/* * Copyright 2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_psp.h" #include "amdgpu_smu.h" #include "amdgpu_atomfirmware.h" #include "imu_v11_0.h" #include "soc21.h" #include "nvd.h" #include "gc/gc_11_0_0_offset.h" #include "gc/gc_11_0_0_sh_mask.h" #include "smuio/smuio_13_0_6_offset.h" #include "smuio/smuio_13_0_6_sh_mask.h" #include "navi10_enum.h" #include "ivsrcid/gfx/irqsrcs_gfx_11_0_0.h" #include "soc15.h" #include "soc15d.h" #include "clearstate_gfx11.h" #include "v11_structs.h" #include "gfx_v11_0.h" #include "gfx_v11_0_3.h" #include "nbio_v4_3.h" #include "mes_v11_0.h" #define GFX11_NUM_GFX_RINGS 1 #define GFX11_MEC_HPD_SIZE 2048 #define RLCG_UCODE_LOADING_START_ADDRESS 0x00002000L #define RLC_PG_DELAY_3_DEFAULT_GC_11_0_1 0x1388 #define regCGTT_WD_CLK_CTRL 0x5086 #define regCGTT_WD_CLK_CTRL_BASE_IDX 1 #define regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1 0x4e7e #define regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1_BASE_IDX 1 MODULE_FIRMWARE("amdgpu/gc_11_0_0_pfp.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_0_me.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_0_mec.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_0_rlc.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_0_toc.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_1_pfp.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_1_me.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_1_mec.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_1_rlc.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_2_pfp.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_2_me.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_2_mec.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_2_rlc.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_3_pfp.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_3_me.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_3_mec.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_3_rlc.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_4_pfp.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_4_me.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_4_mec.bin"); MODULE_FIRMWARE("amdgpu/gc_11_0_4_rlc.bin"); static const struct soc15_reg_golden golden_settings_gc_11_0_1[] = { SOC15_REG_GOLDEN_VALUE(GC, 0, regCGTT_GS_NGG_CLK_CTRL, 0x9fff8fff, 0x00000010), SOC15_REG_GOLDEN_VALUE(GC, 0, regCGTT_WD_CLK_CTRL, 0xffff8fff, 0x00000010), SOC15_REG_GOLDEN_VALUE(GC, 0, regCPF_GCR_CNTL, 0x0007ffff, 0x0000c200), SOC15_REG_GOLDEN_VALUE(GC, 0, regGL2C_CTRL3, 0xffff001b, 0x00f01988), SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_CL_ENHANCE, 0xf0ffffff, 0x00880007), SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_SC_ENHANCE_3, 0xfffffffd, 0x00000008), SOC15_REG_GOLDEN_VALUE(GC, 0, regPA_SC_VRS_SURFACE_CNTL_1, 0xfff891ff, 0x55480100), SOC15_REG_GOLDEN_VALUE(GC, 0, regTA_CNTL_AUX, 0xf7f7ffff, 0x01030000), SOC15_REG_GOLDEN_VALUE(GC, 0, regTCP_CNTL2, 0xfcffffff, 0x0000000a) }; #define DEFAULT_SH_MEM_CONFIG \ ((SH_MEM_ADDRESS_MODE_64 << SH_MEM_CONFIG__ADDRESS_MODE__SHIFT) | \ (SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT) | \ (3 << SH_MEM_CONFIG__INITIAL_INST_PREFETCH__SHIFT)) static void gfx_v11_0_disable_gpa_mode(struct amdgpu_device *adev); static void gfx_v11_0_set_ring_funcs(struct amdgpu_device *adev); static void gfx_v11_0_set_irq_funcs(struct amdgpu_device *adev); static void gfx_v11_0_set_gds_init(struct amdgpu_device *adev); static void gfx_v11_0_set_rlc_funcs(struct amdgpu_device *adev); static void gfx_v11_0_set_mqd_funcs(struct amdgpu_device *adev); static void gfx_v11_0_set_imu_funcs(struct amdgpu_device *adev); static int gfx_v11_0_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info); static uint64_t gfx_v11_0_get_gpu_clock_counter(struct amdgpu_device *adev); static void gfx_v11_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance, int xcc_id); static u32 gfx_v11_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev); static void gfx_v11_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume); static void gfx_v11_0_ring_emit_frame_cntl(struct