(header, &revision); tbl = GET_IMAGE(ATOM_SPREAD_SPECTRUM_INFO, DATA_TABLES(SS_Info)); if (1 != revision.major || 2 > revision.minor) return result; /* have to convert from Internal_SS format to SS_Info format */ switch (id) { case ASIC_INTERNAL_SS_ON_DP: id_local = SS_ID_DP1; break; case ASIC_INTERNAL_SS_ON_LVDS: { struct embedded_panel_info panel_info; if (bios_parser_get_embedded_panel_info(&bp->base, &panel_info) == BP_RESULT_OK) id_local = panel_info.ss_id; break; } default: break; } if (id_local == SS_ID_UNKNOWN) return result; table_size = (le16_to_cpu(tbl->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT); for (i = 0; i < table_size; i++) { if (id_local != (uint32_t)tbl->asSS_Info[i].ucSS_Id) continue; memset(ss_info, 0, sizeof(struct spread_spectrum_info)); if (ATOM_EXTERNAL_SS_MASK & tbl->asSS_Info[i].ucSpreadSpectrumType) ss_info->type.EXTERNAL = true; if (ATOM_SS_CENTRE_SPREAD_MODE_MASK & tbl->asSS_Info[i].ucSpreadSpectrumType) ss_info->type.CENTER_MODE = true; ss_info->type.STEP_AND_DELAY_INFO = true; ss_info->spread_spectrum_percentage = (uint32_t)le16_to_cpu(tbl->asSS_Info[i].usSpreadSpectrumPercentage); ss_info->step_and_delay_info.step = tbl->asSS_Info[i].ucSS_Step; ss_info->step_and_delay_info.delay = tbl->asSS_Info[i].ucSS_Delay; ss_info->step_and_delay_info.recommended_ref_div = tbl->asSS_Info[i].ucRecommendedRef_Div; ss_info->spread_spectrum_range = (uint32_t)tbl->asSS_Info[i].ucSS_Range * 10000; /* there will be only one entry for each display type in SS_info * table */ result = BP_RESULT_OK; break; } return result; } static enum bp_result get_embedded_panel_info_v1_2( struct bios_parser *bp, struct embedded_panel_info *info); static enum bp_result get_embedded_panel_info_v1_3( struct bios_parser *bp, struct embedded_panel_info *info); static enum bp_result bios_parser_get_embedded_panel_info( struct dc_bios *dcb, struct embedded_panel_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_COMMON_TABLE_HEADER *hdr; if (!DATA_TABLES(LCD_Info)) return BP_RESULT_FAILURE; hdr = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(LCD_Info)); if (!hdr) return BP_RESULT_BADBIOSTABLE; switch (hdr->ucTableFormatRevision) { case 1: switch (hdr->ucTableContentRevision) { case 0: case 1: case 2: return get_embedded_panel_info_v1_2(bp, info); case 3: return get_embedded_panel_info_v1_3(bp, info); default: break; } default: break; } return BP_RESULT_FAILURE; } static enum bp_result get_embedded_panel_info_v1_2( struct bios_parser *bp, struct embedded_panel_info *info) { ATOM_LVDS_INFO_V12 *lvds; if (!info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(LVDS_Info)) return BP_RESULT_UNSUPPORTED; lvds = GET_IMAGE(ATOM_LVDS_INFO_V12, DATA_TABLES(LVDS_Info)); if (!lvds) return BP_RESULT_BADBIOSTABLE; if (1 != lvds->sHeader.ucTableFormatRevision || 2 > lvds->sHeader.ucTableContentRevision) return BP_RESULT_UNSUPPORTED; memset(info, 0, sizeof(struct embedded_panel_info)); /* We need to convert from 10KHz units into KHz units*/ info->lcd_timing.pixel_clk = le16_to_cpu(lvds->sLCDTiming.usPixClk) * 10; /* usHActive does not include borders, according to VBIOS team*/ info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->sLCDTiming.usHActive); /* usHBlanking_Time includes borders, so we should really be subtracting * borders duing this translation, but LVDS generally*/ /* doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders*/ info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->sLCDTiming.usHBlanking_Time); /* usVActive does not include borders, according to VBIOS team*/ info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->sLCDTiming.usVActive); /* usVBlanking_Time includes borders, so we should really be subtracting * borders duing this translation, but LVDS generally*/ /* doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders*/ info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->sLCDTiming.usVBlanking_Time); info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->sLCDTiming.usHSyncOffset); info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->sLCDTiming.usHSyncWidth); info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->sLCDTiming.usVSyncOffset); info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->sLCDTiming.usVSyncWidth); info->lcd_timing.horizontal_border = lvds->sLCDTiming.ucHBorder; info->lcd_timing.vertical_border = lvds->sLCDTiming.ucVBorder; info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HorizontalCutOff; info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HSyncPolarity; info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VSyncPolarity; info->lcd_timing.misc_info.VERTICAL_CUT_OFF = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VerticalCutOff; info->lcd_timing.misc_info.H_REPLICATION_BY2 = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.H_ReplicationBy2; info->lcd_timing.misc_info.V_REPLICATION_BY2 = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.V_ReplicationBy2; info->lcd_timing.misc_info.COMPOSITE_SYNC = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.CompositeSync; info->lcd_timing.misc_info.INTERLACE = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.Interlace; info->lcd_timing.misc_info.DOUBLE_CLOCK = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.DoubleClock; info->ss_id = lvds->ucSS_Id; { uint8_t rr = le16_to_cpu(lvds->usSupportedRefreshRate); /* Get minimum supported refresh rate*/ if (SUPPORTED_LCD_REFRESHRATE_30Hz & rr) info->supported_rr.REFRESH_RATE_30HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_40Hz & rr) info->supported_rr.REFRESH_RATE_40HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_48Hz & rr) info->supported_rr.REFRESH_RATE_48HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_50Hz & rr) info->supported_rr.REFRESH_RATE_50HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_60Hz & rr) info->supported_rr.REFRESH_RATE_60HZ = 1; } /*Drr panel support can be reported by VBIOS*/ if (LCDPANEL_CAP_DRR_SUPPORTED & lvds->ucLCDPanel_SpecialHandlingCap) info->drr_enabled = 1; if (ATOM_PANEL_MISC_DUAL & lvds->ucLVDS_Misc) info->lcd_timing.misc_info.DOUBLE_CLOCK = true; if (ATOM_PANEL_MISC_888RGB & lvds->ucLVDS_Misc) info->lcd_timing.misc_info.RGB888 = true; info->lcd_timing.misc_info.GREY_LEVEL = (uint32_t) (ATOM_PANEL_MISC_GREY_LEVEL & lvds->ucLVDS_Misc) >> ATOM_PANEL_MISC_GREY_LEVEL_SHIFT; if (ATOM_PANEL_MISC_SPATIAL & lvds->ucLVDS_Misc) info->lcd_timing.misc_info.SPATIAL = true; if (ATOM_PANEL_MISC_TEMPORAL & lvds->ucLVDS_Misc) info->lcd_timing.misc_info.TEMPORAL = true; if (ATOM_PANEL_MISC_API_ENABLED & lvds->ucLVDS_Misc) info->lcd_timing.misc_info.API_ENABLED = true; return BP_RESULT_OK; } static enum bp_result get_embedded_panel_info_v1_3( struct bios_parser *bp, struct embedded_panel_info *info) { ATOM_LCD_INFO_V13 *lvds; if (!info) return BP_RESULT_BADINPUT; if (!DATA_TABLES(LCD_Info)) return BP_RESULT_UNSUPPORTED; lvds = GET_IMAGE(ATOM_LCD_INFO_V13, DATA_TABLES(LCD_Info)); if (!lvds) return BP_RESULT_BADBIOSTABLE; if (!((1 == lvds->sHeader.ucTableFormatRevision) && (3 <= lvds->sHeader.ucTableContentRevision))) return BP_RESULT_UNSUPPORTED; memset(info, 0, sizeof(struct embedded_panel_info)); /* We need to convert from 10KHz units into KHz units */ info->lcd_timing.pixel_clk = le16_to_cpu(lvds->sLCDTiming.usPixClk) * 10; /* usHActive does not include borders, according to VBIOS team */ info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->sLCDTiming.usHActive); /* usHBlanking_Time includes borders, so we should really be subtracting * borders duing this translation, but LVDS generally*/ /* doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders*/ info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->sLCDTiming.usHBlanking_Time); /* usVActive does not include borders, according to VBIOS team*/ info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->sLCDTiming.usVActive); /* usVBlanking_Time includes borders, so we should really be subtracting * borders duing this translation, but LVDS generally*/ /* doesn't have borders, so we should be okay leaving this as is for * now. May need to revisit if we ever have LVDS with borders*/ info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->sLCDTiming.usVBlanking_Time); info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->sLCDTiming.usHSyncOffset); info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->sLCDTiming.usHSyncWidth); info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->sLCDTiming.usVSyncOffset); info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->sLCDTiming.usVSyncWidth); info->lcd_timing.horizontal_border = lvds->sLCDTiming.ucHBorder; info->lcd_timing.vertical_border = lvds->sLCDTiming.ucVBorder; info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HorizontalCutOff; info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) lvds->sLCDTiming.susModeMiscInfo.sbfAccess.HSyncPolarity; info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VSyncPolarity; info->lcd_timing.misc_info.VERTICAL_CUT_OFF = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.VerticalCutOff; info->lcd_timing.misc_info.H_REPLICATION_BY2 = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.H_ReplicationBy2; info->lcd_timing.misc_info.V_REPLICATION_BY2 = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.V_ReplicationBy2; info->lcd_timing.misc_info.COMPOSITE_SYNC = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.CompositeSync; info->lcd_timing.misc_info.INTERLACE = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.Interlace; info->lcd_timing.misc_info.DOUBLE_CLOCK = lvds->sLCDTiming.susModeMiscInfo.sbfAccess.DoubleClock; info->ss_id = lvds->ucSS_Id; /* Drr panel support can be reported by VBIOS*/ if (LCDPANEL_CAP_V13_DRR_SUPPORTED & lvds->ucLCDPanel_SpecialHandlingCap) info->drr_enabled = 1; /* Get supported refresh rate*/ if (info->drr_enabled == 1) { uint8_t min_rr = lvds->sRefreshRateSupport.ucMinRefreshRateForDRR; uint8_t rr = lvds->sRefreshRateSupport.ucSupportedRefreshRate; if (min_rr != 0) { if (SUPPORTED_LCD_REFRESHRATE_30Hz & min_rr) info->supported_rr.REFRESH_RATE_30HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_40Hz & min_rr) info->supported_rr.REFRESH_RATE_40HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_48Hz & min_rr) info->supported_rr.REFRESH_RATE_48HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_50Hz & min_rr) info->supported_rr.REFRESH_RATE_50HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_60Hz & min_rr) info->supported_rr.REFRESH_RATE_60HZ = 1; } else { if (SUPPORTED_LCD_REFRESHRATE_30Hz & rr) info->supported_rr.REFRESH_RATE_30HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_40Hz & rr) info->supported_rr.REFRESH_RATE_40HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_48Hz & rr) info->supported_rr.REFRESH_RATE_48HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_50Hz & rr) info->supported_rr.REFRESH_RATE_50HZ = 1; else if (SUPPORTED_LCD_REFRESHRATE_60Hz & rr) info->supported_rr.REFRESH_RATE_60HZ = 1; } } if (ATOM_PANEL_MISC_V13_DUAL & lvds->ucLCD_Misc) info->lcd_timing.misc_info.DOUBLE_CLOCK = true; if (ATOM_PANEL_MISC_V13_8BIT_PER_COLOR & lvds->ucLCD_Misc) info->lcd_timing.misc_info.RGB888 = true; info->lcd_timing.misc_info.GREY_LEVEL = (uint32_t) (ATOM_PANEL_MISC_V13_GREY_LEVEL & lvds->ucLCD_Misc) >> ATOM_PANEL_MISC_V13_GREY_LEVEL_SHIFT; return BP_RESULT_OK; } /** * bios_parser_get_encoder_cap_info * * @brief * Get encoder capability information of input object id * * @param object_id, Object id * @param object_id, encoder cap information structure * * @return Bios parser result code * */ static enum bp_result bios_parser_get_encoder_cap_info( struct dc_bios *dcb, struct graphics_object_id object_id, struct bp_encoder_cap_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_OBJECT *object; ATOM_ENCODER_CAP_RECORD_V2 *record = NULL; if (!info) return BP_RESULT_BADINPUT; object = get_bios_object(bp, object_id); if (!object) return BP_RESULT_BADINPUT; record = get_encoder_cap_record(bp, object); if (!record) return BP_RESULT_NORECORD; info->DP_HBR2_EN = record->usHBR2En; info->DP_HBR3_EN = record->usHBR3En; info->HDMI_6GB_EN = record->usHDMI6GEn; return BP_RESULT_OK; } /** * get_encoder_cap_record * * @brief * Get encoder cap record for the object * * @param object, ATOM object * * @return atom encoder cap record * * @note * search all records to find the ATOM_ENCODER_CAP_RECORD_V2 record */ static ATOM_ENCODER_CAP_RECORD_V2 *get_encoder_cap_record( struct bios_parser *bp, ATOM_OBJECT *object) { ATOM_COMMON_RECORD_HEADER *header; uint32_t offset; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return NULL; offset += header->ucRecordSize; if (LAST_RECORD_TYPE == header->ucRecordType || !header->ucRecordSize) break; if (ATOM_ENCODER_CAP_RECORD_TYPE != header->ucRecordType) continue; if (sizeof(ATOM_ENCODER_CAP_RECORD_V2) <= header->ucRecordSize) return (ATOM_ENCODER_CAP_RECORD_V2 *)header; } return NULL; } static uint32_t get_ss_entry_number( struct bios_parser *bp, uint32_t id); static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_v2_1( struct bios_parser *bp, uint32_t id); static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_V3_1( struct bios_parser *bp, uint32_t id); static uint32_t get_ss_entry_number_from_ss_info_tbl( struct bios_parser *bp, uint32_t id); /** * BiosParserObject::GetNumberofSpreadSpectrumEntry * Get Number of SpreadSpectrum Entry from the ASIC_InternalSS_Info table from * the VBIOS that match the SSid (to be converted from signal) * * @param[in] signal, ASSignalType to be converted to SSid * @return number of SS Entry that match the signal */ static uint32_t bios_parser_get_ss_entry_number( struct dc_bios *dcb, enum as_signal_type signal) { struct bios_parser *bp = BP_FROM_DCB(dcb); uint32_t ss_id = 0; ATOM_COMMON_TABLE_HEADER *header; struct atom_data_revision revision; ss_id = signal_to_ss_id(signal); if (!DATA_TABLES(ASIC_InternalSS_Info)) return get_ss_entry_number_from_ss_info_tbl(bp, ss_id); header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(ASIC_InternalSS_Info)); get_atom_data_table_revision(header, &revision); switch (revision.major) { case 2: switch (revision.minor) { case 1: return get_ss_entry_number(bp, ss_id); default: break; } break; case 3: switch (revision.minor) { case 1: return get_ss_entry_number_from_internal_ss_info_tbl_V3_1( bp, ss_id); default: break; } break; default: break; } return 0; } /** * get_ss_entry_number_from_ss_info_tbl * Get Number of spread spectrum entry from the SS_Info table from the VBIOS. * * @note There can only be one entry for each id for SS_Info Table * * @param [in] id, spread spectrum id * @return number of SS Entry that match the id */ static uint32_t get_ss_entry_number_from_ss_info_tbl( struct bios_parser *bp, uint32_t id) { ATOM_SPREAD_SPECTRUM_INFO *tbl; ATOM_COMMON_TABLE_HEADER *header; uint32_t table_size; uint32_t i; uint32_t number = 0; uint32_t id_local = SS_ID_UNKNOWN; struct atom_data_revision revision; /* SS_Info table exist */ if (!DATA_TABLES(SS_Info)) return number; header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, DATA_TABLES(SS_Info)); get_atom_data_table_revision(header, &revision); tbl = GET_IMAGE(ATOM_SPREAD_SPECTRUM_INFO, DATA_TABLES(SS_Info)); if (1 != revision.major || 2 > revision.minor) return number; /* have to convert from Internal_SS format to SS_Info format */ switch (id) { case ASIC_INTERNAL_SS_ON_DP: id_local = SS_ID_DP1; break; case ASIC_INTERNAL_SS_ON_LVDS: { struct embedded_panel_info panel_info; if (bios_parser_get_embedded_panel_info(&bp->base, &panel_info) == BP_RESULT_OK) id_local = panel_info.ss_id; break; } default: break; } if (id_local == SS_ID_UNKNOWN) return number; table_size = (le16_to_cpu(tbl->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_SPREAD_SPECTRUM_ASSIGNMENT); for (i = 0; i < table_size; i++) if (id_local == (uint32_t)tbl->asSS_Info[i].ucSS_Id) { number = 1; break; } return number; } /** * get_ss_entry_number * Get spread sprectrum information from the ASIC_InternalSS_Info Ver 2.1 or * SS_Info table from the VBIOS * There can not be more than 1 entry for ASIC_InternalSS_Info Ver 2.1 or * SS_Info. * * @param id, spread sprectrum info index * @return Bios parser result code */ static uint32_t get_ss_entry_number(struct bios_parser *bp, uint32_t id) { if (id == ASIC_INTERNAL_SS_ON_DP || id == ASIC_INTERNAL_SS_ON_LVDS) return get_ss_entry_number_from_ss_info_tbl(bp, id); return get_ss_entry_number_from_internal_ss_info_tbl_v2_1(bp, id); } /** * get_ss_entry_number_from_internal_ss_info_tbl_v2_1 * Get NUmber of