/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "amdgpu.h" #include "amdgpu_gfx.h" #include "soc15.h" #include "soc15d.h" #include "soc15_common.h" #include "vega10_enum.h" #include "clearstate_gfx9.h" #include "v9_structs.h" #include "ivsrcid/gfx/irqsrcs_gfx_9_0.h" #include "gc/gc_9_4_3_offset.h" #include "gc/gc_9_4_3_sh_mask.h" #include "gfx_v9_4_3.h" MODULE_FIRMWARE("amdgpu/gc_9_4_3_mec.bin"); MODULE_FIRMWARE("amdgpu/gc_9_4_3_rlc.bin"); #define GFX9_MEC_HPD_SIZE 4096 #define RLCG_UCODE_LOADING_START_ADDRESS 0x00002000L static void gfx_v9_4_3_set_ring_funcs(struct amdgpu_device *adev); static void gfx_v9_4_3_set_irq_funcs(struct amdgpu_device *adev); static void gfx_v9_4_3_set_gds_init(struct amdgpu_device *adev); static void gfx_v9_4_3_set_rlc_funcs(struct amdgpu_device *adev); static int gfx_v9_4_3_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info); static void gfx_v9_4_3_kiq_set_resources(struct amdgpu_ring *kiq_ring, uint64_t queue_mask) { amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6)); amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) | /* vmid_mask:0* queue_type:0 (KIQ) */ PACKET3_SET_RESOURCES_QUEUE_TYPE(0)); amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */ amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */ amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */ amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */ amdgpu_ring_write(kiq_ring, 0); /* oac mask */ amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */ } static void gfx_v9_4_3_kiq_map_queues(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring) { struct amdgpu_device *adev = kiq_ring->adev; uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj); uint64_t wptr_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); /* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/ amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(0) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(ring->queue) | PACKET3_MAP_QUEUES_PIPE(ring->pipe) | PACKET3_MAP_QUEUES_ME((ring->me == 1 ? 0 : 1)) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | PACKET3_MAP_QUEUES_ENGINE_SEL(eng_sel) | /* num_queues: must be 1 */ PACKET3_MAP_QUEUES_NUM_QUEUES(1)); amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index)); amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr)); } static void gfx_v9_4_3_kiq_unmap_queues(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring, enum amdgpu_unmap_queues_action action, u64 gpu_addr, u64 seq) { uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4)); amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_UNMAP_QUEUES_ACTION(action) | PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) | PACKET3_UNMAP_QUEUES_ENGINE_SEL(eng_sel) | PACKET3_UNMAP_QUEUES_NUM_QUEUES(1)); amdgpu_ring_write(kiq_ring, PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index)); if (action == PREEMPT_QUEUES_NO_UNMAP) { amdgpu_ring_write(kiq_ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(kiq_ring, seq); } else { amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); } } static void gfx_v9_4_3_kiq_query_status(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring, u64 addr, u64 seq) { uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_QUERY_STATUS, 5)); amdgpu_ring_write(kiq_ring, PACKET3_QUERY_STATUS_CONTEXT_ID(0) | PACKET3_QUERY_STATUS_INTERRUPT_SEL(0) | PACKET3_QUERY_STATUS_COMMAND(2)); /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ amdgpu_ring_write(kiq_ring, PACKET3_QUERY_STATUS_DOORBELL_OFFSET(ring->doorbell_index) | PACKET3_QUERY_STATUS_ENG_SEL(eng_sel)); amdgpu_ring_write(kiq_ring, lower_32_bits(addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(seq)); amdgpu_ring_write(kiq_ring, upper_32_bits(seq)); } static void gfx_v9_4_3_kiq_invalidate_tlbs(struct amdgpu_ring *kiq_ring, uint16_t pasid, uint32_t flush_type, bool all_hub) { amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0)); amdgpu_ring_write(kiq_ring, PACKET3_INVALIDATE_TLBS_DST_SEL(1) | PACKET3_INVALIDATE_TLBS_ALL_HUB(all_hub) | PACKET3_INVALIDATE_TLBS_PASID(pasid) | PACKET3_INVALIDATE_TLBS_FLUSH_TYPE(flush_type)); } static const struct kiq_pm4_funcs gfx_v9_4_3_kiq_pm4_funcs = { .kiq_set_resources = gfx_v9_4_3_kiq_set_resources, .kiq_map_queues = gfx_v9_4_3_kiq_map_queues, .kiq_unmap_queues = gfx_v9_4_3_kiq_unmap_queues, .kiq_query_status = gfx_v9_4_3_kiq_query_status, .kiq_invalidate_tlbs = gfx_v9_4_3_kiq_invalidate_tlbs, .set_resources_size = 8, .map_queues_size = 7, .unmap_queues_size = 6, .query_status_size = 7, .invalidate_tlbs_size = 2, }; static void gfx_v9_4_3_set_kiq_pm4_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->gfx.num_xcd; i++) adev->gfx.kiq[i].pmf = &gfx_v9_4_3_kiq_pm4_funcs; } static void gfx_v9_4_3_init_golden_registers(struct amdgpu_device *adev) { } static void gfx_v9_4_3_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel, bool wc, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) | WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v9_4_3_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel, int mem_space, int opt, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, /* memory (1) or register (0) */ (WAIT_REG_MEM_MEM_SPACE(mem_space) | WAIT_REG_MEM_OPERATION(opt) | /* wait */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(eng_sel))); if (mem_space) BUG_ON(addr0 & 0x3); /* Dword align */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); amdgpu_ring_write(ring, ref); amdgpu_ring_write(ring, mask); amdgpu_ring_write(ring, inv); /* poll interval */ } static int gfx_v9_4_3_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t tmp = 0; unsigned i; int r; WREG32_SOC15(GC, 0, regSCRATCH_REG0, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) return r; amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0) - PACKET3_SET_UCONFIG_REG_START); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regSCRATCH_REG0); if (tmp == 0xDEADBEEF) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; return r; } static int gfx_v9_4_3_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; uint64_t gpu_addr; uint32_t tmp; long r; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); adev->wb.wb[index] = cpu_to_le32(0xCAFEDEAD); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 16, AMDGPU_IB_POOL_DIRECT, &ib); if (r) goto err1; ib.ptr[0] = PACKET3(PACKET3_WRITE_DATA, 3); ib.ptr[1] = WRITE_DATA_DST_SEL(5) | WR_CONFIRM; ib.ptr[2] = lower_32_bits(gpu_addr); ib.ptr[3] = upper_32_bits(gpu_addr); ib.ptr[4] = 0xDEADBEEF; ib.length_dw = 5; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err2; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err2; } else if (r < 0) { goto err2; } tmp = adev->wb.wb[index]; if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err2: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err1: amdgpu_device_wb_free(adev, index); return r; } /* This value might differs per partition */ static uint64_t gfx_v9_4_3_get_gpu_clock_counter(struct amdgpu_device *adev) { uint64_t clock; amdgpu_gfx_off_ctrl(adev, false); mutex_lock(&adev->gfx.gpu_clock_mutex); WREG32_SOC15(GC, 0, regRLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32_SOC15(GC, 0, regRLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32_SOC15(GC, 0, regRLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&adev->gfx.gpu_clock_mutex); amdgpu_gfx_off_ctrl(adev, true); return clock; } static void gfx_v9_4_3_free_microcode(struct amdgpu_device *adev) { amdgpu_ucode_release(&adev->gfx.pfp_fw); amdgpu_ucode_release(&adev->gfx.me_fw); amdgpu_ucode_release(&adev->gfx.ce_fw); amdgpu_ucode_release(&adev->gfx.rlc_fw); amdgpu_ucode_release(&adev->gfx.mec_fw); amdgpu_ucode_release(&adev->gfx.mec2_fw); kfree(adev->gfx.rlc.register_list_format); } static int gfx_v9_4_3_init_rlc_microcode(struct amdgpu_device *adev, const char *chip_name) { char fw_name[30]; int err; const struct rlc_firmware_header_v2_0 *rlc_hdr; uint16_t version_major; uint16_t version_minor; snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw, fw_name); if (err) goto out; rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; version_major = le16_to_cpu(rlc_hdr->header.header_version_major); version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor); err = amdgpu_gfx_rlc_init_microcode(adev, version_major, version_minor); out: if (err) amdgpu_ucode_release(&adev->gfx.rlc_fw); return err; } static bool gfx_v9_4_3_should_disable_gfxoff(struct pci_dev *pdev) { return true; } static void gfx_v9_4_3_check_if_need_gfxoff(struct amdgpu_device *adev) { if (gfx_v9_4_3_should_disable_gfxoff(adev->pdev)) adev->pm.pp_feature &= ~PP_GFXOFF_MASK; } static int gfx_v9_4_3_init_cp_compute_microcode(struct amdgpu_device *adev, const char *chip_name) { char fw_name[30]; int err; snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw, fw_name); if (err) goto out; amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1_JT); adev->gfx.mec2_fw_version = adev->gfx.mec_fw_version; adev->gfx.mec2_feature_version = adev->gfx.mec_feature_version; gfx_v9_4_3_check_if_need_gfxoff(adev); out: if (err) amdgpu_ucode_release(&adev->gfx.mec_fw); return err; } static int gfx_v9_4_3_init_microcode(struct amdgpu_device *adev) { const char *chip_name; int r; chip_name = "gc_9_4_3"; r = gfx_v9_4_3_init_rlc_microcode(adev, chip_name); if (r) return r; r = gfx_v9_4_3_init_cp_compute_microcode(adev, chip_name); if (r) return r; return r; } static u32 gfx_v9_4_3_get_csb_size(struct amdgpu_device *adev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = gfx9_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* end clear state */ count += 2; /* clear state */ count += 2; return count; } static void gfx_v9_4_3_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (adev->gfx.rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static void gfx_v9_4_3_mec_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL); amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_obj, NULL, NULL); } static int gfx_v9_4_3_mec_init(struct amdgpu_device *adev) { int r, i; u32 *hpd; const __le32 *fw_data; unsigned fw_size; u32 *fw; size_t mec_hpd_size; const struct gfx_firmware_header_v1_0 *mec_hdr; for (i = 0; i < adev->gfx.num_xcd; i++) bitmap_zero(adev->gfx.mec_bitmap[i].