amdgpu_ring *ring, bool start, bool secure); static void gfx_v11_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val); static int gfx_v11_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev); static void gfx_v11_0_ring_invalidate_tlbs(struct amdgpu_ring *ring, uint16_t pasid, uint32_t flush_type, bool all_hub, uint8_t dst_sel); static void gfx_v11_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id); static void gfx_v11_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id); static void gfx_v11_0_update_perf_clk(struct amdgpu_device *adev, bool enable); static void gfx11_kiq_set_resources(struct amdgpu_ring *kiq_ring, uint64_t queue_mask) { amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6)); amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) | PACKET3_SET_RESOURCES_QUEUE_TYPE(0)); /* vmid_mask:0 queue_type:0 (KIQ) */ amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */ amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */ amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */ amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */ amdgpu_ring_write(kiq_ring, 0); /* oac mask */ amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */ } static void gfx11_kiq_map_queues(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring) { uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj); uint64_t wptr_addr = ring->wptr_gpu_addr; uint32_t me = 0, eng_sel = 0; switch (ring->funcs->type) { case AMDGPU_RING_TYPE_COMPUTE: me = 1; eng_sel = 0; break; case AMDGPU_RING_TYPE_GFX: me = 0; eng_sel = 4; break; case AMDGPU_RING_TYPE_MES: me = 2; eng_sel = 5; break; default: WARN_ON(1); } amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); /* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/ amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(0) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(ring->queue) | PACKET3_MAP_QUEUES_PIPE(ring->pipe) | PACKET3_MAP_QUEUES_ME((me)) | PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ENGINE_SEL(eng_sel) | PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index)); amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr)); } static void gfx11_kiq_unmap_queues(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring, enum amdgpu_unmap_queues_action action, u64 gpu_addr, u64 seq) { struct amdgpu_device *adev = kiq_ring->adev; uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; if (adev->enable_mes && !adev->gfx.kiq[0].ring.sched.ready) { amdgpu_mes_unmap_legacy_queue(adev, ring, action, gpu_addr, seq); return; } amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4)); amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_UNMAP_QUEUES_ACTION(action) | PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) | PACKET3_UNMAP_QUEUES_ENGINE_SEL(eng_sel) | PACKET3_UNMAP_QUEUES_NUM_QUEUES(1)); amdgpu_ring_write(kiq_ring, PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index)); if (action == PREEMPT_QUEUES_NO_UNMAP) { amdgpu_ring_write(kiq_ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(kiq_ring, seq); } else { amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); } } static void gfx11_kiq_query_status(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring, u64 addr, u64 seq) { uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_QUERY_STATUS, 5)); amdgpu_ring_write(kiq_ring, PACKET3_QUERY_STATUS_CONTEXT_ID(0) | PACKET3_QUERY_STATUS_INTERRUPT_SEL(0) | PACKET3_QUERY_STATUS_COMMAND(2)); amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_QUERY_STATUS_DOORBELL_OFFSET(ring->doorbell_index) | PACKET3_QUERY_STATUS_ENG_SEL(eng_sel)); amdgpu_ring_write(kiq_ring, lower_32_bits(addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(seq)); amdgpu_ring_write(kiq_ring, upper_32_bits(seq)); } static void gfx11_kiq_invalidate_tlbs(struct amdgpu_ring *kiq_ring, uint16_t pasid, uint32_t flush_type, bool all_hub) { gfx_v11_0_ring_invalidate_tlbs(kiq_ring, pasid, flush_type, all_hub, 1); } static const struct kiq_pm4_funcs gfx_v11_0_kiq_pm4_funcs = { .kiq_set_resources = gfx11_kiq_set_resources, .kiq_map_queues = gfx11_kiq_map_queues, .kiq_unmap_queues = gfx11_kiq_unmap_queues, .kiq_query_status = gfx11_kiq_query_status, .kiq_invalidate_tlbs = gfx11_kiq_invalidate_tlbs, .set_resources_size = 8, .map_queues_size = 7, .unmap_queues_size = 6, .query_status_size = 7, .invalidate_tlbs_size = 2, }; static void gfx_v11_0_set_kiq_pm4_funcs(struct amdgpu_device *adev) { adev->gfx.kiq[0].pmf = &gfx_v11_0_kiq_pm4_funcs; } static void gfx_v11_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 4): soc15_program_register_sequence(adev, golden_settings_gc_11_0_1, (const u32)ARRAY_SIZE(golden_settings_gc_11_0_1)); break; default: break; } } static void gfx_v11_0_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel, bool wc, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) | WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v11_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel, int mem_space, int opt, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, /* memory (1) or register (0) */ (WAIT_REG_MEM_MEM_SPACE(mem_space) | WAIT_REG_MEM_OPERATION(opt) | /* wait */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(eng_sel))); if (mem_space) BUG_ON(addr0 & 0x3); /* Dword align */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); amdgpu_ring_write(ring, ref); amdgpu_ring_write(ring, mask); amdgpu_ring_write(ring, inv); /* poll interval */ } static int gfx_v11_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t scratch = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0); uint32_t tmp = 0; unsigned i; int r; WREG32(scratch, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 5); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r); return r; } if (ring->funcs->type == AMDGPU_RING_TYPE_KIQ) { gfx_v11_0_ring_emit_wreg(ring, scratch, 0xDEADBEEF); } else { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(ring, scratch - PACKET3_SET_UCONFIG_REG_START); amdgpu_ring_write(ring, 0xDEADBEEF); } amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; if (amdgpu_emu_mode == 1) msleep(1); else udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; return r; } static int gfx_v11_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; uint64_t gpu_addr; volatile uint32_t *cpu_ptr; long r; /* MES KIQ fw hasn't indirect buffer support for now */ if (adev->enable_mes_kiq && ring->funcs->type == AMDGPU_RING_TYPE_KIQ) return 0; memset(&ib, 0, sizeof(ib)); if (ring->is_mes_queue) { uint32_t padding, offset; offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS); padding = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_PADDING_OFFS); ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); ib.ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, padding); cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, padding); *cpu_ptr = cpu_to_le32(0xCAFEDEAD); } else { r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); adev->wb.wb[index] = cpu_to_le32(0xCAFEDEAD); cpu_ptr = &adev->wb.wb[index]; r = amdgpu_ib_get(adev, NULL, 16, AMDGPU_IB_POOL_DIRECT, &ib); if (r) { DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); goto err1; } } ib.ptr[0] = PACKET3(PACKET3_WRITE_DATA, 3); ib.ptr[1] = WRITE_DATA_DST_SEL(5) | WR_CONFIRM; ib.ptr[2] = lower_32_bits(gpu_addr); ib.ptr[3] = upper_32_bits(gpu_addr); ib.ptr[4] = 0xDEADBEEF; ib.length_dw = 5; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err2; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err2; } else if (r < 0) { goto err2; } if (le32_to_cpu(*cpu_ptr) == 0xDEADBEEF) r = 0; else r = -EINVAL; err2: if (!ring->is_mes_queue) amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err1: if (!ring->is_mes_queue) amdgpu_device_wb_free(adev, index); return r; } static void gfx_v11_0_free_microcode(struct amdgpu_device *adev) { amdgpu_ucode_release(&adev->gfx.pfp_fw); amdgpu_ucode_release(&adev->gfx.me_fw); amdgpu_ucode_release(&adev->gfx.rlc_fw); amdgpu_ucode_release(&adev->gfx.mec_fw); kfree(adev->gfx.rlc.register_list_format); } static int gfx_v11_0_init_toc_microcode(struct amdgpu_device *adev, const char *ucode_prefix) { const struct psp_firmware_header_v1_0 *toc_hdr; int err = 0; char