spread sprectrum entry from the ASIC_InternalSS_Info table * Ver 2.1 from the VBIOS * There will not be multiple entry for Ver 2.1 * * @param id, spread sprectrum info index * @return number of SS Entry that match the id */ static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_v2_1( struct bios_parser *bp, uint32_t id) { ATOM_ASIC_INTERNAL_SS_INFO_V2 *header_include; ATOM_ASIC_SS_ASSIGNMENT_V2 *tbl; uint32_t size; uint32_t i; if (!DATA_TABLES(ASIC_InternalSS_Info)) return 0; header_include = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V2, DATA_TABLES(ASIC_InternalSS_Info)); size = (le16_to_cpu(header_include->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V2); tbl = (ATOM_ASIC_SS_ASSIGNMENT_V2 *) &header_include->asSpreadSpectrum[0]; for (i = 0; i < size; i++) if (tbl[i].ucClockIndication == (uint8_t)id) return 1; return 0; } /** * get_ss_entry_number_from_internal_ss_info_table_V3_1 * Get Number of SpreadSpectrum Entry from the ASIC_InternalSS_Info table of * the VBIOS that matches id * * @param[in] id, spread sprectrum id * @return number of SS Entry that match the id */ static uint32_t get_ss_entry_number_from_internal_ss_info_tbl_V3_1( struct bios_parser *bp, uint32_t id) { uint32_t number = 0; ATOM_ASIC_INTERNAL_SS_INFO_V3 *header_include; ATOM_ASIC_SS_ASSIGNMENT_V3 *tbl; uint32_t size; uint32_t i; if (!DATA_TABLES(ASIC_InternalSS_Info)) return number; header_include = GET_IMAGE(ATOM_ASIC_INTERNAL_SS_INFO_V3, DATA_TABLES(ASIC_InternalSS_Info)); size = (le16_to_cpu(header_include->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_ASIC_SS_ASSIGNMENT_V3); tbl = (ATOM_ASIC_SS_ASSIGNMENT_V3 *) &header_include->asSpreadSpectrum[0]; for (i = 0; i < size; i++) if (tbl[i].ucClockIndication == (uint8_t)id) number++; return number; } /** * bios_parser_get_gpio_pin_info * Get GpioPin information of input gpio id * * @param gpio_id, GPIO ID * @param info, GpioPin information structure * @return Bios parser result code * @note * to get the GPIO PIN INFO, we need: * 1. get the GPIO_ID from other object table, see GetHPDInfo() * 2. in DATA_TABLE.GPIO_Pin_LUT, search all records, to get the registerA * offset/mask */ static enum bp_result bios_parser_get_gpio_pin_info( struct dc_bios *dcb, uint32_t gpio_id, struct gpio_pin_info *info) { struct bios_parser *bp = BP_FROM_DCB(dcb); ATOM_GPIO_PIN_LUT *header; uint32_t count = 0; uint32_t i = 0; if (!DATA_TABLES(GPIO_Pin_LUT)) return BP_RESULT_BADBIOSTABLE; header = GET_IMAGE(ATOM_GPIO_PIN_LUT, DATA_TABLES(GPIO_Pin_LUT)); if (!header) return BP_RESULT_BADBIOSTABLE; if (sizeof(ATOM_COMMON_TABLE_HEADER) + sizeof(ATOM_GPIO_PIN_LUT) > le16_to_cpu(header->sHeader.usStructureSize)) return BP_RESULT_BADBIOSTABLE; if (1 != header->sHeader.ucTableContentRevision) return BP_RESULT_UNSUPPORTED; count = (le16_to_cpu(header->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_PIN_ASSIGNMENT); for (i = 0; i < count; ++i) { if (header->asGPIO_Pin[i].ucGPIO_ID != gpio_id) continue; info->offset = (uint32_t) le16_to_cpu(header->asGPIO_Pin[i].usGpioPin_AIndex); info->offset_y = info->offset + 2; info->offset_en = info->offset + 1; info->offset_mask = info->offset - 1; info->mask = (uint32_t) (1 << header->asGPIO_Pin[i].ucGpioPinBitShift); info->mask_y = info->mask + 2; info->mask_en = info->mask + 1; info->mask_mask = info->mask - 1; return BP_RESULT_OK; } return BP_RESULT_NORECORD; } static enum bp_result get_gpio_i2c_info(struct bios_parser *bp, ATOM_I2C_RECORD *record, struct graphics_object_i2c_info *info) { ATOM_GPIO_I2C_INFO *header; uint32_t count = 0; if (!info) return BP_RESULT_BADINPUT; /* get the GPIO_I2C info */ if (!DATA_TABLES(GPIO_I2C_Info)) return BP_RESULT_BADBIOSTABLE; header = GET_IMAGE(ATOM_GPIO_I2C_INFO, DATA_TABLES(GPIO_I2C_Info)); if (!header) return BP_RESULT_BADBIOSTABLE; if (sizeof(ATOM_COMMON_TABLE_HEADER) + sizeof(ATOM_GPIO_I2C_ASSIGMENT) > le16_to_cpu(header->sHeader.usStructureSize)) return BP_RESULT_BADBIOSTABLE; if (1 != header->sHeader.ucTableContentRevision) return BP_RESULT_UNSUPPORTED; /* get data count */ count = (le16_to_cpu(header->sHeader.usStructureSize) - sizeof(ATOM_COMMON_TABLE_HEADER)) / sizeof(ATOM_GPIO_I2C_ASSIGMENT); if (count < record->sucI2cId.bfI2C_LineMux) return BP_RESULT_BADBIOSTABLE; /* get the GPIO_I2C_INFO */ info->i2c_hw_assist = record->sucI2cId.bfHW_Capable; info->i2c_line = record->sucI2cId.bfI2C_LineMux; info->i2c_engine_id = record->sucI2cId.bfHW_EngineID; info->i2c_slave_address = record->ucI2CAddr; info->gpio_info.clk_mask_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkMaskRegisterIndex); info->gpio_info.clk_en_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkEnRegisterIndex); info->gpio_info.clk_y_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkY_RegisterIndex); info->gpio_info.clk_a_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usClkA_RegisterIndex); info->gpio_info.data_mask_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataMaskRegisterIndex); info->gpio_info.data_en_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataEnRegisterIndex); info->gpio_info.data_y_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataY_RegisterIndex); info->gpio_info.data_a_register_index = le16_to_cpu(header->asGPIO_Info[info->i2c_line].usDataA_RegisterIndex); info->gpio_info.clk_mask_shift = header->asGPIO_Info[info->i2c_line].ucClkMaskShift; info->gpio_info.clk_en_shift = header->asGPIO_Info[info->i2c_line].ucClkEnShift; info->gpio_info.clk_y_shift = header->asGPIO_Info[info->i2c_line].ucClkY_Shift; info->gpio_info.clk_a_shift = header->asGPIO_Info[info->i2c_line].ucClkA_Shift; info->gpio_info.data_mask_shift = header->asGPIO_Info[info->i2c_line].ucDataMaskShift; info->gpio_info.data_en_shift = header->asGPIO_Info[info->i2c_line].ucDataEnShift; info->gpio_info.data_y_shift = header->asGPIO_Info[info->i2c_line].ucDataY_Shift; info->gpio_info.data_a_shift = header->asGPIO_Info[info->i2c_line].ucDataA_Shift; return BP_RESULT_OK; } static bool dal_graphics_object_id_is_valid(struct graphics_object_id id) { bool rc = true; switch (id.type) { case OBJECT_TYPE_UNKNOWN: rc = false; break; case OBJECT_TYPE_GPU: case OBJECT_TYPE_ENGINE: /* do NOT check for id.id == 0 */ if (id.enum_id == ENUM_ID_UNKNOWN) rc = false; break; default: if (id.id == 0 || id.enum_id == ENUM_ID_UNKNOWN) rc = false; break; } return rc; } static bool dal_graphics_object_id_is_equal( struct graphics_object_id id1, struct graphics_object_id id2) { if (false == dal_graphics_object_id_is_valid(id1)) { dm_output_to_console( "%s: Warning: comparing invalid object 'id1'!\n", __func__); return false; } if (false == dal_graphics_object_id_is_valid(id2)) { dm_output_to_console( "%s: Warning: comparing invalid object 'id2'!\n", __func__); return false; } if (id1.id == id2.id && id1.enum_id == id2.enum_id && id1.type == id2.type) return true; return false; } static ATOM_OBJECT *get_bios_object(struct bios_parser *bp, struct graphics_object_id id) { uint32_t offset; ATOM_OBJECT_TABLE *tbl; uint32_t i; switch (id.type) { case OBJECT_TYPE_ENCODER: offset = le16_to_cpu(bp->object_info_tbl.v1_1->usEncoderObjectTableOffset); break; case OBJECT_TYPE_CONNECTOR: offset = le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset); break; case OBJECT_TYPE_ROUTER: offset = le16_to_cpu(bp->object_info_tbl.v1_1->usRouterObjectTableOffset); break; case OBJECT_TYPE_GENERIC: if (bp->object_info_tbl.revision.minor < 3) return NULL; offset = le16_to_cpu(bp->object_info_tbl.v1_3->usMiscObjectTableOffset); break; default: return NULL; } offset += bp->object_info_tbl_offset; tbl = GET_IMAGE(ATOM_OBJECT_TABLE, offset); if (!tbl) return NULL; for (i = 0; i < tbl->ucNumberOfObjects; i++) if (dal_graphics_object_id_is_equal(id, object_id_from_bios_object_id( le16_to_cpu(tbl->asObjects[i].usObjectID)))) return &tbl->asObjects[i]; return NULL; } static uint32_t get_dest_obj_list(struct bios_parser *bp, ATOM_OBJECT *object, uint16_t **id_list) { uint32_t offset; uint8_t *number; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return 0; } offset = le16_to_cpu(object->usSrcDstTableOffset) + bp->object_info_tbl_offset; number = GET_IMAGE(uint8_t, offset); if (!number) return 0; offset += sizeof(uint8_t); offset += sizeof(uint16_t) * (*number); number = GET_IMAGE(uint8_t, offset); if ((!number) || (!