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); /* take ownership of the relevant compute queues */ amdgpu_gfx_compute_queue_acquire(adev); mec_hpd_size = adev->gfx.num_compute_rings * GFX9_MEC_HPD_SIZE; if (mec_hpd_size) { r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &adev->gfx.mec.hpd_eop_obj, &adev->gfx.mec.hpd_eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r); gfx_v9_4_3_mec_fini(adev); return r; } if (amdgpu_emu_mode == 1) { for (i = 0; i < mec_hpd_size / 4; i++) { memset((void *)(hpd + i), 0, 4); if (i % 50 == 0) msleep(1); } } else { memset(hpd, 0, mec_hpd_size); } amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); } mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, mec_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.mec_fw_obj, &adev->gfx.mec.mec_fw_gpu_addr, (void **)&fw); if (r) { dev_warn(adev->dev, "(%d) create mec firmware bo failed\n", r); gfx_v9_4_3_mec_fini(adev); return r; } memcpy(fw, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj); return 0; } static void gfx_v9_4_3_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance, int xcc_id) { u32 data; if (instance == 0xffffffff) data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX, instance); if (se_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num); if (sh_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num); WREG32_SOC15_RLC_SHADOW_EX(reg, GC, xcc_id, regGRBM_GFX_INDEX, data); } static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t address) { WREG32_SOC15_RLC(GC, 0, regSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (address << SQ_IND_INDEX__INDEX__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK)); return RREG32_SOC15(GC, 0, regSQ_IND_DATA); } static void wave_read_regs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t regno, uint32_t num, uint32_t *out) { WREG32_SOC15_RLC(GC, 0, regSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (regno << SQ_IND_INDEX__INDEX__SHIFT) | (thread << SQ_IND_INDEX__THREAD_ID__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK) | (SQ_IND_INDEX__AUTO_INCR_MASK)); while (num--) *(out++) = RREG32_SOC15(GC, 0, regSQ_IND_DATA); } static void gfx_v9_4_3_read_wave_data(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields) { /* type 1 wave data */ dst[(*no_fields)++] = 1; dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_STATUS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_HW_ID); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW1); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_GPR_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_LDS_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TRAPSTS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_STS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_DBG0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_M0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_MODE); } static void gfx_v9_4_3_read_wave_sgprs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs(adev, simd, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size, dst); } static void gfx_v9_4_3_read_wave_vgprs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs(adev, simd, wave, thread, start + SQIND_WAVE_VGPRS_OFFSET, size, dst); } static void gfx_v9_4_3_select_me_pipe_q(struct amdgpu_device *adev, u32 me, u32 pipe, u32 q, u32 vm) { soc15_grbm_select(adev, me, pipe, q, vm, 0); } static const struct amdgpu_gfx_funcs gfx_v9_4_3_gfx_funcs = { .get_gpu_clock_counter = &gfx_v9_4_3_get_gpu_clock_counter, .select_se_sh = &gfx_v9_4_3_select_se_sh, .read_wave_data = &gfx_v9_4_3_read_wave_data, .read_wave_sgprs = &gfx_v9_4_3_read_wave_sgprs, .read_wave_vgprs = &gfx_v9_4_3_read_wave_vgprs, .select_me_pipe_q = &gfx_v9_4_3_select_me_pipe_q, }; static int gfx_v9_4_3_gpu_early_init(struct amdgpu_device *adev) { u32 gb_addr_config; adev->gfx.funcs = &gfx_v9_4_3_gfx_funcs; switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(9, 4, 3): adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0; gb_addr_config = RREG32_SOC15(GC, 0, regGB_ADDR_CONFIG); break; default: BUG(); break; } adev->gfx.config.gb_addr_config = gb_addr_config; adev->gfx.config.gb_addr_config_fields.num_pipes = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_PIPES); adev->gfx.config.max_tile_pipes = adev->gfx.config.gb_addr_config_fields.num_pipes; adev->gfx.config.gb_addr_config_fields.num_banks = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_BANKS); adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS); adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_RB_PER_SE); adev->gfx.config.gb_addr_config_fields.num_se = 1 << REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_SHADER_ENGINES); adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 + REG_GET_FIELD( adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE)); return 0; } static int gfx_v9_4_3_compute_ring_init(struct amdgpu_device *adev, int ring_id, int xcc_id, int mec, int pipe, int queue) { unsigned irq_type; struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id]; unsigned int hw_prio; ring = &adev->gfx.compute_ring[ring_id]; /* mec0 is me1 */ ring->xcc_id = xcc_id; ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; if (xcc_id >= 1) ring->doorbell_index = (adev->doorbell_index.xcc1_mec_ring0_start + ring_id - adev->gfx.num_compute_rings) << 1; else ring->doorbell_index = (adev->doorbell_index.mec_ring0 + ring_id) << 1; ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (ring_id * GFX9_MEC_HPD_SIZE); ring->vm_hub = AMDGPU_GFXHUB_0; sprintf(ring->name, "comp_%d.%d.%d.%d", ring->xcc_id, ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec) + ring->pipe; hw_prio = amdgpu_gfx_is_high_priority_compute_queue(adev, ring) ? AMDGPU_GFX_PIPE_PRIO_HIGH : AMDGPU_GFX_PIPE_PRIO_NORMAL; /* type-2 packets are deprecated on MEC, use type-3 instead */ return amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type, hw_prio, NULL); } static int gfx_v9_4_3_sw_init(void *handle) { int i, j, k, r, ring_id, xcc_id; struct amdgpu_kiq *kiq; struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfx.mec.num_mec = 2; adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; /* EOP Event */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_9_0__SRCID__CP_EOP_INTERRUPT, &adev->gfx.eop_irq); if (r) return r; /* Privileged reg */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_9_0__SRCID__CP_PRIV_REG_FAULT, &adev->gfx.priv_reg_irq); if (r) return r; /* Privileged inst */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_9_0__SRCID__CP_PRIV_INSTR_FAULT, &adev->gfx.priv_inst_irq); if (r) return r; adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE; r = adev->gfx.rlc.funcs->init(adev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } r = gfx_v9_4_3_mec_init(adev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } /* set up the compute queues - allocate horizontally across pipes */ ring_id = 0; for (xcc_id = 0; xcc_id < adev->gfx.num_xcd; xcc_id++) { for (i = 0; i < adev->gfx.mec.num_mec; ++i) { for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) { if (!amdgpu_gfx_is_mec_queue_enabled( adev, xcc_id, i, k, j)) continue; r = gfx_v9_4_3_compute_ring_init(adev, ring_id, xcc_id, i, k, j); if (r) return r; ring_id++; } } } r = amdgpu_gfx_kiq_init(adev, GFX9_MEC_HPD_SIZE, xcc_id); if (r) { DRM_ERROR("Failed to init KIQ BOs!