fw_name[40]; snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_toc.bin", ucode_prefix); err = amdgpu_ucode_request(adev, &adev->psp.toc_fw, fw_name); if (err) goto out; toc_hdr = (const struct psp_firmware_header_v1_0 *)adev->psp.toc_fw->data; adev->psp.toc.fw_version = le32_to_cpu(toc_hdr->header.ucode_version); adev->psp.toc.feature_version = le32_to_cpu(toc_hdr->sos.fw_version); adev->psp.toc.size_bytes = le32_to_cpu(toc_hdr->header.ucode_size_bytes); adev->psp.toc.start_addr = (uint8_t *)toc_hdr + le32_to_cpu(toc_hdr->header.ucode_array_offset_bytes); return 0; out: amdgpu_ucode_release(&adev->psp.toc_fw); return err; } static void gfx_v11_0_check_fw_cp_gfx_shadow(struct amdgpu_device *adev) { switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 2): case IP_VERSION(11, 0, 3): if ((adev->gfx.me_fw_version >= 1505) && (adev->gfx.pfp_fw_version >= 1600) && (adev->gfx.mec_fw_version >= 512)) adev->gfx.cp_gfx_shadow = true; break; default: adev->gfx.cp_gfx_shadow = false; break; } } static int gfx_v11_0_init_microcode(struct amdgpu_device *adev) { char fw_name[40]; char ucode_prefix[30]; int err; const struct rlc_firmware_header_v2_0 *rlc_hdr; uint16_t version_major; uint16_t version_minor; DRM_DEBUG("\n"); amdgpu_ucode_ip_version_decode(adev, GC_HWIP, ucode_prefix, sizeof(ucode_prefix)); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", ucode_prefix); err = amdgpu_ucode_request(adev, &adev->gfx.pfp_fw, fw_name); if (err) goto out; /* check pfp fw hdr version to decide if enable rs64 for gfx11.*/ adev->gfx.rs64_enable = amdgpu_ucode_hdr_version( (union amdgpu_firmware_header *) adev->gfx.pfp_fw->data, 2, 0); if (adev->gfx.rs64_enable) { dev_info(adev->dev, "CP RS64 enable\n"); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK); } else { amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_PFP); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", ucode_prefix); err = amdgpu_ucode_request(adev, &adev->gfx.me_fw, fw_name); if (err) goto out; if (adev->gfx.rs64_enable) { amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK); } else { amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_ME); } if (!amdgpu_sriov_vf(adev)) { snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", ucode_prefix); err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw, fw_name); if (err) goto out; rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; version_major = le16_to_cpu(rlc_hdr->header.header_version_major); version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor); err = amdgpu_gfx_rlc_init_microcode(adev, version_major, version_minor); if (err) goto out; } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", ucode_prefix); err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw, fw_name); if (err) goto out; if (adev->gfx.rs64_enable) { amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK); } else { amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1); amdgpu_gfx_cp_init_microcode(adev, AMDGPU_UCODE_ID_CP_MEC1_JT); } if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) err = gfx_v11_0_init_toc_microcode(adev, ucode_prefix); /* only one MEC for gfx 11.0.0. */ adev->gfx.mec2_fw = NULL; gfx_v11_0_check_fw_cp_gfx_shadow(adev); out: if (err) { amdgpu_ucode_release(&adev->gfx.pfp_fw); amdgpu_ucode_release(&adev->gfx.me_fw); amdgpu_ucode_release(&adev->gfx.rlc_fw); amdgpu_ucode_release(&adev->gfx.mec_fw); } return err; } static u32 gfx_v11_0_get_csb_size(struct amdgpu_device *adev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = gfx11_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* set PA_SC_TILE_STEERING_OVERRIDE */ count += 3; /* end clear state */ count += 2; /* clear state */ count += 2; return count; } static void gfx_v11_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int ctx_reg_offset; if (adev->gfx.rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } ctx_reg_offset = SOC15_REG_OFFSET(GC, 0, regPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1)); buffer[count++] = cpu_to_le32(ctx_reg_offset); buffer[count++] = cpu_to_le32(adev->gfx.config.pa_sc_tile_steering_override); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static