*number)) return 0; offset += sizeof(uint8_t); *id_list = (uint16_t *)bios_get_image(&bp->base, offset, *number * sizeof(uint16_t)); if (!*id_list) return 0; return *number; } static uint32_t get_src_obj_list(struct bios_parser *bp, ATOM_OBJECT *object, uint16_t **id_list) { uint32_t offset; uint8_t *number; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object id */ return 0; } offset = le16_to_cpu(object->usSrcDstTableOffset) + bp->object_info_tbl_offset; number = GET_IMAGE(uint8_t, offset); if (!number) return 0; offset += sizeof(uint8_t); *id_list = (uint16_t *)bios_get_image(&bp->base, offset, *number * sizeof(uint16_t)); if (!*id_list) return 0; return *number; } static uint32_t get_dst_number_from_object(struct bios_parser *bp, ATOM_OBJECT *object) { uint32_t offset; uint8_t *number; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid encoder object id*/ return 0; } offset = le16_to_cpu(object->usSrcDstTableOffset) + bp->object_info_tbl_offset; number = GET_IMAGE(uint8_t, offset); if (!number) return 0; offset += sizeof(uint8_t); offset += sizeof(uint16_t) * (*number); number = GET_IMAGE(uint8_t, offset); if (!number) return 0; return *number; } static struct device_id device_type_from_device_id(uint16_t device_id) { struct device_id result_device_id; switch (device_id) { case ATOM_DEVICE_LCD1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_LCD; result_device_id.enum_id = 1; break; case ATOM_DEVICE_LCD2_SUPPORT: result_device_id.device_type = DEVICE_TYPE_LCD; result_device_id.enum_id = 2; break; case ATOM_DEVICE_CRT1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_CRT; result_device_id.enum_id = 1; break; case ATOM_DEVICE_CRT2_SUPPORT: result_device_id.device_type = DEVICE_TYPE_CRT; result_device_id.enum_id = 2; break; case ATOM_DEVICE_DFP1_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 1; break; case ATOM_DEVICE_DFP2_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 2; break; case ATOM_DEVICE_DFP3_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 3; break; case ATOM_DEVICE_DFP4_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 4; break; case ATOM_DEVICE_DFP5_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 5; break; case ATOM_DEVICE_DFP6_SUPPORT: result_device_id.device_type = DEVICE_TYPE_DFP; result_device_id.enum_id = 6; break; default: BREAK_TO_DEBUGGER(); /* Invalid device Id */ result_device_id.device_type = DEVICE_TYPE_UNKNOWN; result_device_id.enum_id = 0; } return result_device_id; } static void get_atom_data_table_revision( ATOM_COMMON_TABLE_HEADER *atom_data_tbl, struct atom_data_revision *tbl_revision) { if (!tbl_revision) return; /* initialize the revision to 0 which is invalid revision */ tbl_revision->major = 0; tbl_revision->minor = 0; if (!atom_data_tbl) return; tbl_revision->major = (uint32_t) GET_DATA_TABLE_MAJOR_REVISION(atom_data_tbl); tbl_revision->minor = (uint32_t) GET_DATA_TABLE_MINOR_REVISION(atom_data_tbl); } static uint32_t signal_to_ss_id(enum as_signal_type signal) { uint32_t clk_id_ss = 0; switch (signal) { case AS_SIGNAL_TYPE_DVI: clk_id_ss = ASIC_INTERNAL_SS_ON_TMDS; break; case AS_SIGNAL_TYPE_HDMI: clk_id_ss = ASIC_INTERNAL_SS_ON_HDMI; break; case AS_SIGNAL_TYPE_LVDS: clk_id_ss = ASIC_INTERNAL_SS_ON_LVDS; break; case AS_SIGNAL_TYPE_DISPLAY_PORT: clk_id_ss = ASIC_INTERNAL_SS_ON_DP; break; case AS_SIGNAL_TYPE_GPU_PLL: clk_id_ss = ASIC_INTERNAL_GPUPLL_SS; break; default: break; } return clk_id_ss; } static uint32_t get_support_mask_for_device_id(struct device_id device_id) { enum dal_device_type device_type = device_id.device_type; uint32_t enum_id = device_id.enum_id; switch (device_type) { case DEVICE_TYPE_LCD: switch (enum_id) { case 1: return ATOM_DEVICE_LCD1_SUPPORT; case 2: return ATOM_DEVICE_LCD2_SUPPORT; default: break; } break; case DEVICE_TYPE_CRT: switch (enum_id) { case 1: return ATOM_DEVICE_CRT1_SUPPORT; case 2: return ATOM_DEVICE_CRT2_SUPPORT; default: break; } break; case DEVICE_TYPE_DFP: switch (enum_id) { case 1: return ATOM_DEVICE_DFP1_SUPPORT; case 2: return ATOM_DEVICE_DFP2_SUPPORT; case 3: return ATOM_DEVICE_DFP3_SUPPORT; case 4: return ATOM_DEVICE_DFP4_SUPPORT; case 5: return ATOM_DEVICE_DFP5_SUPPORT; case 6: return ATOM_DEVICE_DFP6_SUPPORT; default: break; } break; case DEVICE_TYPE_CV: switch (enum_id) { case 1: return ATOM_DEVICE_CV_SUPPORT; default: break; } break; case DEVICE_TYPE_TV: switch (enum_id) { case 1: return ATOM_DEVICE_TV1_SUPPORT; default: break; } break; default: break; }; /* Unidentified device ID, return empty support mask. */ return 0; } /** * HwContext interface for writing MM registers */ static bool i2c_read( struct bios_parser *bp, struct graphics_object_i2c_info *i2c_info, uint8_t *buffer, uint32_t length) { struct ddc *ddc; uint8_t offset[2] = { 0, 0 }; bool result = false; struct i2c_command cmd; struct gpio_ddc_hw_info hw_info = { i2c_info->i2c_hw_assist, i2c_info->i2c_line }; ddc = dal_gpio_create_ddc(bp->base.ctx->gpio_service, i2c_info->gpio_info.clk_a_register_index, (1 << i2c_info->gpio_info.clk_a_shift), &hw_info); if (!ddc) return result; /*Using SW engine */ cmd.engine = I2C_COMMAND_ENGINE_SW; cmd.speed = ddc->ctx->dc->caps.i2c_speed_in_khz; { struct i2c_payload payloads[] = { { .address = i2c_info->i2c_slave_address >> 1, .data = offset, .length = sizeof(offset), .write = true }, { .address = i2c_info->i2c_slave_address >> 1, .data = buffer, .length = length, .write = false } }; cmd.payloads = payloads; cmd.number_of_payloads = ARRAY_SIZE(payloads); /* TODO route this through drm i2c_adapter */ result = dal_i2caux_submit_i2c_command( ddc->ctx->i2caux, ddc, &cmd); } dal_gpio_destroy_ddc(&ddc); return result; } /** * Read external display connection info table through i2c. * validate the GUID and checksum. * * @return enum bp_result whether all data was sucessfully read */ static enum bp_result get_ext_display_connection_info( struct bios_parser *bp, ATOM_OBJECT *opm_object, ATOM_EXTERNAL_DISPLAY_CONNECTION_INFO *ext_display_connection_info_tbl) { bool config_tbl_present = false; ATOM_I2C_RECORD *i2c_record = NULL; uint32_t i = 0; if (opm_object == NULL) return BP_RESULT_BADINPUT; i2c_record = get_i2c_record(bp, opm_object); if (i2c_record != NULL) { ATOM_GPIO_I2C_INFO *gpio_i2c_header; struct graphics_object_i2c_info i2c_info; gpio_i2c_header = GET_IMAGE(ATOM_GPIO_I2C_INFO, bp->master_data_tbl->ListOfDataTables.GPIO_I2C_Info); if (NULL == gpio_i2c_header) return BP_RESULT_BADBIOSTABLE; if (get_gpio_i2c_info(bp, i2c_record, &i2c_info) != BP_RESULT_OK) return BP_RESULT_BADBIOSTABLE; if (i2c_read(bp, &i2c_info, (uint8_t *)ext_display_connection_info_tbl, sizeof(ATOM_EXTERNAL_DISPLAY_CONNECTION_INFO))) { config_tbl_present = true; } } /* Validate GUID */ if (config_tbl_present) for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; i++) { if (ext_display_connection_info_tbl->ucGuid[i] != ext_display_connection_guid[i]) { config_tbl_present = false; break; } } /* Validate checksum */ if (config_tbl_present) { uint8_t check_sum = 0; uint8_t *buf = (uint8_t *)ext_display_connection_info_tbl; for (i = 0; i < sizeof(ATOM_EXTERNAL_DISPLAY_CONNECTION_INFO); i++) { check_sum += buf[i]; } if (check_sum != 0) config_tbl_present = false; } if (config_tbl_present) return BP_RESULT_OK; else return BP_RESULT_FAILURE; } /* * Gets the first device ID in the same group as the given ID for enumerating. * For instance, if any DFP device ID is passed, returns the device ID for DFP1. * * The first device ID in the same group as the passed device ID, or 0 if no * matching device group found. */ static uint32_t enum_first_device_id(uint32_t dev_id) { /* Return the first in the group that this ID belongs to. */ if (dev_id & ATOM_DEVICE_CRT_SUPPORT) return ATOM_DEVICE_CRT1_SUPPORT; else if (dev_id & ATOM_DEVICE_DFP_SUPPORT) return ATOM_DEVICE_DFP1_SUPPORT; else if (dev_id & ATOM_DEVICE_LCD_SUPPORT) return ATOM_DEVICE_LCD1_SUPPORT; else if (dev_id & ATOM_DEVICE_TV_SUPPORT) return ATOM_DEVICE_TV1_SUPPORT; else if (dev_id & ATOM_DEVICE_CV_SUPPORT) return ATOM_DEVICE_CV_SUPPORT; /* No group found for this device ID. */ dm_error("%s: incorrect input %d\n", __func__, dev_id); /* No matching support flag for given device ID */ return 0; } /* * Gets the next device ID in the group for a given device ID. * * The current device