\n"); return r; } kiq = &adev->gfx.kiq[xcc_id]; r = amdgpu_gfx_kiq_init_ring(adev, &kiq->ring, &kiq->irq, xcc_id); if (r) return r; /* create MQD for all compute queues as wel as KIQ for SRIOV case */ r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct v9_mqd_allocation), xcc_id); if (r) return r; } r = gfx_v9_4_3_gpu_early_init(adev); if (r) return r; return 0; } static int gfx_v9_4_3_sw_fini(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->gfx.num_compute_rings * adev->gfx.num_xcd; i++) amdgpu_ring_fini(&adev->gfx.compute_ring[i]); for (i = 0; i < adev->gfx.num_xcd; i++) { amdgpu_gfx_mqd_sw_fini(adev, i); amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq[i].ring); amdgpu_gfx_kiq_fini(adev, i); } gfx_v9_4_3_mec_fini(adev); amdgpu_bo_unref(&adev->gfx.rlc.clear_state_obj); gfx_v9_4_3_free_microcode(adev); return 0; } static u32 gfx_v9_4_3_get_rb_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32_SOC15(GC, 0, regCC_RB_BACKEND_DISABLE); data |= RREG32_SOC15(GC, 0, regGC_USER_RB_BACKEND_DISABLE); data &= CC_RB_BACKEND_DISABLE__BACKEND_DISABLE_MASK; data >>= GC_USER_RB_BACKEND_DISABLE__BACKEND_DISABLE__SHIFT; mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se); return (~data) & mask; } static void gfx_v9_4_3_setup_rb(struct amdgpu_device *adev, int xcc_id) { int i, j; u32 data; u32 active_rbs = 0; u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v9_4_3_select_se_sh(adev, i, j, 0xffffffff, xcc_id); data = gfx_v9_4_3_get_rb_active_bitmap(adev); active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) * rb_bitmap_width_per_sh); } } gfx_v9_4_3_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, xcc_id); mutex_unlock(&adev->grbm_idx_mutex); adev->gfx.config.backend_enable_mask = active_rbs; adev->gfx.config.num_rbs = hweight32(active_rbs); } #define DEFAULT_SH_MEM_BASES (0x6000) static void gfx_v9_4_3_init_compute_vmid(struct amdgpu_device *adev, int xcc_id) { int i; uint32_t sh_mem_config; uint32_t sh_mem_bases; /* * Configure apertures: * LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB) * Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB) * GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB) */ sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16); sh_mem_config = SH_MEM_ADDRESS_MODE_64 | SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT; mutex_lock(&adev->srbm_mutex); for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) { soc15_grbm_select(adev, 0, 0, 0, i, xcc_id); /* CP and shaders */ WREG32_SOC15_RLC(GC, xcc_id, regSH_MEM_CONFIG, sh_mem_config); WREG32_SOC15_RLC(GC, xcc_id, regSH_MEM_BASES, sh_mem_bases); } soc15_grbm_select(adev, 0, 0, 0, 0, xcc_id); mutex_unlock(&adev->srbm_mutex); /* Initialize all compute VMIDs to have no GDS, GWS, or OA acccess. These should be enabled by FW for target VMIDs. */ for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) { WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_VMID0_BASE, 2 * i, 0); WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_VMID0_SIZE, 2 * i, 0); WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_GWS_VMID0, i, 0); WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_OA_VMID0, i, 0); } } static void gfx_v9_4_3_init_gds_vmid(struct amdgpu_device *adev, int xcc_id) { int vmid; /* * Initialize all compute and user-gfx VMIDs to have no GDS, GWS, or OA * access. Compute VMIDs should be enabled by FW for target VMIDs, * the driver can enable them for graphics. VMID0 should maintain * access so that HWS firmware can save/restore entries. */ for (vmid = 1; vmid < AMDGPU_NUM_VMID; vmid++) { WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_VMID0_BASE, 2 * vmid, 0); WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_VMID0_SIZE, 2 * vmid, 0); WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_GWS_VMID0, vmid, 0); WREG32_SOC15_OFFSET(GC, xcc_id, regGDS_OA_VMID0, vmid, 0); } } static void gfx_v9_4_3_constants_init(struct amdgpu_device *adev) { u32 tmp; int i, j; for (i = 0; i < adev->gfx.num_xcd; i++) { WREG32_FIELD15_PREREG(GC, i, GRBM_CNTL, READ_TIMEOUT, 0xff); gfx_v9_4_3_setup_rb(adev, i); } gfx_v9_4_3_get_cu_info(adev, &adev->gfx.cu_info); adev->gfx.config.db_debug2 = RREG32_SOC15(GC, 0, regDB_DEBUG2); /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->vm_manager.id_mgr[AMDGPU_GFXHUB_0].num_ids; i++) { for (j = 0; j < adev->gfx.num_xcd; j++) { soc15_grbm_select(adev, 0, 0, 0, i, j); /* CP and shaders */ if (i == 0) { tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, ALIGNMENT_MODE, SH_MEM_ALIGNMENT_MODE_UNALIGNED); tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, RETRY_DISABLE, !!adev->gmc.noretry); WREG32_SOC15_RLC(GC, j, regSH_MEM_CONFIG, tmp); WREG32_SOC15_RLC(GC, j, regSH_MEM_BASES, 0); } else { tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, ALIGNMENT_MODE, SH_MEM_ALIGNMENT_MODE_UNALIGNED); tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, RETRY_DISABLE, !!adev->gmc.noretry); WREG32_SOC15_RLC(GC, j, regSH_MEM_CONFIG, tmp); tmp = REG_SET_FIELD(0, SH_MEM_BASES, PRIVATE_BASE, (adev->gmc.private_aperture_start >> 48)); tmp = REG_SET_FIELD(tmp, SH_MEM_BASES, SHARED_BASE, (adev->gmc.shared_aperture_start >> 48)); WREG32_SOC15_RLC(GC, j, regSH_MEM_BASES, tmp); } } } soc15_grbm_select(adev, 0, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); for (i = 0; i < adev->gfx.num_xcd; i++) { gfx_v9_4_3_init_compute_vmid(adev, i); gfx_v9_4_3_init_gds_vmid(adev, i); } } static void gfx_v9_4_3_enable_save_restore_machine(struct amdgpu_device *adev, int xcc_id) { WREG32_FIELD15_PREREG(GC, xcc_id, RLC_SRM_CNTL, SRM_ENABLE, 1); } static void gfx_v9_4_3_init_csb(struct amdgpu_device *adev, int xcc_id) { adev->gfx.rlc.funcs->get_csb_buffer(adev, adev->gfx.rlc.cs_ptr); /* csib */ WREG32_RLC(SOC15_REG_OFFSET(GC, xcc_id, regRLC_CSIB_ADDR_HI), adev->gfx.rlc.clear_state_gpu_addr >> 32); WREG32_RLC(SOC15_REG_OFFSET(GC, xcc_id, regRLC_CSIB_ADDR_LO), adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc); WREG32_RLC(SOC15_REG_OFFSET(GC, xcc_id, regRLC_CSIB_LENGTH), adev->gfx.rlc.clear_state_size); } static void gfx_v9_4_3_init_pg(struct amdgpu_device *adev, int xcc_id) { gfx_v9_4_3_init_csb(adev, xcc_id); /* * Rlc save restore list is workable since v2_1. * And it's needed by gfxoff feature. */ if (adev->gfx.rlc.is_rlc_v2_1) gfx_v9_4_3_enable_save_restore_machine(adev, xcc_id); if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_PG | AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_GFX_DMG | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GDS | AMD_PG_SUPPORT_RLC_SMU_HS)) { WREG32_SOC15(GC, 0, regRLC_JUMP_TABLE_RESTORE, adev->gfx.rlc.cp_table_gpu_addr >> 8); } } static void gfx_v9_4_3_disable_gpa_mode(struct amdgpu_device *adev, int xcc_id) { uint32_t data; data = RREG32_SOC15(GC, xcc_id, regCPC_PSP_DEBUG); data |= CPC_PSP_DEBUG__UTCL2IUGPAOVERRIDE_MASK; WREG32_SOC15(GC, xcc_id, regCPC_PSP_DEBUG, data); } static bool gfx_v9_4_3_is_rlc_enabled(struct amdgpu_device *adev) { uint32_t rlc_setting; /* if RLC is not enabled, do nothing */ rlc_setting = RREG32_SOC15(GC, 0, regRLC_CNTL); if (!(rlc_setting & RLC_CNTL__RLC_ENABLE_F32_MASK)) return false; return true; } static void gfx_v9_4_3_set_safe_mode(struct amdgpu_device *adev, int xcc_id) { uint32_t data; unsigned i; data = RLC_SAFE_MODE__CMD_MASK; data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT); WREG32_SOC15(GC, xcc_id, regRLC_SAFE_MODE, data); /* wait for RLC_SAFE_MODE */ for (i = 0; i < adev->usec_timeout; i++) { if (!REG_GET_FIELD(RREG32_SOC15(GC, 0, regRLC_SAFE_MODE), RLC_SAFE_MODE, CMD)) break; udelay(1); } } static void gfx_v9_4_3_unset_safe_mode(struct amdgpu_device *adev, int xcc_id) { uint32_t data; data = RLC_SAFE_MODE__CMD_MASK; WREG32_SOC15(GC, xcc_id, regRLC_SAFE_MODE, data); } static int gfx_v9_4_3_rlc_init(struct amdgpu_device *adev) { const struct cs_section_def *cs_data; int r; adev->gfx.rlc.cs_data = gfx9_cs_data; cs_data = adev->gfx.rlc.cs_data; if (cs_data) { /* init clear state block */ r = amdgpu_gfx_rlc_init_csb(adev); if (r) return r; } /* init spm vmid with 0xf */ if (adev->gfx.rlc.funcs->update_spm_vmid) adev->gfx.rlc.funcs->update_spm_vmid(adev, 0xf); return 0; } static void gfx_v9_4_3_wait_for_rlc_serdes(struct amdgpu_device *adev, int xcc_id) { u32 i, j, k; u32 mask; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v9_4_3_select_se_sh(adev, i, j, 0xffffffff, xcc_id); for (k = 0; k < adev->usec_timeout; k++) { if (RREG32_SOC15(GC, 0, regRLC_SERDES_CU_MASTER_BUSY) == 0) break; udelay(1); } if (k == adev->usec_timeout) { gfx_v9_4_3_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, xcc_id); mutex_unlock(&adev->grbm_idx_mutex); DRM_INFO("Timeout wait for RLC serdes %u,%u\n", i, j); return; } } } gfx_v9_4_3_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, xcc_id); mutex_unlock(&adev->grbm_idx_mutex); mask = RLC_SERDES_NONCU_MASTER_BUSY__SE_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__GC_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC0_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC1_MASTER_BUSY_MASK; for (k = 0; k < adev->usec_timeout; k++) { if ((RREG32_SOC15(GC, 0, regRLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) break; udelay(1); } } static void gfx_v9_4_3_enable_gui_idle_interrupt(struct amdgpu_device *adev, bool enable, int xcc_id) { u32 tmp; /* These interrupts should be enabled to drive DS clock */ tmp = RREG32_SOC15(GC, xcc_id, regCP_INT_CNTL_RING0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0); WREG32_SOC15(GC, xcc_id, regCP_INT_CNTL_RING0, tmp); } static void gfx_v9_4_3_rlc_stop(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->gfx.num_xcd; i++) { WREG32_FIELD15_PREREG(GC, i, RLC_CNTL, RLC_ENABLE_F32, 0); gfx_v9_4_3_enable_gui_idle_interrupt(adev, false, i); gfx_v9_4_3_wait_for_rlc_serdes(adev, i); } } static void gfx_v9_4_3_rlc_reset(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->gfx.num_xcd; i++) { WREG32_FIELD15_PREREG(GC, i, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); udelay(50); WREG32_FIELD15_PREREG(GC, i, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0); udelay(50); } } static void gfx_v9_4_3_rlc_start(struct amdgpu_device *adev) { #ifdef AMDGPU_RLC_DEBUG_RETRY u32 rlc_ucode_ver; #endif int i; for (i = 0; i < adev->gfx.num_xcd; i++) { WREG32_FIELD15_PREREG(GC, i, RLC_CNTL, RLC_ENABLE_F32, 1); udelay(50); /* carrizo do enable cp interrupt after cp inited */ if (!