void gfx_v11_0_rlc_fini(struct amdgpu_device *adev) { /* clear state block */ amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj, &adev->gfx.rlc.clear_state_gpu_addr, (void **)&adev->gfx.rlc.cs_ptr); /* jump table block */ amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj, &adev->gfx.rlc.cp_table_gpu_addr, (void **)&adev->gfx.rlc.cp_table_ptr); } static void gfx_v11_0_init_rlcg_reg_access_ctrl(struct amdgpu_device *adev) { struct amdgpu_rlcg_reg_access_ctrl *reg_access_ctrl; reg_access_ctrl = &adev->gfx.rlc.reg_access_ctrl[0]; reg_access_ctrl->scratch_reg0 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG0); reg_access_ctrl->scratch_reg1 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG1); reg_access_ctrl->scratch_reg2 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG2); reg_access_ctrl->scratch_reg3 = SOC15_REG_OFFSET(GC, 0, regSCRATCH_REG3); reg_access_ctrl->grbm_cntl = SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_CNTL); reg_access_ctrl->grbm_idx = SOC15_REG_OFFSET(GC, 0, regGRBM_GFX_INDEX); reg_access_ctrl->spare_int = SOC15_REG_OFFSET(GC, 0, regRLC_SPARE_INT_0); adev->gfx.rlc.rlcg_reg_access_supported = true; } static int gfx_v11_0_rlc_init(struct amdgpu_device *adev) { const struct cs_section_def *cs_data; int r; adev->gfx.rlc.cs_data = gfx11_cs_data; cs_data = adev->gfx.rlc.cs_data; if (cs_data) { /* init clear state block */ r = amdgpu_gfx_rlc_init_csb(adev); if (r) return r; } /* init spm vmid with 0xf */ if (adev->gfx.rlc.funcs->update_spm_vmid) adev->gfx.rlc.funcs->update_spm_vmid(adev, 0xf); return 0; } static void gfx_v11_0_mec_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL); amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_obj, NULL, NULL); amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_data_obj, NULL, NULL); } static void gfx_v11_0_me_init(struct amdgpu_device *adev) { bitmap_zero(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); amdgpu_gfx_graphics_queue_acquire(adev); } static int gfx_v11_0_mec_init(struct amdgpu_device *adev) { int r; u32 *hpd; size_t mec_hpd_size; bitmap_zero(adev->gfx.mec_bitmap[0].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); /* take ownership of the relevant compute queues */ amdgpu_gfx_compute_queue_acquire(adev); mec_hpd_size = adev->gfx.num_compute_rings * GFX11_MEC_HPD_SIZE; if (mec_hpd_size) { r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.hpd_eop_obj, &adev->gfx.mec.hpd_eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r); gfx_v11_0_mec_fini(adev); return r; } memset(hpd, 0, mec_hpd_size); amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); } return 0; } static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t wave, uint32_t address) { WREG32_SOC15(GC, 0, regSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (address << SQ_IND_INDEX__INDEX__SHIFT)); return RREG32_SOC15(GC, 0, regSQ_IND_DATA); } static void wave_read_regs(struct amdgpu_device *adev, uint32_t wave, uint32_t thread, uint32_t regno, uint32_t num, uint32_t *out) { WREG32_SOC15(GC, 0, regSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (regno << SQ_IND_INDEX__INDEX__SHIFT) | (thread << SQ_IND_INDEX__WORKITEM_ID__SHIFT) | (SQ_IND_INDEX__AUTO_INCR_MASK)); while (num--) *(out++) = RREG32_SOC15(GC, 0, regSQ_IND_DATA); } static void gfx_v11_0_read_wave_data(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields) { /* in gfx11 the SIMD_ID is specified as part of the INSTANCE * field when performing a select_se_sh so it should be * zero here */ WARN_ON(simd != 0); /* type 3 wave data */ dst[(*no_fields)++] = 3; dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_STATUS); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_LO); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_HI); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_LO); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_HI); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID1); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID2); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_GPR_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_LDS_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_TRAPSTS); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS2); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_DBG1); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_M0); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_MODE); } static