/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dm_services.h" #include "include/fixed31_32.h" static inline uint64_t abs_i64( int64_t arg) { if (arg > 0) return (uint64_t)arg; else return (uint64_t)(-arg); } /* * @brief * result = dividend / divisor * *remainder = dividend % divisor */ static inline uint64_t complete_integer_division_u64( uint64_t dividend, uint64_t divisor, uint64_t *remainder) { uint64_t result; ASSERT(divisor); result = div64_u64_rem(dividend, divisor, remainder); return result; } #define FRACTIONAL_PART_MASK \ ((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1) #define GET_INTEGER_PART(x) \ ((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART) #define GET_FRACTIONAL_PART(x) \ (FRACTIONAL_PART_MASK & (x)) struct fixed31_32 dal_fixed31_32_from_fraction( int64_t numerator, int64_t denominator) { struct fixed31_32 res; bool arg1_negative = numerator < 0; bool arg2_negative = denominator < 0; uint64_t arg1_value = arg1_negative ? -numerator : numerator; uint64_t arg2_value = arg2_negative ? -denominator : denominator; uint64_t remainder; /* determine integer part */ uint64_t res_value = complete_integer_division_u64( arg1_value, arg2_value, &remainder); ASSERT(res_value <= LONG_MAX); /* determine fractional part */ { uint32_t i = FIXED31_32_BITS_PER_FRACTIONAL_PART; do { remainder <<= 1; res_value <<= 1; if (remainder >= arg2_value) { res_value |= 1; remainder -= arg2_value; } } while (--i != 0); } /* round up LSB */ { uint64_t summand = (remainder << 1) >= arg2_value; ASSERT(res_value <= LLONG_MAX - summand); res_value += summand; } res.value = (int64_t)res_value; if (arg1_negative ^ arg2_negative) res.value = -res.value; return res; } struct fixed31_32 dal_fixed31_32_from_int_nonconst( int64_t arg) { struct fixed31_32 res; ASSERT((LONG_MIN <= arg) && (arg <= LONG_MAX)); res.value = arg << FIXED31_32_BITS_PER_FRACTIONAL_PART; return res; } struct fixed31_32 dal_fixed31_32_shl( struct fixed31_32 arg, uint8_t shift) { struct fixed31_32 res; ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) || ((arg.value < 0) && (arg.value >= LLONG_MIN >> shift))); res.value = arg.value << shift; return res; } struct fixed31_32 dal_fixed31_32_add( struct fixed31_32 arg1, struct fixed31_32 arg2) { struct fixed31_32 res; ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) || ((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value))); res.value = arg1.value + arg2.value; return res; } struct fixed31_32 dal_fixed31_32_sub( struct fixed31_32 arg1, struct fixed31_32 arg2) { struct fixed31_32 res; ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) || ((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value))); res.value = arg1.value - arg2.value; return res; } struct fixed31_32 dal_fixed31_32_mul( struct fixed31_32 arg1, struct fixed31_32 arg2) { struct fixed31_32 res; bool arg1_negative = arg1.value < 0; bool arg2_negative = arg2.value < 0; uint64_t arg1_value = arg1_negative ? -arg1.value : arg1.value; uint64_t arg2_value = arg2_negative ? -arg2.value : arg2.value; uint64_t arg1_int = GET_INTEGER_PART(arg1_value); uint64_t arg2_int = GET_INTEGER_PART(arg2_value); uint64_t arg1_fra = GET_FRACTIONAL_PART(arg1_value); uint64_t arg2_fra = GET_FRACTIONAL_PART(arg2_value); uint64_t tmp; res.value = arg1_int * arg2_int; ASSERT(res.value <= LONG_MAX); res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART; tmp = arg1_int * arg2_fra; ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); res.value += tmp; tmp = arg2_int * arg1_fra; ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); res.value += tmp; tmp = arg1_fra * arg2_fra; tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) + (tmp >= (uint64_t)dal_fixed31_32_half.value); ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); res.value += tmp; if (arg1_negative ^ arg2_negative) res.value = -res.value; return res; } struct fixed31_32 dal_fixed31_32_sqr( struct fixed31_32 arg) { struct fixed31_32 res; uint64_t arg_value = abs_i64(arg.value); uint64_t arg_int = GET_INTEGER_PART(arg_value); uint64_t arg_fra = GET_FRACTIONAL_PART(arg_value); uint64_t tmp; res.value = arg_int * arg_int; ASSERT(res.value <= LONG_MAX); res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART; tmp = arg_int * arg_fra; ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); res.value += tmp; ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); res.value += tmp; tmp = arg_fra * arg_fra; tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) + (tmp >= (uint64_t)dal_fixed31_32_half.value); ASSERT(tmp <= (uint64_t)(LLONG_MAX - res.value)); res.value += tmp; return res; } struct fixed31_32 dal_fixed31_32_recip( struct fixed31_32 arg) { /* * @note * Good idea to use Newton's method */ ASSERT(arg.value); return dal_fixed31_32_from_fraction( dal_fixed31_32_one.value, arg.value); } struct fixed31_32 dal_fixed31_32_sinc( struct fixed31_32 arg) { struct fixed31_32 square; struct fixed31_32 res = dal_fixed31_32_one; int32_t n = 27; struct fixed31_32 arg_norm = arg; if (dal_fixed31_32_le( dal_fixed31_32_two_pi, dal_fixed31_32_abs(arg))) { arg_norm = dal_fixed31_32_sub( arg_norm, dal_fixed31_32_mul_int( dal_fixed31_32_two_pi, (int32_t)div64_s64( arg_norm.value, dal_fixed31_32_two_pi.value))); } square = dal_fixed31_32_sqr(arg_norm); do { res = dal_fixed31_32_sub( dal_fixed31_32_one, dal_fixed31_32_div_int( dal_fixed31_32_mul( square, res), n * (n - 1))); n -= 2; } while (n > 2); if (arg.value != arg_norm.value) res = dal_fixed31_32_div( dal_fixed31_32_mul(res, arg_norm), arg); return res; } struct fixed31_32 dal_fixed31_32_sin( struct fixed31_32 arg) { return dal_fixed31_32_mul( arg, dal_fixed31_32_sinc(arg)); } struct fixed31_32 dal_fixed31_32_cos( struct fixed31_32 arg) { /* TODO implement argument normalization */ const struct fixed31_32 square = dal_fixed31_32_sqr(arg); struct fixed31_32 res = dal_fixed31_32_one; int32_t n = 26; do { res = dal_fixed31_32_sub( dal_fixed31_32_one, dal_fixed31_32_div_int( dal_fixed31_32_mul( square, res), n * (n - 1))); n -= 2; } while (n != 0); return res; } /* * @brief * result = exp(arg), * where abs(arg) < 1 * * Calculated as Taylor series. */ static struct fixed31_32 fixed31_32_exp_from_taylor_series( struct fixed31_32 arg) { uint32_t n = 9; struct fixed31_32 res = dal_fixed31_32_from_fraction( n + 2, n + 1); /* TODO find correct res */ ASSERT(dal_fixed31_32_lt(arg, dal_fixed31_32_one)); do res = dal_fixed31_32_add( dal_fixed31_32_one, dal_fixed31_32_div_int( dal_fixed31_32_mul( arg, res), n)); while (--n != 1); return dal_fixed31_32_add( dal_fixed31_32_one, dal_fixed31_32_mul( arg, res)); } struct fixed31_32 dal_fixed31_32_exp( struct fixed31_32 arg) { /* * @brief * Main equation is: * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r), * where m = round(x / ln(2)), r = x - m * ln(2) */ if (dal_fixed31_32_le( dal_fixed31_32_ln2_div_2, dal_fixed31_32_abs(arg))) { int32_t m = dal_fixed31_32_round( dal_fixed31_32_div( arg, dal_fixed31_32_ln2)); struct fixed31_32 r = dal_fixed31_32_sub( arg, dal_fixed31_32_mul_int( dal_fixed31_32_ln2, m)); ASSERT(m != 0); ASSERT(dal_fixed31_32_lt( dal_fixed31_32_abs(r), dal_fixed31_32_one)); if (m > 0) return dal_fixed31_32_shl( fixed31_32_exp_from_taylor_series(r), (uint8_t)m); else return