(adev->flags & AMD_IS_APU)) { gfx_v9_4_3_enable_gui_idle_interrupt(adev, true, i); udelay(50); } #ifdef AMDGPU_RLC_DEBUG_RETRY /* RLC_GPM_GENERAL_6 : RLC Ucode version */ rlc_ucode_ver = RREG32_SOC15(GC, i, regRLC_GPM_GENERAL_6); if (rlc_ucode_ver == 0x108) { dev_info(adev->dev, "Using rlc debug ucode. regRLC_GPM_GENERAL_6 ==0x08%x / fw_ver == %i \n", rlc_ucode_ver, adev->gfx.rlc_fw_version); /* RLC_GPM_TIMER_INT_3 : Timer interval in RefCLK cycles, * default is 0x9C4 to create a 100us interval */ WREG32_SOC15(GC, i, regRLC_GPM_TIMER_INT_3, 0x9C4); /* RLC_GPM_GENERAL_12 : Minimum gap between wptr and rptr * to disable the page fault retry interrupts, default is * 0x100 (256) */ WREG32_SOC15(GC, i, regRLC_GPM_GENERAL_12, 0x100); } #endif } } static int gfx_v9_4_3_rlc_load_microcode(struct amdgpu_device *adev, int xcc_id) { const struct rlc_firmware_header_v2_0 *hdr; const __le32 *fw_data; unsigned i, fw_size; if (!adev->gfx.rlc_fw) return -EINVAL; hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; amdgpu_ucode_print_rlc_hdr(&hdr->header); fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, xcc_id, regRLC_GPM_UCODE_ADDR, RLCG_UCODE_LOADING_START_ADDRESS); for (i = 0; i < fw_size; i++) { if (amdgpu_emu_mode == 1 && i % 100 == 0) { dev_info(adev->dev, "Write RLC ucode data %u DWs\n", i); msleep(1); } WREG32_SOC15(GC, xcc_id, regRLC_GPM_UCODE_DATA, le32_to_cpup(fw_data++)); } WREG32_SOC15(GC, xcc_id, regRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version); return 0; } static int gfx_v9_4_3_rlc_resume(struct amdgpu_device *adev) { int r, i; adev->gfx.rlc.funcs->stop(adev); for (i = 0; i < adev->gfx.num_xcd; i++) { /* disable CG */ WREG32_SOC15(GC, i, regRLC_CGCG_CGLS_CTRL, 0); gfx_v9_4_3_init_pg(adev, i); if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { /* legacy rlc firmware loading */ r = gfx_v9_4_3_rlc_load_microcode(adev, i); if (r) return r; } } adev->gfx.rlc.funcs->start(adev); return 0; } static void gfx_v9_4_3_update_spm_vmid(struct amdgpu_device *adev, unsigned vmid) { u32 reg, data; reg = SOC15_REG_OFFSET(GC, 0, regRLC_SPM_MC_CNTL); if (amdgpu_sriov_is_pp_one_vf(adev)) data = RREG32_NO_KIQ(reg); else data = RREG32(reg); data &= ~RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK; data |= (vmid & RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK) << RLC_SPM_MC_CNTL__RLC_SPM_VMID__SHIFT; if (amdgpu_sriov_is_pp_one_vf(adev)) WREG32_SOC15_NO_KIQ(GC, 0, regRLC_SPM_MC_CNTL, data); else WREG32_SOC15(GC, 0, regRLC_SPM_MC_CNTL, data); } static const struct soc15_reg_rlcg rlcg_access_gc_9_4_3[] = { {SOC15_REG_ENTRY(GC, 0, regGRBM_GFX_INDEX)}, {SOC15_REG_ENTRY(GC, 0, regSQ_IND_INDEX)}, }; static bool gfx_v9_4_3_check_rlcg_range(struct amdgpu_device *adev, uint32_t offset, struct soc15_reg_rlcg *entries, int arr_size) { int i; uint32_t reg; if (!entries) return false; for (i = 0; i < arr_size; i++) { const struct soc15_reg_rlcg *entry; entry = &entries[i]; reg = adev->reg_offset[entry->hwip][entry->instance][entry->segment] + entry->reg; if (offset == reg) return true; } return false; } static bool gfx_v9_4_3_is_rlcg_access_range(struct amdgpu_device *adev, u32 offset) { return gfx_v9_4_3_check_rlcg_range(adev, offset, (void *)rlcg_access_gc_9_4_3, ARRAY_SIZE(rlcg_access_gc_9_4_3)); } static void gfx_v9_4_3_cp_compute_enable(struct amdgpu_device *adev, bool enable, int xcc_id) { if (enable) { WREG32_SOC15_RLC(GC, xcc_id, regCP_MEC_CNTL, 0); } else { WREG32_SOC15_RLC(GC, xcc_id, regCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK)); adev->gfx.kiq[xcc_id].ring.sched.ready = false; } udelay(50); } static int gfx_v9_4_3_cp_compute_load_microcode(struct amdgpu_device *adev, int xcc_id) { const struct gfx_firmware_header_v1_0 *mec_hdr; const __le32 *fw_data; unsigned i; u32 tmp; u32 mec_ucode_addr_offset; u32 mec_ucode_data_offset; if (!adev->gfx.mec_fw) return -EINVAL; gfx_v9_4_3_cp_compute_enable(adev, false, xcc_id); mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; amdgpu_ucode_print_gfx_hdr(&mec_hdr->header); fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); tmp = 0; tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, xcc_id, regCP_CPC_IC_BASE_CNTL, tmp); WREG32_SOC15(GC, xcc_id, regCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr & 0xFFFFF000); WREG32_SOC15(GC, xcc_id, regCP_CPC_IC_BASE_HI, upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr)); mec_ucode_addr_offset = SOC15_REG_OFFSET(GC, xcc_id, regCP_MEC_ME1_UCODE_ADDR); mec_ucode_data_offset = SOC15_REG_OFFSET(GC, xcc_id, regCP_MEC_ME1_UCODE_DATA); /* MEC1 */ WREG32(mec_ucode_addr_offset, mec_hdr->jt_offset); for (i = 0; i < mec_hdr->jt_size; i++) WREG32(mec_ucode_data_offset, le32_to_cpup(fw_data + mec_hdr->jt_offset + i)); WREG32(mec_ucode_addr_offset, adev->gfx.mec_fw_version); /* Todo : Loading MEC2 firmware is only necessary if MEC2 should run different microcode than MEC1. */ return 0; } /* KIQ functions */ static void gfx_v9_4_3_kiq_setting(struct amdgpu_ring *ring, int xcc_id) { uint32_t tmp; struct amdgpu_device *adev = ring->adev; /* tell RLC which is KIQ queue */ tmp = RREG32_SOC15(GC, xcc_id, regRLC_CP_SCHEDULERS); tmp &= 0xffffff00; tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue); WREG32_SOC15_RLC(GC, xcc_id, regRLC_CP_SCHEDULERS, tmp); tmp |= 0x80; WREG32_SOC15_RLC(GC, xcc_id, regRLC_CP_SCHEDULERS, tmp); } static void gfx_v9_4_3_mqd_set_priority(struct amdgpu_ring *ring, struct v9_mqd *mqd) { struct amdgpu_device *adev = ring->adev; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { if (amdgpu_gfx_is_high_priority_compute_queue(adev, ring)) { mqd->cp_hqd_pipe_priority = AMDGPU_GFX_PIPE_PRIO_HIGH; mqd->cp_hqd_queue_priority = AMDGPU_GFX_QUEUE_PRIORITY_MAXIMUM; } } } static int gfx_v9_4_3_mqd_init(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr; uint32_t tmp; mqd->header = 0xC0310800; mqd->compute_pipelinestat_enable = 0x00000001; mqd->compute_static_thread_mgmt_se0 = 0xffffffff; mqd->compute_static_thread_mgmt_se1 = 0xffffffff; mqd->compute_static_thread_mgmt_se2 = 0xffffffff; mqd->compute_static_thread_mgmt_se3 = 0xffffffff; mqd->compute_misc_reserved = 0x00000003; mqd->dynamic_cu_mask_addr_lo = lower_32_bits(ring->mqd_gpu_addr + offsetof(struct v9_mqd_allocation, dynamic_cu_mask)); mqd->dynamic_cu_mask_addr_hi = upper_32_bits(ring->mqd_gpu_addr + offsetof(struct v9_mqd_allocation, dynamic_cu_mask)); eop_base_addr = ring->eop_gpu_addr >> 8; mqd->cp_hqd_eop_base_addr_lo = eop_base_addr; mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE, (order_base_2(GFX9_MEC_HPD_SIZE / 4) - 1)); mqd->cp_hqd_eop_control = tmp; /* enable doorbell? */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } else { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* disable the queue if it's active */ ring->wptr = 0; mqd->cp_hqd_dequeue_request = 0; mqd->cp_hqd_pq_rptr = 0; mqd->cp_hqd_pq_wptr_lo = 0; mqd->cp_hqd_pq_wptr_hi = 0; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr_lo = ring->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr); /* set MQD vmid to 0 */ tmp = RREG32_SOC15(GC, 0, regCP_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0); mqd->cp_mqd_control = tmp; /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = ring->gpu_addr >> 8; mqd->cp_hqd_pq_base_lo = hqd_gpu_addr; mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); /* set up the HQD, this is similar to CP_RB0_CNTL */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE, (order_base_2(ring->ring_size / 4) - 1)); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE, ((order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1) << 8)); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1); #endif tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ROQ_PQ_IB_FLIP, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1); mqd->cp_hqd_pq_control = tmp; /* set the wb address whether it's enabled or not */ wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ ring->wptr = 0; mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR); /* set the vmid for the queue */ mqd->cp_hqd_vmid = 0; tmp = RREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE); tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53); mqd->cp_hqd_persistent_state = tmp; /* set MIN_IB_AVAIL_SIZE */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_IB_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3); mqd->cp_hqd_ib_control = tmp; /* set static priority for a queue/ring */ gfx_v9_4_3_mqd_set_priority(ring, mqd); mqd->cp_hqd_quantum = RREG32(regCP_HQD_QUANTUM); /* map_queues packet doesn't need activate the queue, * so only kiq need set this field. */ if (ring->funcs->type == AMDGPU_RING_TYPE_KIQ) mqd->cp_hqd_active = 1; return 0; } static int gfx_v9_4_3_kiq_init_register(struct amdgpu_ring *ring, int xcc_id) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; int j; /* disable wptr polling */ WREG32_FIELD15_PREREG(GC, xcc_id, CP_PQ_WPTR_POLL_CNTL, EN, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_EOP_BASE_ADDR, mqd->cp_hqd_eop_base_addr_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_EOP_BASE_ADDR_HI, mqd->cp_hqd_eop_base_addr_hi); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_EOP_CONTROL, mqd->cp_hqd_eop_control); /* enable doorbell? */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* disable the queue if it's active */ if (RREG32_SOC15(GC, xcc_id, regCP_HQD_ACTIVE) & 1) { WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_DEQUEUE_REQUEST, 1); for (j = 0; j < adev->usec_timeout; j++) { if (!