void gfx_v11_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t start, uint32_t size, uint32_t *dst) { WARN_ON(simd != 0); wave_read_regs( adev, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size, dst); } static void gfx_v11_0_read_wave_vgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs( adev, wave, thread, start + SQIND_WAVE_VGPRS_OFFSET, size, dst); } static void gfx_v11_0_select_me_pipe_q(struct amdgpu_device *adev, u32 me, u32 pipe, u32 q, u32 vm, u32 xcc_id) { soc21_grbm_select(adev, me, pipe, q, vm); } /* all sizes are in bytes */ #define MQD_SHADOW_BASE_SIZE 73728 #define MQD_SHADOW_BASE_ALIGNMENT 256 #define MQD_FWWORKAREA_SIZE 484 #define MQD_FWWORKAREA_ALIGNMENT 256 static int gfx_v11_0_get_gfx_shadow_info(struct amdgpu_device *adev, struct amdgpu_gfx_shadow_info *shadow_info) { if (adev->gfx.cp_gfx_shadow) { shadow_info->shadow_size = MQD_SHADOW_BASE_SIZE; shadow_info->shadow_alignment = MQD_SHADOW_BASE_ALIGNMENT; shadow_info->csa_size = MQD_FWWORKAREA_SIZE; shadow_info->csa_alignment = MQD_FWWORKAREA_ALIGNMENT; return 0; } else { memset(shadow_info, 0, sizeof(struct amdgpu_gfx_shadow_info)); return -ENOTSUPP; } } static const struct amdgpu_gfx_funcs gfx_v11_0_gfx_funcs = { .get_gpu_clock_counter = &gfx_v11_0_get_gpu_clock_counter, .select_se_sh = &gfx_v11_0_select_se_sh, .read_wave_data = &gfx_v11_0_read_wave_data, .read_wave_sgprs = &gfx_v11_0_read_wave_sgprs, .read_wave_vgprs = &gfx_v11_0_read_wave_vgprs, .select_me_pipe_q = &gfx_v11_0_select_me_pipe_q, .update_perfmon_mgcg = &gfx_v11_0_update_perf_clk, .get_gfx_shadow_info = &gfx_v11_0_get_gfx_shadow_info, }; static int gfx_v11_0_gpu_early_init(struct amdgpu_device *adev) { switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 2): adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0; break; case IP_VERSION(11, 0, 3): adev->gfx.ras = &gfx_v11_0_3_ras; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0; break; case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 4): adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x80; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x300; break; default: BUG(); break; } return 0; } static int gfx_v11_0_gfx_ring_init(struct amdgpu_device *adev, int ring_id, int me, int pipe, int queue) { int r; struct amdgpu_ring *ring; unsigned int irq_type; ring = &adev->gfx.gfx_ring[ring_id]; ring->me = me; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; if (!ring_id) ring->doorbell_index = adev->doorbell_index.gfx_ring0 << 1; else ring->doorbell_index = adev->doorbell_index.gfx_ring1 << 1; ring->vm_hub = AMDGPU_GFXHUB(0); sprintf(ring->name, "gfx_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP + ring->pipe; r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) return r; return 0; } static int gfx_v11_0_compute_ring_init(struct amdgpu_device *adev, int ring_id, int mec, int pipe, int queue) { int r; unsigned irq_type; struct amdgpu_ring *ring; unsigned int hw_prio; ring = &adev->gfx.compute_ring[ring_id]; /* mec0 is me1 */ ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = (adev->doorbell_index.mec_ring0 + ring_id) << 1; ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (ring_id * GFX11_MEC_HPD_SIZE); ring->vm_hub = AMDGPU_GFXHUB(0); sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec) + ring->pipe; hw_prio = amdgpu_gfx_is_high_priority_compute_queue(adev, ring) ? AMDGPU_GFX_PIPE_PRIO_HIGH : AMDGPU_GFX_PIPE_PRIO_NORMAL; /* type-2 packets are deprecated on MEC, use type-3 instead */ r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type, hw_prio, NULL); if (r) return r; return 0; } static struct { SOC21_FIRMWARE_ID id; unsigned int offset; unsigned int size; } rlc_autoload_info[SOC21_FIRMWARE_ID_MAX]; static void gfx_v11_0_parse_rlc_toc(struct