/* * Copyright 2016-2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include "kfd_priv.h" #include "kfd_mqd_manager.h" #include "v9_structs.h" #include "gc/gc_9_0_offset.h" #include "gc/gc_9_0_sh_mask.h" #include "sdma0/sdma0_4_0_sh_mask.h" #include "amdgpu_amdkfd.h" static inline struct v9_mqd *get_mqd(void *mqd) { return (struct v9_mqd *)mqd; } static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd) { return (struct v9_sdma_mqd *)mqd; } static void update_cu_mask(struct mqd_manager *mm, void *mqd, struct queue_properties *q) { struct v9_mqd *m; uint32_t se_mask[KFD_MAX_NUM_SE] = {0}; if (q->cu_mask_count == 0) return; mqd_symmetrically_map_cu_mask(mm, q->cu_mask, q->cu_mask_count, se_mask); m = get_mqd(mqd); m->compute_static_thread_mgmt_se0 = se_mask[0]; m->compute_static_thread_mgmt_se1 = se_mask[1]; m->compute_static_thread_mgmt_se2 = se_mask[2]; m->compute_static_thread_mgmt_se3 = se_mask[3]; m->compute_static_thread_mgmt_se4 = se_mask[4]; m->compute_static_thread_mgmt_se5 = se_mask[5]; m->compute_static_thread_mgmt_se6 = se_mask[6]; m->compute_static_thread_mgmt_se7 = se_mask[7]; pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n", m->compute_static_thread_mgmt_se0, m->compute_static_thread_mgmt_se1, m->compute_static_thread_mgmt_se2, m->compute_static_thread_mgmt_se3, m->compute_static_thread_mgmt_se4, m->compute_static_thread_mgmt_se5, m->compute_static_thread_mgmt_se6, m->compute_static_thread_mgmt_se7); } static void set_priority(struct v9_mqd *m, struct queue_properties *q) { m->cp_hqd_pipe_priority = pipe_priority_map[q->priority]; m->cp_hqd_queue_priority = q->priority; } static struct kfd_mem_obj *allocate_mqd(struct kfd_dev *kfd, struct queue_properties *q) { int retval; struct kfd_mem_obj *mqd_mem_obj = NULL; /* For V9 only, due to a HW bug, the control stack of a user mode * compute queue needs to be allocated just behind the page boundary * of its regular MQD buffer. So we allocate an enlarged MQD buffer: * the first page of the buffer serves as the regular MQD buffer * purpose and the remaining is for control stack. Although the two * parts are in the same buffer object, they need different memory * types: MQD part needs UC (uncached) as usual, while control stack * needs NC (non coherent), which is different from the UC type which * is used when control stack is allocated in user space. * * Because of all those, we use the gtt allocation function instead * of sub-allocation function for this enlarged MQD buffer. Moreover, * in order to achieve two memory types in a single buffer object, we * pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct * amdgpu memory functions to do so. */ if (kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) { mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if (!mqd_mem_obj) return NULL; retval = amdgpu_amdkfd_alloc_gtt_mem(kfd->kgd, ALIGN(q->ctl_stack_size, PAGE_SIZE) + ALIGN(sizeof(struct v9_mqd), PAGE_SIZE), &(mqd_mem_obj->gtt_mem), &(mqd_mem_obj->gpu_addr), (void *)&(mqd_mem_obj->cpu_ptr), true); } else { retval = kfd_gtt_sa_allocate(kfd, sizeof(struct v9_mqd), &mqd_mem_obj); } if (retval) { kfree(mqd_mem_obj); return NULL; } return mqd_mem_obj; } static void init_mqd(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { uint64_t addr; struct v9_mqd *m; m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr; addr = mqd_mem_obj->gpu_addr; memset(m, 0, sizeof(struct v9_mqd)); m->header = 0xC0310800; m->compute_pipelinestat_enable = 1; m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF; m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF; m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK | 0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT; m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT; m->cp_mqd_base_addr_lo = lower_32_bits(addr); m->cp_mqd_base_addr_hi = upper_32_bits(addr); m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT | 1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT | 1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT; if (q->format == KFD_QUEUE_FORMAT_AQL) { m->cp_hqd_aql_control = 1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT; } if (q->tba_addr) { m->compute_pgm_rsrc2 |= (1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT); } if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) { m->cp_hqd_persistent_state |= (1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT); m->cp_hqd_ctx_save_base_addr_lo = lower_32_bits(q->ctx_save_restore_area_address); m->cp_hqd_ctx_save_base_addr_hi = upper_32_bits(q->ctx_save_restore_area_address); m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size; m->cp_hqd_cntl_stack_size = q->ctl_stack_size; m->cp_hqd_cntl_stack_offset = q->ctl_stack_size; m->cp_hqd_wg_state_offset = q->ctl_stack_size; } *mqd = m; if (gart_addr) *gart_addr = addr; mm->update_mqd(mm, m, q); } static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, (uint32_t __user *)p->write_ptr, wptr_shift, 0, mms); } static int hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, p->doorbell_off); } static void update_mqd(struct mqd_manager *mm, void *mqd, struct queue_properties *q) { struct v9_mqd *m; m = get_mqd(mqd); m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT; m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1; pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control); m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr); m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr); m->cp_hqd_pq_doorbell_control = q->doorbell_off << CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT; pr_debug("cp_hqd_pq_doorbell_control 0x%x\n", m->cp_hqd_pq_doorbell_control); m->cp_hqd_ib_control = 3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT | 1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT; /* * HW does not clamp this field correctly. Maximum EOP queue size * is constrained by per-SE EOP done signal count, which is 8-bit. * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit * more than (EOP entry count - 1) so a queue size of 0x800 dwords * is safe, giving a maximum field value of 0xA. */ m->cp_hqd_eop_control = min(0xA, order_base_2(q->eop_ring_buffer_size / 4) - 1); m->cp_hqd_eop_base_addr_lo = lower_32_bits(q->eop_ring_buffer_address >> 8); m->cp_hqd_eop_base_addr_hi = upper_32_bits(q->eop_ring_buffer_address >> 8); m->cp_hqd_iq_timer = 0; m->cp_hqd_vmid = q->vmid; if (q->format == KFD_QUEUE_FORMAT_AQL) { m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK | 2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT | 1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT | 1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT; m->cp_hqd_pq_doorbell_control |= 1 << CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT; } if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) m->cp_hqd_ctx_save_control = 0; update_cu_mask(mm, mqd, q); set_priority(m, q); q->is_active = QUEUE_IS_ACTIVE(*q); } static uint32_t read_doorbell_id(void *mqd) { struct v9_mqd *m = (struct v9_mqd *)mqd; return m->queue_doorbell_id0; } static int destroy_mqd(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_destroy (mm->dev->kgd, mqd, type, timeout, pipe_id, queue_id); } static void free_mqd(struct mqd_manager *mm, void *mqd, struct kfd_mem_obj *mqd_mem_obj) { struct kfd_dev *kfd = mm->dev; if (mqd_mem_obj->gtt_mem) { amdgpu_amdkfd_free_gtt_mem(kfd->kgd, mqd_mem_obj->gtt_mem); kfree(mqd_mem_obj); } else { kfd_gtt_sa_free(mm->dev, mqd_mem_obj); } } static bool is_occupied(struct mqd_manager *mm, void *mqd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_is_occupied( mm->dev->kgd, queue_address, pipe_id, queue_id); } static int get_wave_state(struct mqd_manager *mm, void *mqd, void __user *ctl_stack, u32 *ctl_stack_used_size, u32 *save_area_used_size) { struct v9_mqd *m; /* Control stack is located one page after MQD. */ void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE); m = get_mqd(mqd); *ctl_stack_used_size = m->cp_hqd_cntl_stack_size - m->cp_hqd_cntl_stack_offset; *save_area_used_size = m->cp_hqd_wg_state_offset - m->cp_hqd_cntl_stack_size; if (copy_to_user(ctl_stack, mqd_ctl_stack, m->cp_hqd_cntl_stack_size)) return -EFAULT; return 0; } static void init_mqd_hiq(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { struct v9_mqd *m; init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q); m = get_mqd(*mqd); m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT | 1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT; } static void init_mqd_sdma(struct mqd_manager *mm, void **mqd, struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, struct queue_properties *q) { struct v9_sdma_mqd *m; m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr; memset(m, 0, sizeof(struct v9_sdma_mqd)); *mqd = m; if (gart_addr) *gart_addr = mqd_mem_obj->gpu_addr; mm->update_mqd(mm, m, q); } static int load_mqd_sdma(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd, (uint32_t __user *)p->write_ptr, mms); } #define SDMA_RLC_DUMMY_DEFAULT 0xf static void update_mqd_sdma(struct mqd_manager *mm, void *mqd, struct queue_properties *q) { struct v9_sdma_mqd *m; m = get_sdma_mqd(mqd); m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT | 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT; m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8); m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8); m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr); m->sdmax_rlcx_doorbell_offset = q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT; m->sdma_engine_id = q->sdma_engine_id; m->sdma_queue_id = q->sdma_queue_id; m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT; q->is_active = QUEUE_IS_ACTIVE(*q); } /* * * preempt type here is ignored because there is only one way * * to preempt sdma queue */ static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout); } static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd); } #if defined(CONFIG_DEBUG_FS) static int debugfs_show_mqd(struct seq_file *m, void *data) { seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4, data, sizeof(struct v9_mqd), false); return 0; } static int debugfs_show_mqd_sdma(struct seq_file *m, void *data) { seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4, data, sizeof(struct v9_sdma_mqd), false); return 0; } #endif struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, struct kfd_dev *dev) { struct mqd_manager *mqd; if (WARN_ON(type >= KFD_MQD_TYPE_MAX)) return NULL; mqd = kzalloc(sizeof(*mqd), GFP_KERNEL); if (!mqd) return NULL; mqd->dev = dev; switch (type) { case KFD_MQD_TYPE_CP: mqd->allocate_mqd = allocate_mqd; mqd->init_mqd = init_mqd; mqd->free_mqd = free_mqd; mqd->load_mqd = load_mqd; mqd->update_mqd = update_mqd; mqd->destroy_mqd = destroy_mqd; mqd->is_occupied = is_occupied; mqd->get_wave_state = get_wave_state; mqd->mqd_size = sizeof(struct v9_mqd); #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd; #endif break; case KFD_MQD_TYPE_HIQ: mqd->allocate_mqd = allocate_hiq_mqd; mqd->init_mqd = init_mqd_hiq; mqd->free_mqd = free_mqd_hiq_sdma; mqd->load_mqd = hiq_load_mqd_kiq; mqd->update_mqd = update_mqd; mqd->destroy_mqd = destroy_mqd; mqd->is_occupied = is_occupied; mqd->mqd_size = sizeof(struct v9_mqd); #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd; #endif mqd->read_doorbell_id = read_doorbell_id; break; case KFD_MQD_TYPE_DIQ: mqd->allocate_mqd = allocate_mqd; mqd->init_mqd = init_mqd_hiq; mqd->free_mqd = free_mqd; mqd->load_mqd = load_mqd; mqd->update_mqd = update_mqd; mqd->destroy_mqd = destroy_mqd; mqd->is_occupied = is_occupied; mqd->mqd_size = sizeof(struct v9_mqd); #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd; #endif break; case KFD_MQD_TYPE_SDMA: mqd->allocate_mqd = allocate_sdma_mqd; mqd->init_mqd = init_mqd_sdma; mqd->free_mqd = free_mqd_hiq_sdma; mqd->load_mqd = load_mqd_sdma; mqd->update_mqd = update_mqd_sdma; mqd->destroy_mqd = destroy_mqd_sdma; mqd->is_occupied = is_occupied_sdma; mqd->mqd_size = sizeof(struct v9_sdma_mqd); #if defined(CONFIG_DEBUG_FS) mqd->debugfs_show_mqd = debugfs_show_mqd_sdma; #endif break; default: kfree(mqd); return NULL; } return mqd; }