(RREG32_SOC15(GC, xcc_id, regCP_HQD_ACTIVE) & 1)) break; udelay(1); } WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_DEQUEUE_REQUEST, mqd->cp_hqd_dequeue_request); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_RPTR, mqd->cp_hqd_pq_rptr); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); } /* set the pointer to the MQD */ WREG32_SOC15_RLC(GC, xcc_id, regCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi); /* set MQD vmid to 0 */ WREG32_SOC15_RLC(GC, xcc_id, regCP_MQD_CONTROL, mqd->cp_mqd_control); /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_BASE, mqd->cp_hqd_pq_base_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_BASE_HI, mqd->cp_hqd_pq_base_hi); /* set up the HQD, this is similar to CP_RB0_CNTL */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_CONTROL, mqd->cp_hqd_pq_control); /* set the wb address whether it's enabled or not */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_RPTR_REPORT_ADDR, mqd->cp_hqd_pq_rptr_report_addr_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_RPTR_REPORT_ADDR_HI, mqd->cp_hqd_pq_rptr_report_addr_hi); /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_POLL_ADDR, mqd->cp_hqd_pq_wptr_poll_addr_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_POLL_ADDR_HI, mqd->cp_hqd_pq_wptr_poll_addr_hi); /* enable the doorbell if requested */ if (ring->use_doorbell) { WREG32_SOC15(GC, xcc_id, regCP_MEC_DOORBELL_RANGE_LOWER, (adev->doorbell_index.kiq * 2) << 2); WREG32_SOC15(GC, xcc_id, regCP_MEC_DOORBELL_RANGE_UPPER, (adev->doorbell_index.userqueue_end * 2) << 2); } WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); /* set the vmid for the queue */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_VMID, mqd->cp_hqd_vmid); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PERSISTENT_STATE, mqd->cp_hqd_persistent_state); /* activate the queue */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_ACTIVE, mqd->cp_hqd_active); if (ring->use_doorbell) WREG32_FIELD15_PREREG(GC, xcc_id, CP_PQ_STATUS, DOORBELL_ENABLE, 1); return 0; } static int gfx_v9_4_3_kiq_fini_register(struct amdgpu_ring *ring, int xcc_id) { struct amdgpu_device *adev = ring->adev; int j; /* disable the queue if it's active */ if (RREG32_SOC15(GC, xcc_id, regCP_HQD_ACTIVE) & 1) { WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_DEQUEUE_REQUEST, 1); for (j = 0; j < adev->usec_timeout; j++) { if (!(RREG32_SOC15(GC, xcc_id, regCP_HQD_ACTIVE) & 1)) break; udelay(1); } if (j == AMDGPU_MAX_USEC_TIMEOUT) { DRM_DEBUG("KIQ dequeue request failed.\n"); /* Manual disable if dequeue request times out */ WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_ACTIVE, 0); } WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_DEQUEUE_REQUEST, 0); } WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_IQ_TIMER, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_IB_CONTROL, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PERSISTENT_STATE, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_DOORBELL_CONTROL, 0x40000000); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_DOORBELL_CONTROL, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_RPTR, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_HI, 0); WREG32_SOC15_RLC(GC, xcc_id, regCP_HQD_PQ_WPTR_LO, 0); return 0; } static int gfx_v9_4_3_kiq_init_queue(struct amdgpu_ring *ring, int xcc_id) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; struct v9_mqd *tmp_mqd; gfx_v9_4_3_kiq_setting(ring, xcc_id); /* GPU could be in bad state during probe, driver trigger the reset * after load the SMU, in this case , the mqd is not be initialized. * driver need to re-init the mqd. * check mqd->cp_hqd_pq_control since this value should not be 0 */ tmp_mqd = (struct v9_mqd *)adev->gfx.kiq[xcc_id].mqd_backup; if (amdgpu_in_reset(adev) && tmp_mqd->cp_hqd_pq_control) { /* for GPU_RESET case , reset MQD to a clean status */ if (adev->gfx.kiq[xcc_id].mqd_backup) memcpy(mqd, adev->gfx.kiq[xcc_id].mqd_backup, sizeof(struct v9_mqd_allocation)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0, xcc_id); gfx_v9_4_3_kiq_init_register(ring, xcc_id); soc15_grbm_select(adev, 0, 0, 0, 0, xcc_id); mutex_unlock(&adev->srbm_mutex); } else { memset((void *)mqd, 0, sizeof(struct v9_mqd_allocation)); ((struct v9_mqd_allocation *)mqd)->dynamic_cu_mask = 0xFFFFFFFF; ((struct v9_mqd_allocation *)mqd)->dynamic_rb_mask = 0xFFFFFFFF; mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0, xcc_id); gfx_v9_4_3_mqd_init(ring); gfx_v9_4_3_kiq_init_register(ring, xcc_id); soc15_grbm_select(adev, 0, 0, 0, 0, xcc_id); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.kiq[xcc_id].mqd_backup) memcpy(adev->gfx.kiq[xcc_id].mqd_backup, mqd, sizeof(struct v9_mqd_allocation)); } return 0; } static int gfx_v9_4_3_kcq_init_queue(struct amdgpu_ring *ring, int xcc_id) { struct amdgpu_device *adev = ring->adev; struct v9_mqd *mqd = ring->mqd_ptr; int mqd_idx = ring - &adev->gfx.compute_ring[0]; struct v9_mqd *tmp_mqd; /* Same as above kiq init, driver need to re-init the mqd if mqd->cp_hqd_pq_control * is not be initialized before */ tmp_mqd = (struct v9_mqd *)adev->gfx.mec.mqd_backup[mqd_idx]; if (!tmp_mqd->cp_hqd_pq_control || (!amdgpu_in_reset(adev) && !adev->in_suspend)) { memset((void *)mqd, 0, sizeof(struct v9_mqd_allocation)); ((struct v9_mqd_allocation *)mqd)->dynamic_cu_mask = 0xFFFFFFFF; ((struct v9_mqd_allocation *)mqd)->dynamic_rb_mask = 0xFFFFFFFF; mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0, xcc_id); gfx_v9_4_3_mqd_init(ring); soc15_grbm_select(adev, 0, 0, 0, 0, xcc_id); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(struct v9_mqd_allocation)); } else { /* restore MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(struct v9_mqd_allocation)); /* reset ring buffer */ ring->wptr = 0; atomic64_set((atomic64_t *)&adev->wb.wb[ring->wptr_offs], 0); amdgpu_ring_clear_ring(ring); } return 0; } static int gfx_v9_4_3_kiq_resume(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_ring *ring; int r; ring = &adev->gfx.kiq[xcc_id].ring; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) return r; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (unlikely(r != 0)) { amdgpu_bo_unreserve(ring->mqd_obj); return r; } gfx_v9_4_3_kiq_init_queue(ring, xcc_id); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; amdgpu_bo_unreserve(ring->mqd_obj); ring->sched.ready = true; return 0; } static int gfx_v9_4_3_kcq_resume(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_ring *ring = NULL; int r = 0, i; gfx_v9_4_3_cp_compute_enable(adev, true, xcc_id); for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v9_4_3_kcq_init_queue(ring, xcc_id); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; } r = amdgpu_gfx_enable_kcq(adev, xcc_id); done: return r; } static int gfx_v9_4_3_cp_resume(struct amdgpu_device *adev) { int r, i, j; struct amdgpu_ring *ring; for (i = 0; i < adev->gfx.num_xcd; i++) { gfx_v9_4_3_enable_gui_idle_interrupt(adev, false, i); if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { gfx_v9_4_3_disable_gpa_mode(adev, i); r = gfx_v9_4_3_cp_compute_load_microcode(adev, i); if (r) return r; } r = gfx_v9_4_3_kiq_resume(adev, i); if (r) return r; r = gfx_v9_4_3_kcq_resume(adev, i); if (r) return r; /* skip ring test on slave kcq */ if (amdgpu_gfx_is_master_xcc(adev, i)) { for (j = 0; j < adev->gfx.num_compute_rings; j++) { ring = &adev->gfx.compute_ring[j + i * adev->gfx.num_compute_rings]; amdgpu_ring_test_helper(ring); } } gfx_v9_4_3_enable_gui_idle_interrupt(adev, true, i); } return 0; } static void gfx_v9_4_3_cp_enable(struct amdgpu_device *adev, bool enable, int xcc_id) { gfx_v9_4_3_cp_compute_enable(adev, enable, xcc_id); } static int gfx_v9_4_3_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; gfx_v9_4_3_init_golden_registers(adev); gfx_v9_4_3_constants_init(adev); r = adev->gfx.rlc.funcs->resume(adev); if (r) return r; r = gfx_v9_4_3_cp_resume(adev); if (r) return r; return r; } static int gfx_v9_4_3_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0); amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0); for (i = 0; i < adev->gfx.num_xcd; i++) { if (amdgpu_gfx_disable_kcq(adev, i)) DRM_ERROR("XCD %d KCQ disable failed\n", i); /* Use deinitialize sequence from CAIL when unbinding device * from driver, otherwise KIQ is hanging when binding back */ if (!amdgpu_in_reset(adev) && !adev->in_suspend) { mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, adev->gfx.kiq[i].ring.me, adev->gfx.kiq[i].ring.pipe, adev->gfx.kiq[i].ring.queue, 0, i); gfx_v9_4_3_kiq_fini_register(&adev->gfx.kiq[i].ring, i); soc15_grbm_select(adev, 0, 0, 0, 0, i); mutex_unlock(&adev->srbm_mutex); } gfx_v9_4_3_cp_enable(adev, false, i); } /* Skip suspend with A+A reset */ if (adev->gmc.xgmi.connected_to_cpu && amdgpu_in_reset(adev)) { dev_dbg(adev->dev, "Device in reset. Skipping RLC halt\n"); return 0; } adev->gfx.rlc.funcs->stop(adev); return 