ID being enumerated on. * * The next device ID in the group, or 0 if no device exists. */ static uint32_t enum_next_dev_id(uint32_t dev_id) { /* Get next device ID in the group. */ switch (dev_id) { case ATOM_DEVICE_CRT1_SUPPORT: return ATOM_DEVICE_CRT2_SUPPORT; case ATOM_DEVICE_LCD1_SUPPORT: return ATOM_DEVICE_LCD2_SUPPORT; case ATOM_DEVICE_DFP1_SUPPORT: return ATOM_DEVICE_DFP2_SUPPORT; case ATOM_DEVICE_DFP2_SUPPORT: return ATOM_DEVICE_DFP3_SUPPORT; case ATOM_DEVICE_DFP3_SUPPORT: return ATOM_DEVICE_DFP4_SUPPORT; case ATOM_DEVICE_DFP4_SUPPORT: return ATOM_DEVICE_DFP5_SUPPORT; case ATOM_DEVICE_DFP5_SUPPORT: return ATOM_DEVICE_DFP6_SUPPORT; } /* Done enumerating through devices. */ return 0; } /* * Returns the new device tag record for patched BIOS object. * * [IN] pExtDisplayPath - External display path to copy device tag from. * [IN] deviceSupport - Bit vector for device ID support flags. * [OUT] pDeviceTag - Device tag structure to fill with patched data. * * True if a compatible device ID was found, false otherwise. */ static bool get_patched_device_tag( struct bios_parser *bp, EXT_DISPLAY_PATH *ext_display_path, uint32_t device_support, ATOM_CONNECTOR_DEVICE_TAG *device_tag) { uint32_t dev_id; /* Use fallback behaviour if not supported. */ if (!bp->remap_device_tags) { device_tag->ulACPIDeviceEnum = cpu_to_le32((uint32_t) le16_to_cpu(ext_display_path->usDeviceACPIEnum)); device_tag->usDeviceID = cpu_to_le16(le16_to_cpu(ext_display_path->usDeviceTag)); return true; } /* Find the first unused in the same group. */ dev_id = enum_first_device_id(le16_to_cpu(ext_display_path->usDeviceTag)); while (dev_id != 0) { /* Assign this device ID if supported. */ if ((device_support & dev_id) != 0) { device_tag->ulACPIDeviceEnum = cpu_to_le32((uint32_t) le16_to_cpu(ext_display_path->usDeviceACPIEnum)); device_tag->usDeviceID = cpu_to_le16((USHORT) dev_id); return true; } dev_id = enum_next_dev_id(dev_id); } /* No compatible device ID found. */ return false; } /* * Adds a device tag to a BIOS object's device tag record if there is * matching device ID supported. * * pObject - Pointer to the BIOS object to add the device tag to. * pExtDisplayPath - Display path to retrieve base device ID from. * pDeviceSupport - Pointer to bit vector for supported device IDs. */ static void add_device_tag_from_ext_display_path( struct bios_parser *bp, ATOM_OBJECT *object, EXT_DISPLAY_PATH *ext_display_path, uint32_t *device_support) { /* Get device tag record for object. */ ATOM_CONNECTOR_DEVICE_TAG *device_tag = NULL; ATOM_CONNECTOR_DEVICE_TAG_RECORD *device_tag_record = NULL; enum bp_result result = bios_parser_get_device_tag_record( bp, object, &device_tag_record); if ((le16_to_cpu(ext_display_path->usDeviceTag) != CONNECTOR_OBJECT_ID_NONE) && (result == BP_RESULT_OK)) { uint8_t index; if ((device_tag_record->ucNumberOfDevice == 1) && (le16_to_cpu(device_tag_record->asDeviceTag[0].usDeviceID) == 0)) { /*Workaround bug in current VBIOS releases where * ucNumberOfDevice = 1 but there is no actual device * tag data. This w/a is temporary until the updated * VBIOS is distributed. */ device_tag_record->ucNumberOfDevice = device_tag_record->ucNumberOfDevice - 1; } /* Attempt to find a matching device ID. */ index = device_tag_record->ucNumberOfDevice; device_tag = &device_tag_record->asDeviceTag[index]; if (get_patched_device_tag( bp, ext_display_path, *device_support, device_tag)) { /* Update cached device support to remove assigned ID. */ *device_support &= ~le16_to_cpu(device_tag->usDeviceID); device_tag_record->ucNumberOfDevice++; } } } /* * Read out a single EXT_DISPLAY_PATH from the external display connection info * table. The specific entry in the table is determined by the enum_id passed * in. * * EXT_DISPLAY_PATH describing a single Configuration table entry */ #define INVALID_CONNECTOR 0xffff static EXT_DISPLAY_PATH *get_ext_display_path_entry( ATOM_EXTERNAL_DISPLAY_CONNECTION_INFO *config_table, uint32_t bios_object_id) { EXT_DISPLAY_PATH *ext_display_path; uint32_t ext_display_path_index = ((bios_object_id & ENUM_ID_MASK) >> ENUM_ID_SHIFT) - 1; if (ext_display_path_index >= MAX_NUMBER_OF_EXT_DISPLAY_PATH) return NULL; ext_display_path = &config_table->sPath[ext_display_path_index]; if (le16_to_cpu(ext_display_path->usDeviceConnector) == INVALID_CONNECTOR) ext_display_path->usDeviceConnector = cpu_to_le16(0); return ext_display_path; } /* * Get AUX/DDC information of input object id * * search all records to find the ATOM_CONNECTOR_AUXDDC_LUT_RECORD_TYPE record * IR */ static ATOM_CONNECTOR_AUXDDC_LUT_RECORD *get_ext_connector_aux_ddc_lut_record( struct bios_parser *bp, ATOM_OBJECT *object) { uint32_t offset; ATOM_COMMON_RECORD_HEADER *header; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return NULL; if (LAST_RECORD_TYPE == header->ucRecordType || 0 == header->ucRecordSize) break; if (ATOM_CONNECTOR_AUXDDC_LUT_RECORD_TYPE == header->ucRecordType && sizeof(ATOM_CONNECTOR_AUXDDC_LUT_RECORD) <= header->ucRecordSize) return (ATOM_CONNECTOR_AUXDDC_LUT_RECORD *)(header); offset += header->ucRecordSize; } return NULL; } /* * Get AUX/DDC information of input object id * * search all records to find the ATOM_CONNECTOR_AUXDDC_LUT_RECORD_TYPE record * IR */ static ATOM_CONNECTOR_HPDPIN_LUT_RECORD *get_ext_connector_hpd_pin_lut_record( struct bios_parser *bp, ATOM_OBJECT *object) { uint32_t offset; ATOM_COMMON_RECORD_HEADER *header; if (!object) { BREAK_TO_DEBUGGER(); /* Invalid object */ return NULL; } offset = le16_to_cpu(object->usRecordOffset) + bp->object_info_tbl_offset; for (;;) { header = GET_IMAGE(ATOM_COMMON_RECORD_HEADER, offset); if (!header) return NULL; if (LAST_RECORD_TYPE == header->ucRecordType || 0 == header->ucRecordSize) break; if (ATOM_CONNECTOR_HPDPIN_LUT_RECORD_TYPE == header->ucRecordType && sizeof(ATOM_CONNECTOR_HPDPIN_LUT_RECORD) <= header->ucRecordSize) return (ATOM_CONNECTOR_HPDPIN_LUT_RECORD *)header; offset += header->ucRecordSize; } return NULL; } /* * Check whether we need to patch the VBIOS connector info table with * data from an external display connection info table. This is * necessary to support MXM boards with an OPM (output personality * module). With these designs, the VBIOS connector info table * specifies an MXM_CONNECTOR with a unique ID. The driver retrieves * the external connection info table through i2c and then looks up the * connector ID to find the real connector type (e.g. DFP1). * */ static enum bp_result patch_bios_image_from_ext_display_connection_info( struct bios_parser *bp) { ATOM_OBJECT_TABLE *connector_tbl; uint32_t connector_tbl_offset; struct graphics_object_id object_id; ATOM_OBJECT *object; ATOM_EXTERNAL_DISPLAY_CONNECTION_INFO ext_display_connection_info_tbl; EXT_DISPLAY_PATH *ext_display_path; ATOM_CONNECTOR_AUXDDC_LUT_RECORD *aux_ddc_lut_record = NULL; ATOM_I2C_RECORD *i2c_record = NULL; ATOM_CONNECTOR_HPDPIN_LUT_RECORD *hpd_pin_lut_record = NULL; ATOM_HPD_INT_RECORD *hpd_record = NULL; ATOM_OBJECT_TABLE *encoder_table; uint32_t encoder_table_offset; ATOM_OBJECT *opm_object = NULL; uint32_t i = 0; struct graphics_object_id opm_object_id = dal_graphics_object_id_init( GENERIC_ID_MXM_OPM, ENUM_ID_1, OBJECT_TYPE_GENERIC); ATOM_CONNECTOR_DEVICE_TAG_RECORD *dev_tag_record; uint32_t cached_device_support = le16_to_cpu(bp->object_info_tbl.v1_1->usDeviceSupport); uint32_t dst_number; uint16_t *dst_object_id_list; opm_object = get_bios_object(bp, opm_object_id); if (!opm_object) return BP_RESULT_UNSUPPORTED; memset(&ext_display_connection_info_tbl, 0, sizeof(ATOM_EXTERNAL_DISPLAY_CONNECTION_INFO)); connector_tbl_offset = bp->object_info_tbl_offset + le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset); connector_tbl = GET_IMAGE(ATOM_OBJECT_TABLE, connector_tbl_offset); /* Read Connector info table from EEPROM through i2c */ if (get_ext_display_connection_info(bp, opm_object, &ext_display_connection_info_tbl) != BP_RESULT_OK) { dm_logger_write(bp->base.ctx->logger, LOG_WARNING, "%s: Failed to read Connection Info Table", __func__); return BP_RESULT_UNSUPPORTED; } /* Get pointer to AUX/DDC and HPD LUTs */ aux_ddc_lut_record = get_ext_connector_aux_ddc_lut_record(bp, opm_object); hpd_pin_lut_record = get_ext_connector_hpd_pin_lut_record(bp, opm_object); if ((aux_ddc_lut_record == NULL) || (hpd_pin_lut_record == NULL)) return BP_RESULT_UNSUPPORTED; /* Cache support bits for currently unmapped device types. */ if (bp->remap_device_tags) { for (i = 0; i < connector_tbl->ucNumberOfObjects; ++i) { uint32_t j; /* Remove support for all non-MXM connectors. */ object = &connector_tbl->asObjects[i]; object_id = object_id_from_bios_object_id( le16_to_cpu(object->usObjectID)); if ((OBJECT_TYPE_CONNECTOR != object_id.type) || (CONNECTOR_ID_MXM == object_id.id)) continue; /* Remove support for all device tags. */ if (bios_parser_get_device_tag_record( bp, object, &dev_tag_record) != BP_RESULT_OK) continue; for (j = 0; j < dev_tag_record->ucNumberOfDevice; ++j) { ATOM_CONNECTOR_DEVICE_TAG *device_tag = &dev_tag_record->asDeviceTag[j]; cached_device_support &= ~le16_to_cpu(device_tag->usDeviceID); } } } /* Find all MXM connector objects and patch them with connector info * from the external display connection info table. */ for (i = 0; i < connector_tbl->ucNumberOfObjects; i++) { uint32_t j; object = &connector_tbl->asObjects[i]; object_id = object_id_from_bios_object_id(le16_to_cpu(object->usObjectID)); if ((OBJECT_TYPE_CONNECTOR != object_id.type) || (CONNECTOR_ID_MXM != object_id.id)) continue; /* Get the correct connection info table entry based on the enum * id. */ ext_display_path = get_ext_display_path_entry( &ext_display_connection_info_tbl, le16_to_cpu(object->usObjectID)); if (!ext_display_path) return BP_RESULT_FAILURE; /* Patch device connector ID */ object->usObjectID = cpu_to_le16(le16_to_cpu(ext_display_path->usDeviceConnector)); /* Patch device tag, ulACPIDeviceEnum. */ add_device_tag_from_ext_display_path( bp, object, ext_display_path, &cached_device_support); /* Patch HPD info */ if (ext_display_path->ucExtHPDPINLutIndex < MAX_NUMBER_OF_EXT_HPDPIN_LUT_ENTRIES) { hpd_record = get_hpd_record(bp, object); if (hpd_record) { uint8_t index = ext_display_path->ucExtHPDPINLutIndex; hpd_record->ucHPDIntGPIOID = hpd_pin_lut_record->ucHPDPINMap[index]; } else { BREAK_TO_DEBUGGER(); /* Invalid hpd record */ return BP_RESULT_FAILURE; } } /* Patch I2C/AUX info */ if (ext_display_path->ucExtHPDPINLutIndex < MAX_NUMBER_OF_EXT_AUXDDC_LUT_ENTRIES) { i2c_record = get_i2c_record(bp, object); if (i2c_record) { uint8_t index = ext_display_path->ucExtAUXDDCLutIndex; i2c_record->sucI2cId = aux_ddc_lut_record->ucAUXDDCMap[index]; } else { BREAK_TO_DEBUGGER(); /* Invalid I2C record */ return BP_RESULT_FAILURE; } } /* Merge with other MXM connectors that map to the same physical * connector. */ for (j = i + 1; j < connector_tbl->ucNumberOfObjects; j++) { ATOM_OBJECT *next_object; struct graphics_object_id next_object_id; EXT_DISPLAY_PATH *next_ext_display_path; next_object = &connector_tbl->asObjects[j]; next_object_id = object_id_from_bios_object_id( le16_to_cpu(next_object->usObjectID)); if ((OBJECT_TYPE_CONNECTOR != next_object_id.type) && (CONNECTOR_ID_MXM == next_object_id.id)) continue; next_ext_display_path = get_ext_display_path_entry( &ext_display_connection_info_tbl, le16_to_cpu(next_object->usObjectID)); if (next_ext_display_path == NULL) return BP_RESULT_FAILURE; /* Merge if using same connector. */ if ((le16_to_cpu(next_ext_display_path->usDeviceConnector) == le16_to_cpu(ext_display_path->usDeviceConnector)) && (le16_to_cpu(ext_display_path->usDeviceConnector) != 0)) { /* Clear duplicate connector from table. */ next_object->usObjectID = cpu_to_le16(0); add_device_tag_from_ext_display_path( bp, object, ext_display_path, &cached_device_support); } } } /* Find all encoders which have an MXM object as their destination. * Replace the MXM object with the real connector Id from the external * display connection info table */ encoder_table_offset = bp->object_info_tbl_offset + le16_to_cpu(bp->object_info_tbl.v1_1->usEncoderObjectTableOffset); encoder_table = GET_IMAGE(ATOM_OBJECT_TABLE, encoder_table_offset); for (i = 0; i < encoder_table->ucNumberOfObjects; i++) { uint32_t j; object = &encoder_table->asObjects[i]; dst_number = get_dest_obj_list(bp, object, &dst_object_id_list); for (j = 0; j < dst_number; j++) { object_id = object_id_from_bios_object_id( dst_object_id_list[j]); if ((OBJECT_TYPE_CONNECTOR != object_id.type) || (CONNECTOR_ID_MXM != object_id.id)) continue; /* Get the correct connection info table entry based on * the enum id. */ ext_display_path = get_ext_display_path_entry( &ext_display_connection_info_tbl, dst_object_id_list[j]); if (ext_display_path == NULL) return BP_RESULT_FAILURE; dst_object_id_list[j] = le16_to_cpu(ext_display_path->usDeviceConnector); } } return BP_RESULT_OK; } /* * Check whether we need to patch the VBIOS connector info table with * data from an external display connection info table. This is * necessary to support MXM boards with an OPM (output personality * module). With these designs, the VBIOS connector info table * specifies an MXM_CONNECTOR with a unique ID. The driver retrieves * the external connection info table through i2c and then looks up the * connector ID to find the real connector type (e.g. DFP1). * */ static void process_ext_display_connection_info(struct bios_parser *bp) { ATOM_OBJECT_TABLE *connector_tbl; uint32_t connector_tbl_offset; struct graphics_object_id object_id; ATOM_OBJECT *object; bool mxm_connector_found = false; bool null_entry_found = false; uint32_t i = 0; connector_tbl_offset = bp->object_info_tbl_offset + le16_to_cpu(bp->object_info_tbl.v1_1->usConnectorObjectTableOffset); connector_tbl = GET_IMAGE(ATOM_OBJECT_TABLE, connector_tbl_offset); /* Look for MXM connectors to determine whether we need patch the VBIOS * connector info table. Look for null entries to determine whether we * need to compact connector table. */ for (i = 0; i < connector_tbl->ucNumberOfObjects; i++) { object = &connector_tbl->asObjects[i]; object_id = object_id_from_bios_object_id(le16_to_cpu(object->usObjectID)); if ((OBJECT_TYPE_CONNECTOR == object_id.type) && (CONNECTOR_ID_MXM == object_id.id)) { /* Once we found MXM connector - we can break */ mxm_connector_found = true; break; } else if (OBJECT_TYPE_CONNECTOR != object_id.type) { /* We need to continue looping - to check if MXM * connector present */ null_entry_found = true; } } /* Patch BIOS image */ if (mxm_connector_found || null_entry_found) { uint32_t connectors_num = 0; uint8_t *original_bios; /* Step 1: Replace bios image with the new copy which will be * patched */ bp->base.bios_local_image = kzalloc(bp->base.bios_size, GFP_KERNEL); if (bp->base.bios_local_image == NULL) { BREAK_TO_DEBUGGER(); /* Failed to alloc bp->base.bios_local_image */ return; } memmove(bp->base.bios_local_image, bp->base.bios, bp->base.bios_size); original_bios = bp->base.bios; bp->base.bios = bp->base.bios_local_image; connector_tbl = GET_IMAGE(ATOM_OBJECT_TABLE, connector_tbl_offset); /* Step 2: (only if MXM connector found) Patch BIOS image with * info from external module */ if (mxm_connector_found && patch_bios_image_from_ext_display_connection_info(bp) != BP_RESULT_OK) { /* Patching the bios image has failed. We will copy * again original image provided and afterwards * only remove null entries */ memmove( bp->base.bios_local_image, original_bios, bp->base.bios_size); } /* Step 3: Compact connector table (remove null entries, valid * entries moved to beginning) */ for (i = 0; i < connector_tbl->ucNumberOfObjects; i++) { object = &connector_tbl->asObjects[i]; object_id = object_id_from_bios_object_id( le16_to_cpu(object->usObjectID)); if (OBJECT_TYPE_CONNECTOR != object_id.type) continue; if (i != connectors_num) { memmove( &connector_tbl-> asObjects[connectors_num], object, sizeof(ATOM_OBJECT)); } ++connectors_num; } connector_tbl->ucNumberOfObjects = (uint8_t)connectors_num; } } static void bios_parser_post_init(struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); process_ext_display_connection_info(bp); } /** * bios_parser_set_scratch_critical_state * * @brief * update critical state bit in VBIOS scratch register * * @param * bool - to set or reset state */ static void bios_parser_set_scratch_critical_state( struct dc_bios *dcb, bool state) { bios_set_scratch_critical_state(dcb, state); } /* * get_integrated_info_v8 * * @brief * Get V8 integrated BIOS information * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result get_integrated_info_v8( struct