dal_fixed31_32_div_int( fixed31_32_exp_from_taylor_series(r), 1LL << -m); } else if (arg.value != 0) return fixed31_32_exp_from_taylor_series(arg); else return dal_fixed31_32_one; } struct fixed31_32 dal_fixed31_32_log( struct fixed31_32 arg) { struct fixed31_32 res = dal_fixed31_32_neg(dal_fixed31_32_one); /* TODO improve 1st estimation */ struct fixed31_32 error; ASSERT(arg.value > 0); /* TODO if arg is negative, return NaN */ /* TODO if arg is zero, return -INF */ do { struct fixed31_32 res1 = dal_fixed31_32_add( dal_fixed31_32_sub( res, dal_fixed31_32_one), dal_fixed31_32_div( arg, dal_fixed31_32_exp(res))); error = dal_fixed31_32_sub( res, res1); res = res1; /* TODO determine max_allowed_error based on quality of exp() */ } while (abs_i64(error.value) > 100ULL); return res; } struct fixed31_32 dal_fixed31_32_pow( struct fixed31_32 arg1, struct fixed31_32 arg2) { return dal_fixed31_32_exp( dal_fixed31_32_mul( dal_fixed31_32_log(arg1), arg2)); } int32_t dal_fixed31_32_floor( struct fixed31_32 arg) { uint64_t arg_value = abs_i64(arg.value); if (arg.value >= 0) return (int32_t)GET_INTEGER_PART(arg_value); else return -(int32_t)GET_INTEGER_PART(arg_value); } int32_t dal_fixed31_32_round( struct fixed31_32 arg) { uint64_t arg_value = abs_i64(arg.value); const int64_t summand = dal_fixed31_32_half.value; ASSERT(LLONG_MAX - (int64_t)arg_value >= summand); arg_value += summand; if (arg.value >= 0) return (int32_t)GET_INTEGER_PART(arg_value); else return -(int32_t)GET_INTEGER_PART(arg_value); } int32_t dal_fixed31_32_ceil( struct fixed31_32 arg) { uint64_t arg_value = abs_i64(arg.value); const int64_t summand = dal_fixed31_32_one.value - dal_fixed31_32_epsilon.value; ASSERT(LLONG_MAX - (int64_t)arg_value >= summand); arg_value += summand; if (arg.value >= 0) return (int32_t)GET_INTEGER_PART(arg_value); else return -(int32_t)GET_INTEGER_PART(arg_value); } /* this function is a generic helper to translate fixed point value to * specified integer format that will consist of integer_bits integer part and * fractional_bits fractional part. For example it is used in * dal_fixed31_32_u2d19 to receive 2 bits integer part and 19 bits fractional * part in 32 bits. It is used in hw programming (scaler) */ static inline uint32_t ux_dy( int64_t value, uint32_t integer_bits, uint32_t fractional_bits) { /* 1. create mask of integer part */ uint32_t result = (1 << integer_bits) - 1; /* 2. mask out fractional part */ uint32_t fractional_part = FRACTIONAL_PART_MASK & value; /* 3. shrink fixed point integer part to be of integer_bits width*/ result &= GET_INTEGER_PART(value); /* 4. make space for fractional part to be filled in after integer */ result <<= fractional_bits; /* 5. shrink fixed point fractional part to of fractional_bits width*/ fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits; /* 6. merge the result */ return result | fractional_part; } static inline uint32_t clamp_ux_dy( int64_t value, uint32_t integer_bits, uint32_t fractional_bits, uint32_t min_clamp) { uint32_t truncated_val = ux_dy(value, integer_bits, fractional_bits); if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART))) return (1 << (integer_bits + fractional_bits)) - 1; else if (truncated_val > min_clamp) return truncated_val; else return min_clamp; } uint32_t dal_fixed31_32_u2d19( struct fixed31_32 arg) { return ux_dy(arg.value, 2, 19); } uint32_t dal_fixed31_32_u0d19( struct fixed31_32 arg) { return ux_dy(arg.value, 0, 19); } uint32_t dal_fixed31_32_clamp_u0d14( struct fixed31_32 arg) { return clamp_ux_dy(arg.value, 0, 14, 1); } uint32_t dal_fixed31_32_clamp_u0d10( struct fixed31_32 arg) { return clamp_ux_dy(arg.value, 0, 10, 1); }