0; } static int gfx_v9_4_3_suspend(void *handle) { return gfx_v9_4_3_hw_fini(handle); } static int gfx_v9_4_3_resume(void *handle) { return gfx_v9_4_3_hw_init(handle); } static bool gfx_v9_4_3_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->gfx.num_xcd; i++) { if (REG_GET_FIELD(RREG32_SOC15(GC, i, regGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE)) return false; } return true; } static int gfx_v9_4_3_wait_for_idle(void *handle) { unsigned i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { if (gfx_v9_4_3_is_idle(handle)) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v9_4_3_soft_reset(void *handle) { u32 grbm_soft_reset = 0; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* GRBM_STATUS */ tmp = RREG32_SOC15(GC, 0, regGRBM_STATUS); if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK | GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK | GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__VGT_BUSY_MASK | GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK | GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK | GRBM_STATUS__IA_BUSY_MASK | GRBM_STATUS__IA_BUSY_NO_DMA_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX, 1); } if (tmp & (GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); } /* GRBM_STATUS2 */ tmp = RREG32_SOC15(GC, 0, regGRBM_STATUS2); if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY)) grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); if (grbm_soft_reset) { /* stop the rlc */ adev->gfx.rlc.funcs->stop(adev); /* Disable MEC parsing/prefetching */ gfx_v9_4_3_cp_compute_enable(adev, false, 0); if (grbm_soft_reset) { tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); } return 0; } static void gfx_v9_4_3_ring_emit_gds_switch(struct amdgpu_ring *ring, uint32_t vmid, uint32_t gds_base, uint32_t gds_size, uint32_t gws_base, uint32_t gws_size, uint32_t oa_base, uint32_t oa_size) { struct amdgpu_device *adev = ring->adev; /* GDS Base */ gfx_v9_4_3_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_BASE) + 2 * vmid, gds_base); /* GDS Size */ gfx_v9_4_3_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_SIZE) + 2 * vmid, gds_size); /* GWS */ gfx_v9_4_3_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_GWS_VMID0) + vmid, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base); /* OA */ gfx_v9_4_3_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_OA_VMID0) + vmid, (1 << (oa_size + oa_base)) - (1 << oa_base)); } static int gfx_v9_4_3_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* hardcode in emulation phase */ adev->gfx.num_xcd = 1; adev->gfx.num_xcc_per_xcp = 1; adev->gfx.partition_mode = AMDGPU_SPX_PARTITION_MODE; adev->gfx.num_compute_rings = min(amdgpu_gfx_get_num_kcq(adev), AMDGPU_MAX_COMPUTE_RINGS); gfx_v9_4_3_set_kiq_pm4_funcs(adev); gfx_v9_4_3_set_ring_funcs(adev); gfx_v9_4_3_set_irq_funcs(adev); gfx_v9_4_3_set_gds_init(adev); gfx_v9_4_3_set_rlc_funcs(adev); return gfx_v9_4_3_init_microcode(adev); } static int gfx_v9_4_3_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0); if (r) return r; return 0; } static void gfx_v9_4_3_update_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable, int xcc_id) { uint32_t data, def; amdgpu_gfx_rlc_enter_safe_mode(adev, xcc_id); /* It is disabled by HW by default */ if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) { /* 1 - RLC_CGTT_MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, xcc_id, regRLC_CGTT_MGCG_OVERRIDE); data &= ~(RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK); /* only for Vega10 & Raven1 */ data |= RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK; if (def != data) WREG32_SOC15(GC, xcc_id, regRLC_CGTT_MGCG_OVERRIDE, data); /* MGLS is a global flag to control all MGLS in GFX */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { /* 2 - RLC memory Light sleep */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) { def = data = RREG32_SOC15(GC, xcc_id, regRLC_MEM_SLP_CNTL); data |= RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; if (def != data) WREG32_SOC15(GC, xcc_id, regRLC_MEM_SLP_CNTL, data); } /* 3 - CP memory Light sleep */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) { def = data = RREG32_SOC15(GC, xcc_id, regCP_MEM_SLP_CNTL); data |= CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; if (def != data) WREG32_SOC15(GC, xcc_id, regCP_MEM_SLP_CNTL, data); } } } else { /* 1 - MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, xcc_id, regRLC_CGTT_MGCG_OVERRIDE); data |= (RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK); if (def != data) WREG32_SOC15(GC, xcc_id, regRLC_CGTT_MGCG_OVERRIDE, data); /* 2 - disable MGLS in RLC */ data = RREG32_SOC15(GC, xcc_id, regRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) { data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; WREG32_SOC15(GC, xcc_id, regRLC_MEM_SLP_CNTL, data); } /* 3 - disable MGLS in CP */ data = RREG32_SOC15(GC, xcc_id, regCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) { data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; WREG32_SOC15(GC, xcc_id, regCP_MEM_SLP_CNTL, data); } } amdgpu_gfx_rlc_exit_safe_mode(adev, xcc_id); } static void gfx_v9_4_3_update_coarse_grain_clock_gating(struct amdgpu_device *adev, bool enable, int xcc_id) { uint32_t def, data; amdgpu_gfx_rlc_enter_safe_mode(adev, xcc_id); if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) { def = data = RREG32_SOC15(GC, xcc_id, regRLC_CGTT_MGCG_OVERRIDE); /* unset CGCG override */ data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; else data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; /* update CGCG and CGLS override bits */ if (def != data) WREG32_SOC15(GC, xcc_id, regRLC_CGTT_MGCG_OVERRIDE, data); /* enable cgcg FSM(0x0000363F) */ def = RREG32_SOC15(GC, xcc_id, regRLC_CGCG_CGLS_CTRL); if (adev->asic_type == CHIP_ARCTURUS) data = (0x2000 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; else data = (0x36 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, xcc_id, regRLC_CGCG_CGLS_CTRL, data); /* set IDLE_POLL_COUNT(0x00900100) */ def = RREG32_SOC15(GC, xcc_id, regCP_RB_WPTR_POLL_CNTL); data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) | (0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); if (def != data) WREG32_SOC15(GC, xcc_id, regCP_RB_WPTR_POLL_CNTL, data); } else { def = data = RREG32_SOC15(GC, xcc_id, regRLC_CGCG_CGLS_CTRL); /* reset CGCG/CGLS bits */ data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK); /* disable cgcg and cgls in FSM */ if (def != data) WREG32_SOC15(GC, xcc_id, regRLC_CGCG_CGLS_CTRL, data); } amdgpu_gfx_rlc_exit_safe_mode(adev, xcc_id); } static int gfx_v9_4_3_update_gfx_clock_gating(struct amdgpu_device *adev, bool enable, int xcc_id) { if (enable) { /* CGCG/CGLS should be enabled after MGCG/MGLS * === MGCG + MGLS === */ gfx_v9_4_3_update_medium_grain_clock_gating(adev, enable, xcc_id); /* === CGCG + CGLS === */ gfx_v9_4_3_update_coarse_grain_clock_gating(adev, enable, xcc_id); } else { /* CGCG/CGLS should be disabled before MGCG/MGLS * === CGCG + CGLS === */ gfx_v9_4_3_update_coarse_grain_clock_gating(adev, enable, xcc_id); /* === MGCG + MGLS === */ gfx_v9_4_3_update_medium_grain_clock_gating(adev, enable, xcc_id); } return 0; } static const struct amdgpu_rlc_funcs gfx_v9_4_3_rlc_funcs = { .is_rlc_enabled = gfx_v9_4_3_is_rlc_enabled, .set_safe_mode = gfx_v9_4_3_set_safe_mode, .unset_safe_mode = gfx_v9_4_3_unset_safe_mode, .init = gfx_v9_4_3_rlc_init, .get_csb_size = gfx_v9_4_3_get_csb_size, .get_csb_buffer = gfx_v9_4_3_get_csb_buffer, .resume = gfx_v9_4_3_rlc_resume, .stop = gfx_v9_4_3_rlc_stop, .reset = gfx_v9_4_3_rlc_reset, .start = gfx_v9_4_3_rlc_start, .update_spm_vmid = gfx_v9_4_3_update_spm_vmid, .is_rlcg_access_range = gfx_v9_4_3_is_rlcg_access_range, }; static int gfx_v9_4_3_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static int gfx_v9_4_3_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(9, 4, 3): for (i = 0; i < adev->gfx.num_xcd; i++) gfx_v9_4_3_update_gfx_clock_gating(adev, state == AMD_CG_STATE_GATE, i); break; default: break; } return 0; } static void gfx_v9_4_3_get_clockgating_state(void *handle, u64 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_GFX_MGCG */ data = RREG32_KIQ(SOC15_REG_OFFSET(GC, 0, regRLC_CGTT_MGCG_OVERRIDE)); if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_MGCG; /* AMD_CG_SUPPORT_GFX_CGCG */ data = RREG32_KIQ(SOC15_REG_OFFSET(GC, 0, regRLC_CGCG_CGLS_CTRL)); if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGCG; /* AMD_CG_SUPPORT_GFX_CGLS */ if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGLS; /* AMD_CG_SUPPORT_GFX_RLC_LS */ data = RREG32_KIQ(SOC15_REG_OFFSET(GC, 0, regRLC_MEM_SLP_CNTL)); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_RLC_LS | AMD_CG_SUPPORT_GFX_MGLS; /* AMD_CG_SUPPORT_GFX_CP_LS */ data = RREG32_KIQ(SOC15_REG_OFFSET(GC, 0, regCP_MEM_SLP_CNTL)); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CP_LS | AMD_CG_SUPPORT_GFX_MGLS; } static void gfx_v9_4_3_ring_emit_hdp_flush(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 ref_and_mask, reg_mem_engine; const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { switch (ring->me) { case 1: ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe; break; case 2: ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe; break; default: return; } reg_mem_engine = 0; } else { ref_and_mask = nbio_hf_reg->ref_and_mask_cp0; reg_mem_engine = 1; /* pfp */ } gfx_v9_4_3_wait_reg_mem(ring, reg_mem_engine, 0, 1, adev->nbio.funcs->get_hdp_flush_req_offset(adev), adev->nbio.funcs->get_hdp_flush_done_offset(adev), ref_and_mask, ref_and_mask, 0x20); } static void gfx_v9_4_3_ring_emit_ib_compute(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24); /* Currently, there is a high possibility to get wave ID mismatch * between ME and GDS, leading to a hw deadlock, because ME generates * different wave IDs than the GDS expects. This situation happens * randomly when at least 5 compute pipes use GDS ordered append. * The wave IDs generated by ME are also wrong after suspend/resume. * Those are probably bugs somewhere else in the kernel driver. * * Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and * GDS to 0 for this ring (me/pipe). */ if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); amdgpu_ring_write(ring, regGDS_COMPUTE_MAX_WAVE_ID); amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id); } amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v9_4_3_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; bool writeback = flags & AMDGPU_FENCE_FLAG_TC_WB_ONLY; /* RELEASE_MEM - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6)); amdgpu_ring_write(ring, ((writeback ? (EOP_TC_WB_ACTION_EN | EOP_TC_NC_ACTION_EN) : (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EOP_TC_WB_ACTION_EN | EOP_TC_MD_ACTION_EN)) | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0)); /* * the address should be Qword aligned if 64bit write, Dword * aligned if only send 32bit data low (discard data high) */ if (write64bit) BUG_ON(addr & 0x7); else BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); amdgpu_ring_write(ring, 0); } static void gfx_v9_4_3_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; gfx_v9_4_3_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr), upper_32_bits(addr), seq, 0xffffffff, 4); } static void gfx_v9_4_3_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); } static u64 gfx_v9_4_3_ring_get_rptr_compute(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs]; /* gfx9 hardware is 32bit rptr */ } static u64 gfx_v9_4_3_ring_get_wptr_compute(struct amdgpu_ring *ring) { u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) wptr = atomic64_read((atomic64_t *)&ring->adev->wb.wb[ring->wptr_offs]); else BUG(); return wptr; } static void gfx_v9_4_3_ring_set_wptr_compute(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { atomic64_set((atomic64_t *)&adev->wb.wb[ring->wptr_offs], ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else { BUG(); /* only DOORBELL method supported on gfx9 now */ } } static void gfx_v9_4_3_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned int flags) { struct amdgpu_device *adev = ring->adev; /* we only allocate 32bit for each seq wb address */ BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT); /* write fence seq to the "addr" */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(5) | WR_CONFIRM)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); if (flags & AMDGPU_FENCE_FLAG_INT) { /* set register to trigger INT */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0) | WR_CONFIRM)); amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, regCPC_INT_STATUS)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */ } } static void gfx_v9_4_3_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t reg_val_offs) { struct amdgpu_device *adev = ring->adev; amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4)); amdgpu_ring_write(ring, 0 | /* src: register*/ (5 << 8) | /* dst: memory */ (1 << 20)); /* write confirm */ amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr + reg_val_offs * 4)); amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr + reg_val_offs * 4)); } static void gfx_v9_4_3_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { uint32_t cmd = 0; switch (ring->funcs->type) { case AMDGPU_RING_TYPE_GFX: cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM; break; case AMDGPU_RING_TYPE_KIQ: cmd = (1 << 16); /* no inc addr */ break; default: cmd = WR_CONFIRM; break; } amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, cmd); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v9_4_3_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { gfx_v9_4_3_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20); } static void gfx_v9_4_3_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, uint32_t reg0, uint32_t reg1, uint32_t ref, uint32_t mask) { amdgpu_ring_emit_reg_write_reg_wait_helper(ring, reg0, reg1, ref, mask); } static void gfx_v9_4_3_set_compute_eop_interrupt_state(struct amdgpu_device *adev, int me, int pipe, enum amdgpu_interrupt_state state, int xcc_id) { u32 mec_int_cntl, mec_int_cntl_reg; /* * amdgpu controls only the first MEC. That's why this function only * handles the setting of interrupts for this specific MEC. All other * pipes' interrupts are set by amdkfd. */ if (me == 1) { switch (pipe) { case 0: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, xcc_id, regCP_ME1_PIPE0_INT_CNTL); break; case 1: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, xcc_id, regCP_ME1_PIPE1_INT_CNTL); break; case 2: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, xcc_id, regCP_ME1_PIPE2_INT_CNTL); break; case 3: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, xcc_id, regCP_ME1_PIPE3_INT_CNTL); break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } } else { DRM_DEBUG("invalid me %d\n", me); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: mec_int_cntl = RREG32(mec_int_cntl_reg); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, TIME_STAMP_INT_ENABLE, 0); WREG32(mec_int_cntl_reg, mec_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: mec_int_cntl = RREG32(mec_int_cntl_reg); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, TIME_STAMP_INT_ENABLE, 1); WREG32(mec_int_cntl_reg, mec_int_cntl); break; default: break; } } static int gfx_v9_4_3_set_priv_reg_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { int i; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: for (i = 0; i < adev->gfx.num_xcd; i++) WREG32_FIELD15_PREREG(GC, i, CP_INT_CNTL_RING0, PRIV_REG_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } return 0; } static int gfx_v9_4_3_set_priv_inst_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { int i; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: for (i = 0; i < adev->gfx.num_xcd; i++) WREG32_FIELD15_PREREG(GC, i, CP_INT_CNTL_RING0, PRIV_INSTR_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } return 0; } static int gfx_v9_4_3_set_eop_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { int i; for (i = 0; i < adev->gfx.num_xcd; i++) { switch (type) { case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 1, 0, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 1, 1, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 1, 2, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 1, 3, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 2, 0, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 2, 1, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 2, 2, state, i); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP: gfx_v9_4_3_set_compute_eop_interrupt_state(adev, 2, 3, state, i); break; default: break; } } return 0; } static int gfx_v9_4_3_eop_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int i; u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; DRM_DEBUG("IH: CP EOP\n"); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; /* Per-queue interrupt is supported for MEC starting from VI. * The interrupt can only be enabled/disabled per pipe instead of per queue. */ if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id)) amdgpu_fence_process(ring); } break; } return 0; } static void gfx_v9_4_3_fault(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; int i; me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if (ring->me == me_id && ring->pipe == pipe_id && ring->queue == queue_id) drm_sched_fault(&ring->sched); } break; } } static int gfx_v9_4_3_priv_reg_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal register access in command stream\n"); gfx_v9_4_3_fault(adev, entry); return 0; } static int gfx_v9_4_3_priv_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal instruction in command stream\n"); gfx_v9_4_3_fault(adev, entry); return 0; } static void gfx_v9_4_3_emit_mem_sync(struct amdgpu_ring *ring) { const unsigned int cp_coher_cntl = PACKET3_ACQUIRE_MEM_CP_COHER_CNTL_SH_ICACHE_ACTION_ENA(1) | PACKET3_ACQUIRE_MEM_CP_COHER_CNTL_SH_KCACHE_ACTION_ENA(1) | PACKET3_ACQUIRE_MEM_CP_COHER_CNTL_TC_ACTION_ENA(1) | PACKET3_ACQUIRE_MEM_CP_COHER_CNTL_TCL1_ACTION_ENA(1) | PACKET3_ACQUIRE_MEM_CP_COHER_CNTL_TC_WB_ACTION_ENA(1); /* ACQUIRE_MEM -make one or more surfaces valid for use by the subsequent operations */ amdgpu_ring_write(ring, PACKET3(PACKET3_ACQUIRE_MEM, 5)); amdgpu_ring_write(ring, cp_coher_cntl); /* CP_COHER_CNTL */ amdgpu_ring_write(ring, 0xffffffff); /* CP_COHER_SIZE */ amdgpu_ring_write(ring, 0xffffff); /* CP_COHER_SIZE_HI */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE_HI */ amdgpu_ring_write(ring, 0x0000000A); /* POLL_INTERVAL */ } static void gfx_v9_4_3_emit_wave_limit_cs(struct amdgpu_ring *ring, uint32_t pipe, bool enable) { struct amdgpu_device *adev = ring->adev; uint32_t val; uint32_t wcl_cs_reg; /* regSPI_WCL_PIPE_PERCENT_CS[0-7]_DEFAULT values are same */ val = enable ? 