bios_parser *bp, struct integrated_info *info) { ATOM_INTEGRATED_SYSTEM_INFO_V1_8 *info_v8; uint32_t i; info_v8 = GET_IMAGE(ATOM_INTEGRATED_SYSTEM_INFO_V1_8, bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo); if (info_v8 == NULL) return BP_RESULT_BADBIOSTABLE; info->boot_up_engine_clock = le32_to_cpu(info_v8->ulBootUpEngineClock) * 10; info->dentist_vco_freq = le32_to_cpu(info_v8->ulDentistVCOFreq) * 10; info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10; for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { /* Convert [10KHz] into [KHz] */ info->disp_clk_voltage[i].max_supported_clk = le32_to_cpu(info_v8->sDISPCLK_Voltage[i]. ulMaximumSupportedCLK) * 10; info->disp_clk_voltage[i].voltage_index = le32_to_cpu(info_v8->sDISPCLK_Voltage[i].ulVoltageIndex); } info->boot_up_req_display_vector = le32_to_cpu(info_v8->ulBootUpReqDisplayVector); info->gpu_cap_info = le32_to_cpu(info_v8->ulGPUCapInfo); /* * system_config: Bit[0] = 0 : PCIE power gating disabled * = 1 : PCIE power gating enabled * Bit[1] = 0 : DDR-PLL shut down disabled * = 1 : DDR-PLL shut down enabled * Bit[2] = 0 : DDR-PLL power down disabled * = 1 : DDR-PLL power down enabled */ info->system_config = le32_to_cpu(info_v8->ulSystemConfig); info->cpu_cap_info = le32_to_cpu(info_v8->ulCPUCapInfo); info->boot_up_nb_voltage = le16_to_cpu(info_v8->usBootUpNBVoltage); info->ext_disp_conn_info_offset = le16_to_cpu(info_v8->usExtDispConnInfoOffset); info->memory_type = info_v8->ucMemoryType; info->ma_channel_number = info_v8->ucUMAChannelNumber; info->gmc_restore_reset_time = le32_to_cpu(info_v8->ulGMCRestoreResetTime); info->minimum_n_clk = le32_to_cpu(info_v8->ulNbpStateNClkFreq[0]); for (i = 1; i < 4; ++i) info->minimum_n_clk = info->minimum_n_clk < le32_to_cpu(info_v8->ulNbpStateNClkFreq[i]) ? info->minimum_n_clk : le32_to_cpu(info_v8->ulNbpStateNClkFreq[i]); info->idle_n_clk = le32_to_cpu(info_v8->ulIdleNClk); info->ddr_dll_power_up_time = le32_to_cpu(info_v8->ulDDR_DLL_PowerUpTime); info->ddr_pll_power_up_time = le32_to_cpu(info_v8->ulDDR_PLL_PowerUpTime); info->pcie_clk_ss_type = le16_to_cpu(info_v8->usPCIEClkSSType); info->lvds_ss_percentage = le16_to_cpu(info_v8->usLvdsSSPercentage); info->lvds_sspread_rate_in_10hz = le16_to_cpu(info_v8->usLvdsSSpreadRateIn10Hz); info->hdmi_ss_percentage = le16_to_cpu(info_v8->usHDMISSPercentage); info->hdmi_sspread_rate_in_10hz = le16_to_cpu(info_v8->usHDMISSpreadRateIn10Hz); info->dvi_ss_percentage = le16_to_cpu(info_v8->usDVISSPercentage); info->dvi_sspread_rate_in_10_hz = le16_to_cpu(info_v8->usDVISSpreadRateIn10Hz); info->max_lvds_pclk_freq_in_single_link = le16_to_cpu(info_v8->usMaxLVDSPclkFreqInSingleLink); info->lvds_misc = info_v8->ucLvdsMisc; info->lvds_pwr_on_seq_dig_on_to_de_in_4ms = info_v8->ucLVDSPwrOnSeqDIGONtoDE_in4Ms; info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms = info_v8->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms; info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms = info_v8->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms; info->lvds_pwr_off_seq_vary_bl_to_de_in4ms = info_v8->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms; info->lvds_pwr_off_seq_de_to_dig_on_in4ms = info_v8->ucLVDSPwrOffSeqDEtoDIGON_in4Ms; info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms = info_v8->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms; info->lvds_off_to_on_delay_in_4ms = info_v8->ucLVDSOffToOnDelay_in4Ms; info->lvds_bit_depth_control_val = le32_to_cpu(info_v8->ulLCDBitDepthControlVal); for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) { /* Convert [10KHz] into [KHz] */ info->avail_s_clk[i].supported_s_clk = le32_to_cpu(info_v8->sAvail_SCLK[i].ulSupportedSCLK) * 10; info->avail_s_clk[i].voltage_index = le16_to_cpu(info_v8->sAvail_SCLK[i].usVoltageIndex); info->avail_s_clk[i].voltage_id = le16_to_cpu(info_v8->sAvail_SCLK[i].usVoltageID); } for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) { info->ext_disp_conn_info.gu_id[i] = info_v8->sExtDispConnInfo.ucGuid[i]; } for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) { info->ext_disp_conn_info.path[i].device_connector_id = object_id_from_bios_object_id( le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceConnector)); info->ext_disp_conn_info.path[i].ext_encoder_obj_id = object_id_from_bios_object_id( le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usExtEncoderObjId)); info->ext_disp_conn_info.path[i].device_tag = le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceTag); info->ext_disp_conn_info.path[i].device_acpi_enum = le16_to_cpu(info_v8->sExtDispConnInfo.sPath[i].usDeviceACPIEnum); info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index = info_v8->sExtDispConnInfo.sPath[i].ucExtAUXDDCLutIndex; info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index = info_v8->sExtDispConnInfo.sPath[i].ucExtHPDPINLutIndex; info->ext_disp_conn_info.path[i].channel_mapping.raw = info_v8->sExtDispConnInfo.sPath[i].ucChannelMapping; } info->ext_disp_conn_info.checksum = info_v8->sExtDispConnInfo.ucChecksum; return BP_RESULT_OK; } /* * get_integrated_info_v8 * * @brief * Get V8 integrated BIOS information * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result get_integrated_info_v9( struct bios_parser *bp, struct integrated_info *info) { ATOM_INTEGRATED_SYSTEM_INFO_V1_9 *info_v9; uint32_t i; info_v9 = GET_IMAGE(ATOM_INTEGRATED_SYSTEM_INFO_V1_9, bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo); if (!info_v9) return BP_RESULT_BADBIOSTABLE; info->boot_up_engine_clock = le32_to_cpu(info_v9->ulBootUpEngineClock) * 10; info->dentist_vco_freq = le32_to_cpu(info_v9->ulDentistVCOFreq) * 10; info->boot_up_uma_clock = le32_to_cpu(info_v9->ulBootUpUMAClock) * 10; for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { /* Convert [10KHz] into [KHz] */ info->disp_clk_voltage[i].max_supported_clk = le32_to_cpu(info_v9->sDISPCLK_Voltage[i].ulMaximumSupportedCLK) * 10; info->disp_clk_voltage[i].voltage_index = le32_to_cpu(info_v9->sDISPCLK_Voltage[i].ulVoltageIndex); } info->boot_up_req_display_vector = le32_to_cpu(info_v9->ulBootUpReqDisplayVector); info->gpu_cap_info = le32_to_cpu(info_v9->ulGPUCapInfo); /* * system_config: Bit[0] = 0 : PCIE power gating disabled * = 1 : PCIE power gating enabled * Bit[1] = 0 : DDR-PLL shut down disabled * = 1 : DDR-PLL shut down enabled * Bit[2] = 0 : DDR-PLL power down disabled * = 1 : DDR-PLL power down enabled */ info->system_config = le32_to_cpu(info_v9->ulSystemConfig); info->cpu_cap_info = le32_to_cpu(info_v9->ulCPUCapInfo); info->boot_up_nb_voltage = le16_to_cpu(info_v9->usBootUpNBVoltage); info->ext_disp_conn_info_offset = le16_to_cpu(info_v9->usExtDispConnInfoOffset); info->memory_type = info_v9->ucMemoryType; info->ma_channel_number = info_v9->ucUMAChannelNumber; info->gmc_restore_reset_time = le32_to_cpu(info_v9->ulGMCRestoreResetTime); info->minimum_n_clk = le32_to_cpu(info_v9->ulNbpStateNClkFreq[0]); for (i = 1; i < 4; ++i) info->minimum_n_clk = info->minimum_n_clk < le32_to_cpu(info_v9->ulNbpStateNClkFreq[i]) ? info->minimum_n_clk : le32_to_cpu(info_v9->ulNbpStateNClkFreq[i]); info->idle_n_clk = le32_to_cpu(info_v9->ulIdleNClk); info->ddr_dll_power_up_time = le32_to_cpu(info_v9->ulDDR_DLL_PowerUpTime); info->ddr_pll_power_up_time = le32_to_cpu(info_v9->ulDDR_PLL_PowerUpTime); info->pcie_clk_ss_type = le16_to_cpu(info_v9->usPCIEClkSSType); info->lvds_ss_percentage = le16_to_cpu(info_v9->usLvdsSSPercentage); info->lvds_sspread_rate_in_10hz = le16_to_cpu(info_v9->usLvdsSSpreadRateIn10Hz); info->hdmi_ss_percentage = le16_to_cpu(info_v9->usHDMISSPercentage); info->hdmi_sspread_rate_in_10hz = le16_to_cpu(info_v9->usHDMISSpreadRateIn10Hz); info->dvi_ss_percentage = le16_to_cpu(info_v9->usDVISSPercentage); info->dvi_sspread_rate_in_10_hz = le16_to_cpu(info_v9->usDVISSpreadRateIn10Hz); info->max_lvds_pclk_freq_in_single_link = le16_to_cpu(info_v9->usMaxLVDSPclkFreqInSingleLink); info->lvds_misc = info_v9->ucLvdsMisc; info->lvds_pwr_on_seq_dig_on_to_de_in_4ms = info_v9->ucLVDSPwrOnSeqDIGONtoDE_in4Ms; info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms = info_v9->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms; info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms = info_v9->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms; info->lvds_pwr_off_seq_vary_bl_to_de_in4ms = info_v9->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms; info->lvds_pwr_off_seq_de_to_dig_on_in4ms = info_v9->ucLVDSPwrOffSeqDEtoDIGON_in4Ms; info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms = info_v9->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms; info->lvds_off_to_on_delay_in_4ms = info_v9->ucLVDSOffToOnDelay_in4Ms; info->lvds_bit_depth_control_val = le32_to_cpu(info_v9->ulLCDBitDepthControlVal); for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) { /* Convert [10KHz] into [KHz] */ info->avail_s_clk[i].supported_s_clk = le32_to_cpu(info_v9->sAvail_SCLK[i].ulSupportedSCLK) * 10; info->avail_s_clk[i].voltage_index = le16_to_cpu(info_v9->sAvail_SCLK[i].usVoltageIndex); info->avail_s_clk[i].voltage_id = le16_to_cpu(info_v9->sAvail_SCLK[i].usVoltageID); } for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) { info->ext_disp_conn_info.gu_id[i] = info_v9->sExtDispConnInfo.ucGuid[i]; } for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) { info->ext_disp_conn_info.path[i].device_connector_id = object_id_from_bios_object_id( le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceConnector)); info->ext_disp_conn_info.path[i].ext_encoder_obj_id = object_id_from_bios_object_id( le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usExtEncoderObjId)); info->ext_disp_conn_info.path[i].device_tag = le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceTag); info->ext_disp_conn_info.path[i].device_acpi_enum = le16_to_cpu(info_v9->sExtDispConnInfo.sPath[i].usDeviceACPIEnum); info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index = info_v9->sExtDispConnInfo.sPath[i].ucExtAUXDDCLutIndex; info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index = info_v9->sExtDispConnInfo.sPath[i].ucExtHPDPINLutIndex; info->ext_disp_conn_info.path[i].channel_mapping.raw = info_v9->sExtDispConnInfo.sPath[i].ucChannelMapping; } info->ext_disp_conn_info.checksum = info_v9->sExtDispConnInfo.ucChecksum; return BP_RESULT_OK; } /* * construct_integrated_info * * @brief * Get integrated BIOS information based on table revision * * @param * bios_parser *bp - [in]BIOS parser handler to get master data table * integrated_info *info - [out] store and output integrated info * * @return * enum bp_result - BP_RESULT_OK if information is available, * BP_RESULT_BADBIOSTABLE otherwise. */ static enum bp_result construct_integrated_info( struct bios_parser *bp, struct integrated_info *info) { enum bp_result result = BP_RESULT_BADBIOSTABLE; ATOM_COMMON_TABLE_HEADER *header; struct atom_data_revision revision; if (bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo) { header = GET_IMAGE(ATOM_COMMON_TABLE_HEADER, bp->master_data_tbl->ListOfDataTables.IntegratedSystemInfo); get_atom_data_table_revision(header, &revision); /* Don't need to check major revision as they are all 1 */ switch (revision.minor) { case 8: result = get_integrated_info_v8(bp, info); break; case 9: result = get_integrated_info_v9(bp, info); break; default: return result; } } /* Sort voltage table from low to high*/ if (result == BP_RESULT_OK) { struct clock_voltage_caps temp = {0, 0}; uint32_t i; uint32_t j; for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) { for (j = i; j > 0; --j) { if ( info->disp_clk_voltage[j].max_supported_clk < info->disp_clk_voltage[j-1].max_supported_clk) { /* swap j and j - 1*/ temp = info->disp_clk_voltage[j-1]; info->disp_clk_voltage[j-1] = info->disp_clk_voltage[j]; info->disp_clk_voltage[j] = temp; } } } } return result; } static struct integrated_info *bios_parser_create_integrated_info( struct dc_bios *dcb) { struct bios_parser *bp = BP_FROM_DCB(dcb); struct integrated_info *info = NULL; info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL); if (info == NULL) { ASSERT_CRITICAL(0); return NULL; } if (construct_integrated_info(bp, info) == BP_RESULT_OK) return info; kfree(info); return NULL; } /******************************************************************************/ static const struct dc_vbios_funcs vbios_funcs = { .get_connectors_number = bios_parser_get_connectors_number, .get_encoder_id = bios_parser_get_encoder_id, .get_connector_id = bios_parser_get_connector_id, .get_dst_number = bios_parser_get_dst_number, .get_src_obj = bios_parser_get_src_obj, .get_dst_obj = bios_parser_get_dst_obj, .get_i2c_info = bios_parser_get_i2c_info, .get_voltage_ddc_info = bios_parser_get_voltage_ddc_info, .get_thermal_ddc_info = bios_parser_get_thermal_ddc_info, .get_hpd_info = bios_parser_get_hpd_info, .get_device_tag = bios_parser_get_device_tag, .get_firmware_info = bios_parser_get_firmware_info, .get_spread_spectrum_info = bios_parser_get_spread_spectrum_info, .get_ss_entry_number = bios_parser_get_ss_entry_number, .get_embedded_panel_info = bios_parser_get_embedded_panel_info, .get_gpio_pin_info = bios_parser_get_gpio_pin_info, .get_embedded_panel_info = bios_parser_get_embedded_panel_info, .get_gpio_pin_info = bios_parser_get_gpio_pin_info, .get_encoder_cap_info = bios_parser_get_encoder_cap_info, /* bios scratch register communication */ .is_accelerated_mode = bios_is_accelerated_mode, .set_scratch_critical_state = bios_parser_set_scratch_critical_state, .is_device_id_supported = bios_parser_is_device_id_supported, /* COMMANDS */ .encoder_control = bios_parser_encoder_control, .transmitter_control = bios_parser_transmitter_control, .crt_control = bios_parser_crt_control, /* not used in DAL3. keep for now in case we need to support VGA on Bonaire */ .enable_crtc = bios_parser_enable_crtc, .adjust_pixel_clock = bios_parser_adjust_pixel_clock, .set_pixel_clock = bios_parser_set_pixel_clock, .set_dce_clock = bios_parser_set_dce_clock, .enable_spread_spectrum_on_ppll = bios_parser_enable_spread_spectrum_on_ppll, .program_crtc_timing = bios_parser_program_crtc_timing, /* still use. should probably retire and program directly */ .crtc_source_select = bios_parser_crtc_source_select, /* still use. should probably retire and program directly */ .program_display_engine_pll = bios_parser_program_display_engine_pll, .enable_disp_power_gating = bios_parser_enable_disp_power_gating, /* SW init and patch */ .post_init = bios_parser_post_init, /* patch vbios table for mxm module by reading i2c */ .bios_parser_destroy = bios_parser_destroy, }; static bool bios_parser_construct( struct bios_parser *bp, struct bp_init_data *init, enum dce_version dce_version) { uint16_t *rom_header_offset = NULL; ATOM_ROM_HEADER *rom_header = NULL; ATOM_OBJECT_HEADER *object_info_tbl; struct atom_data_revision tbl_rev = {0}; if (!init) return false; if (!init->bios) return false; bp->base.funcs = &vbios_funcs; bp->base.bios = init->bios; bp->base.bios_size = bp->base.bios[BIOS_IMAGE_SIZE_OFFSET] * BIOS_IMAGE_SIZE_UNIT; bp->base.ctx = init->ctx; bp->base.bios_local_image = NULL; rom_header_offset = GET_IMAGE(uint16_t, OFFSET_TO_POINTER_TO_ATOM_ROM_HEADER); if (!rom_header_offset) return false; rom_header = GET_IMAGE(ATOM_ROM_HEADER, *rom_header_offset); if (!rom_header) return false; get_atom_data_table_revision(&rom_header->sHeader, &tbl_rev); if (tbl_rev.major >= 2 && tbl_rev.minor >= 2) return false; bp->master_data_tbl = GET_IMAGE(ATOM_MASTER_DATA_TABLE, rom_header->usMasterDataTableOffset); if (!bp->master_data_tbl) return false; bp->object_info_tbl_offset = DATA_TABLES(Object_Header); if (!bp->object_info_tbl_offset) return false; object_info_tbl = GET_IMAGE(ATOM_OBJECT_HEADER, bp->object_info_tbl_offset); if (!object_info_tbl) return false; get_atom_data_table_revision(&object_info_tbl->sHeader, &bp->object_info_tbl.revision); if (bp->object_info_tbl.revision.major == 1 && bp->object_info_tbl.revision.minor >= 3) { ATOM_OBJECT_HEADER_V3 *tbl_v3; tbl_v3 = GET_IMAGE(ATOM_OBJECT_HEADER_V3, bp->object_info_tbl_offset); if (!tbl_v3) return false; bp->object_info_tbl.v1_3 = tbl_v3; } else if (bp->object_info_tbl.revision.major == 1 && bp->object_info_tbl.revision.minor >= 1) bp->object_info_tbl.v1_1 = object_info_tbl; else return false; dal_bios_parser_init_cmd_tbl(bp); dal_bios_parser_init_cmd_tbl_helper(&bp->cmd_helper, dce_version); bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base); return true; } /******************************************************************************/