0x1 : 0x7f; switch (pipe) { case 0: wcl_cs_reg = SOC15_REG_OFFSET(GC, 0, regSPI_WCL_PIPE_PERCENT_CS0); break; case 1: wcl_cs_reg = SOC15_REG_OFFSET(GC, 0, regSPI_WCL_PIPE_PERCENT_CS1); break; case 2: wcl_cs_reg = SOC15_REG_OFFSET(GC, 0, regSPI_WCL_PIPE_PERCENT_CS2); break; case 3: wcl_cs_reg = SOC15_REG_OFFSET(GC, 0, regSPI_WCL_PIPE_PERCENT_CS3); break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } amdgpu_ring_emit_wreg(ring, wcl_cs_reg, val); } static void gfx_v9_4_3_emit_wave_limit(struct amdgpu_ring *ring, bool enable) { struct amdgpu_device *adev = ring->adev; uint32_t val; int i; /* regSPI_WCL_PIPE_PERCENT_GFX is 7 bit multiplier register to limit * number of gfx waves. Setting 5 bit will make sure gfx only gets * around 25% of gpu resources. */ val = enable ? 0x1f : 0x07ffffff; amdgpu_ring_emit_wreg(ring, SOC15_REG_OFFSET(GC, 0, regSPI_WCL_PIPE_PERCENT_GFX), val); /* Restrict waves for normal/low priority compute queues as well * to get best QoS for high priority compute jobs. * * amdgpu controls only 1st ME(0-3 CS pipes). */ for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) { if (i != ring->pipe) gfx_v9_4_3_emit_wave_limit_cs(ring, i, enable); } } static const struct amd_ip_funcs gfx_v9_4_3_ip_funcs = { .name = "gfx_v9_4_3", .early_init = gfx_v9_4_3_early_init, .late_init = gfx_v9_4_3_late_init, .sw_init = gfx_v9_4_3_sw_init, .sw_fini = gfx_v9_4_3_sw_fini, .hw_init = gfx_v9_4_3_hw_init, .hw_fini = gfx_v9_4_3_hw_fini, .suspend = gfx_v9_4_3_suspend, .resume = gfx_v9_4_3_resume, .is_idle = gfx_v9_4_3_is_idle, .wait_for_idle = gfx_v9_4_3_wait_for_idle, .soft_reset = gfx_v9_4_3_soft_reset, .set_clockgating_state = gfx_v9_4_3_set_clockgating_state, .set_powergating_state = gfx_v9_4_3_set_powergating_state, .get_clockgating_state = gfx_v9_4_3_get_clockgating_state, }; static const struct amdgpu_ring_funcs gfx_v9_4_3_ring_funcs_compute = { .type = AMDGPU_RING_TYPE_COMPUTE, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .get_rptr = gfx_v9_4_3_ring_get_rptr_compute, .get_wptr = gfx_v9_4_3_ring_get_wptr_compute, .set_wptr = gfx_v9_4_3_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v9_4_3_ring_emit_gds_switch */ 7 + /* gfx_v9_4_3_ring_emit_hdp_flush */ 5 + /* hdp invalidate */ 7 + /* gfx_v9_4_3_ring_emit_pipeline_sync */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* gfx_v9_4_3_ring_emit_vm_flush */ 8 + 8 + 8 + /* gfx_v9_4_3_ring_emit_fence x3 for user fence, vm fence */ 7 + /* gfx_v9_4_3_emit_mem_sync */ 5 + /* gfx_v9_4_3_emit_wave_limit for updating regSPI_WCL_PIPE_PERCENT_GFX register */ 15, /* for updating 3 regSPI_WCL_PIPE_PERCENT_CS registers */ .emit_ib_size = 7, /* gfx_v9_4_3_ring_emit_ib_compute */ .emit_ib = gfx_v9_4_3_ring_emit_ib_compute, .emit_fence = gfx_v9_4_3_ring_emit_fence, .emit_pipeline_sync = gfx_v9_4_3_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v9_4_3_ring_emit_vm_flush, .emit_gds_switch = gfx_v9_4_3_ring_emit_gds_switch, .emit_hdp_flush = gfx_v9_4_3_ring_emit_hdp_flush, .test_ring = gfx_v9_4_3_ring_test_ring, .test_ib = gfx_v9_4_3_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_wreg = gfx_v9_4_3_ring_emit_wreg, .emit_reg_wait = gfx_v9_4_3_ring_emit_reg_wait, .emit_reg_write_reg_wait = gfx_v9_4_3_ring_emit_reg_write_reg_wait, .emit_mem_sync = gfx_v9_4_3_emit_mem_sync, .emit_wave_limit = gfx_v9_4_3_emit_wave_limit, }; static const struct amdgpu_ring_funcs gfx_v9_4_3_ring_funcs_kiq = { .type = AMDGPU_RING_TYPE_KIQ, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .get_rptr = gfx_v9_4_3_ring_get_rptr_compute, .get_wptr = gfx_v9_4_3_ring_get_wptr_compute, .set_wptr = gfx_v9_4_3_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v9_4_3_ring_emit_gds_switch */ 7 + /* gfx_v9_4_3_ring_emit_hdp_flush */ 5 + /* hdp invalidate */ 7 + /* gfx_v9_4_3_ring_emit_pipeline_sync */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* gfx_v9_4_3_ring_emit_vm_flush */ 8 + 8 + 8, /* gfx_v9_4_3_ring_emit_fence_kiq x3 for user fence, vm fence */ .emit_ib_size = 7, /* gfx_v9_4_3_ring_emit_ib_compute */ .emit_fence = gfx_v9_4_3_ring_emit_fence_kiq, .test_ring = gfx_v9_4_3_ring_test_ring, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_rreg = gfx_v9_4_3_ring_emit_rreg, .emit_wreg = gfx_v9_4_3_ring_emit_wreg, .emit_reg_wait = gfx_v9_4_3_ring_emit_reg_wait, .emit_reg_write_reg_wait = gfx_v9_4_3_ring_emit_reg_write_reg_wait, }; static void gfx_v9_4_3_set_ring_funcs(struct amdgpu_device *adev) { int i, j; for (i = 0; i < adev->gfx.num_xcd; i++) { adev->gfx.kiq[i].ring.funcs = &gfx_v9_4_3_ring_funcs_kiq; for (j = 0; j < adev->gfx.num_compute_rings; j++) adev->gfx.compute_ring[j + i * adev->gfx.num_compute_rings].funcs = &gfx_v9_4_3_ring_funcs_compute; } } static const struct amdgpu_irq_src_funcs gfx_v9_4_3_eop_irq_funcs = { .set = gfx_v9_4_3_set_eop_interrupt_state, .process = gfx_v9_4_3_eop_irq, }; static const struct amdgpu_irq_src_funcs gfx_v9_4_3_priv_reg_irq_funcs = { .set = gfx_v9_4_3_set_priv_reg_fault_state, .process = gfx_v9_4_3_priv_reg_irq, }; static const struct amdgpu_irq_src_funcs gfx_v9_4_3_priv_inst_irq_funcs = { .set = gfx_v9_4_3_set_priv_inst_fault_state, .process = gfx_v9_4_3_priv_inst_irq, }; static void gfx_v9_4_3_set_irq_funcs(struct amdgpu_device *adev) { adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST; adev->gfx.eop_irq.funcs = &gfx_v9_4_3_eop_irq_funcs; adev->gfx.priv_reg_irq.num_types = 1; adev->gfx.priv_reg_irq.funcs = &gfx_v9_4_3_priv_reg_irq_funcs; adev->gfx.priv_inst_irq.num_types = 1; adev->gfx.priv_inst_irq.funcs = &gfx_v9_4_3_priv_inst_irq_funcs; } static void gfx_v9_4_3_set_rlc_funcs(struct amdgpu_device *adev) { adev->gfx.rlc.funcs = &gfx_v9_4_3_rlc_funcs; } static void gfx_v9_4_3_set_gds_init(struct amdgpu_device *adev) { /* init asci gds info */ switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(9, 4, 3): /* 9.4.3 removed all the GDS internal memory, * only support GWS opcode in kernel, like barrier * semaphore.etc */ adev->gds.gds_size = 0; break; default: adev->gds.gds_size = 0x10000; break; } switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(9, 4, 3): /* deprecated for 9.4.3, no usage at all */ adev->gds.gds_compute_max_wave_id = 0; break; default: /* this really depends on the chip */ adev->gds.gds_compute_max_wave_id = 0x7ff; break; } adev->gds.gws_size = 64; adev->gds.oa_size = 16; } static void gfx_v9_4_3_set_user_cu_inactive_bitmap(struct amdgpu_device *adev, u32 bitmap) { u32 data; if (!bitmap) return; data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT; data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK; WREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG, data); } static u32 gfx_v9_4_3_get_cu_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32_SOC15(GC, 0, regCC_GC_SHADER_ARRAY_CONFIG); data |= RREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG); data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK; data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT; mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh); return (~data) & mask; } static int gfx_v9_4_3_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info) { int i, j, k, counter, active_cu_number = 0; u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0; unsigned disable_masks[4 * 4]; if (!adev || !cu_info) return -EINVAL; /* * 16 comes from bitmap array size 4*4, and it can cover all gfx9 ASICs */ if (adev->gfx.config.max_shader_engines * adev->gfx.config.max_sh_per_se > 16) return -EINVAL; amdgpu_gfx_parse_disable_cu(disable_masks, adev->gfx.config.max_shader_engines, adev->gfx.config.max_sh_per_se); mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { mask = 1; ao_bitmap = 0; counter = 0; gfx_v9_4_3_select_se_sh(adev, i, j, 0xffffffff, 0); gfx_v9_4_3_set_user_cu_inactive_bitmap( adev, disable_masks[i * adev->gfx.config.max_sh_per_se + j]); bitmap = gfx_v9_4_3_get_cu_active_bitmap(adev); /* * The bitmap(and ao_cu_bitmap) in cu_info structure is * 4x4 size array, and it's usually suitable for Vega * ASICs which has 4*2 SE/SH layout. * But for Arcturus, SE/SH layout is changed to 8*1. * To mostly reduce the impact, we make it compatible * with current bitmap array as below: * SE4,SH0 --> bitmap[0][1] * SE5,SH0 --> bitmap[1][1] * SE6,SH0 --> bitmap[2][1] * SE7,SH0 --> bitmap[3][1] */ cu_info->bitmap[i % 4][j + i / 4] = bitmap; for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) { if (bitmap & mask) { if (counter < adev->gfx.config.max_cu_per_sh) ao_bitmap |= mask; counter++; } mask <<= 1; } active_cu_number += counter; if (i < 2 && j < 2) ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8)); cu_info->ao_cu_bitmap[i % 4][j + i / 4] = ao_bitmap; } } gfx_v9_4_3_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); cu_info->number = active_cu_number; cu_info->ao_cu_mask = ao_cu_mask; cu_info->simd_per_cu = NUM_SIMD_PER_CU; return 0; } const struct amdgpu_ip_block_version gfx_v9_4_3_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 9, .minor = 4, .rev = 0, .funcs = &gfx_v9_4_3_ip_funcs, };