amdgpu_device *adev, void *rlc_toc) { RLC_TABLE_OF_CONTENT *ucode = rlc_toc; while (ucode && (ucode->id > SOC21_FIRMWARE_ID_INVALID) && (ucode->id < SOC21_FIRMWARE_ID_MAX)) { rlc_autoload_info[ucode->id].id = ucode->id; rlc_autoload_info[ucode->id].offset = ucode->offset * 4; rlc_autoload_info[ucode->id].size = ucode->size * 4; ucode++; } } static uint32_t gfx_v11_0_calc_toc_total_size(struct amdgpu_device *adev) { uint32_t total_size = 0; SOC21_FIRMWARE_ID id; gfx_v11_0_parse_rlc_toc(adev, adev->psp.toc.start_addr); for (id = SOC21_FIRMWARE_ID_RLC_G_UCODE; id < SOC21_FIRMWARE_ID_MAX; id++) total_size += rlc_autoload_info[id].size; /* In case the offset in rlc toc ucode is aligned */ if (total_size < rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].offset) total_size = rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].offset + rlc_autoload_info[SOC21_FIRMWARE_ID_MAX-1].size; return total_size; } static int gfx_v11_0_rlc_autoload_buffer_init(struct amdgpu_device *adev) { int r; uint32_t total_size; total_size = gfx_v11_0_calc_toc_total_size(adev); r = amdgpu_bo_create_reserved(adev, total_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.rlc.rlc_autoload_bo, &adev->gfx.rlc.rlc_autoload_gpu_addr, (void **)&adev->gfx.rlc.rlc_autoload_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create fw autoload bo\n", r); return r; } return 0; } static void gfx_v11_0_rlc_backdoor_autoload_copy_ucode(struct amdgpu_device *adev, SOC21_FIRMWARE_ID id, const void *fw_data, uint32_t fw_size, uint32_t *fw_autoload_mask) { uint32_t toc_offset; uint32_t toc_fw_size; char *ptr = adev->gfx.rlc.rlc_autoload_ptr; if (id <= SOC21_FIRMWARE_ID_INVALID || id >= SOC21_FIRMWARE_ID_MAX) return; toc_offset = rlc_autoload_info[id].offset; toc_fw_size = rlc_autoload_info[id].size; if (fw_size == 0) fw_size = toc_fw_size; if (fw_size > toc_fw_size) fw_size = toc_fw_size; memcpy(ptr + toc_offset, fw_data, fw_size); if (fw_size < toc_fw_size) memset(ptr + toc_offset + fw_size, 0, toc_fw_size - fw_size); if ((id != SOC21_FIRMWARE_ID_RS64_PFP) && (id != SOC21_FIRMWARE_ID_RS64_ME)) *(uint64_t *)fw_autoload_mask |= 1ULL << id; } static void gfx_v11_0_rlc_backdoor_autoload_copy_toc_ucode(struct amdgpu_device *adev, uint32_t *fw_autoload_mask) { void *data; uint32_t size; uint64_t *toc_ptr; *(uint64_t *)fw_autoload_mask |= 0x1; DRM_DEBUG("rlc autoload enabled fw: 0x%llx\n", *(uint64_t *)fw_autoload_mask); data = adev->psp.toc.start_addr; size = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_TOC].size; toc_ptr = (uint64_t *)data + size / 8 - 1; *toc_ptr = *(uint64_t *)fw_autoload_mask; gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLC_TOC, data, size, fw_autoload_mask); } static void gfx_v11_0_rlc_backdoor_autoload_copy_gfx_ucode(struct amdgpu_device *adev, uint32_t *fw_autoload_mask) { const __le32 *fw_data; uint32_t fw_size; const struct gfx_firmware_header_v1_0 *cp_hdr; const struct gfx_firmware_header_v2_0 *cpv2_hdr; const struct rlc_firmware_header_v2_0 *rlc_hdr; const struct rlc_firmware_header_v2_2 *rlcv22_hdr; uint16_t version_major, version_minor; if (adev->gfx.rs64_enable) { /* pfp ucode */ cpv2_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; /* instruction */ fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(cpv2_hdr->ucode_offset_bytes)); fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP, fw_data, fw_size, fw_autoload_mask); /* data */ fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(cpv2_hdr->data_offset_bytes)); fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP_P0_STACK, fw_data, fw_size, fw_autoload_mask); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_PFP_P1_STACK, fw_data, fw_size, fw_autoload_mask); /* me ucode */ cpv2_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; /* instruction */ fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(cpv2_hdr->ucode_offset_bytes)); fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME, fw_data, fw_size, fw_autoload_mask); /* data */ fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(cpv2_hdr->data_offset_bytes)); fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME_P0_STACK, fw_data, fw_size, fw_autoload_mask); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_ME_P1_STACK, fw_data, fw_size, fw_autoload_mask); /* mec ucode */ cpv2_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; /* instruction */ fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(cpv2_hdr->ucode_offset_bytes)); fw_size = le32_to_cpu(cpv2_hdr->ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC, fw_data, fw_size, fw_autoload_mask); /* data */ fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(cpv2_hdr->data_offset_bytes)); fw_size = le32_to_cpu(cpv2_hdr->data_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P0_STACK, fw_data, fw_size, fw_autoload_mask); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P1_STACK, fw_data, fw_size, fw_autoload_mask); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P2_STACK, fw_data, fw_size, fw_autoload_mask); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RS64_MEC_P3_STACK, fw_data, fw_size, fw_autoload_mask); } else { /* pfp ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_PFP, fw_data, fw_size, fw_autoload_mask); /* me ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_ME, fw_data, fw_size, fw_autoload_mask); /* mec ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - cp_hdr->jt_size * 4; gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_CP_MEC, fw_data, fw_size, fw_autoload_mask); } /* rlc ucode */ rlc_hdr = (const struct rlc_firmware_header_v2_0 *) adev->gfx.rlc_fw->data; fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(rlc_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(rlc_hdr->header.ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLC_G_UCODE, fw_data, fw_size, fw_autoload_mask); version_major = le16_to_cpu(rlc_hdr->header.header_version_major); version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor); if (version_major == 2) { if (version_minor >= 2) { rlcv22_hdr = (const struct rlc_firmware_header_v2_2 *)adev->gfx.rlc_fw->data; fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(rlcv22_hdr->rlc_iram_ucode_offset_bytes)); fw_size = le32_to_cpu(rlcv22_hdr->rlc_iram_ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLX6_UCODE, fw_data, fw_size, fw_autoload_mask); fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(rlcv22_hdr->rlc_dram_ucode_offset_bytes)); fw_size = le32_to_cpu(rlcv22_hdr->rlc_dram_ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_RLX6_DRAM_BOOT, fw_data, fw_size, fw_autoload_mask); } } } static void gfx_v11_0_rlc_backdoor_autoload_copy_sdma_ucode(struct amdgpu_device *adev, uint32_t *fw_autoload_mask) { const __le32 *fw_data; uint32_t fw_size; const struct sdma_firmware_header_v2_0 *sdma_hdr; sdma_hdr = (const struct sdma_firmware_header_v2_0 *) adev->sdma.instance[0].fw->data; fw_data = (const __le32 *) (adev->sdma.instance[0].fw->data + le32_to_cpu(sdma_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(sdma_hdr->ctx_ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_SDMA_UCODE_TH0, fw_data, fw_size, fw_autoload_mask); fw_data = (const __le32 *) (adev->sdma.instance[0].fw->data + le32_to_cpu(sdma_hdr->ctl_ucode_offset)); fw_size = le32_to_cpu(sdma_hdr->ctl_ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, SOC21_FIRMWARE_ID_SDMA_UCODE_TH1, fw_data, fw_size, fw_autoload_mask); } static void gfx_v11_0_rlc_backdoor_autoload_copy_mes_ucode(struct amdgpu_device *adev, uint32_t *fw_autoload_mask) { const __le32 *fw_data; unsigned fw_size; const struct mes_firmware_header_v1_0 *mes_hdr; int pipe, ucode_id, data_id; for (pipe = 0; pipe < 2; pipe++) { if (pipe==0) { ucode_id = SOC21_FIRMWARE_ID_RS64_MES_P0; data_id = SOC21_FIRMWARE_ID_RS64_MES_P0_STACK; } else { ucode_id = SOC21_FIRMWARE_ID_RS64_MES_P1; data_id = SOC21_FIRMWARE_ID_RS64_MES_P1_STACK; } mes_hdr = (const struct mes_firmware_header_v1_0 *) adev->mes.fw[pipe]->data; fw_data = (const __le32 *)(adev->mes.fw[pipe]->data + le32_to_cpu(mes_hdr->mes_ucode_offset_bytes)); fw_size = le32_to_cpu(mes_hdr->mes_ucode_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, ucode_id, fw_data, fw_size, fw_autoload_mask); fw_data = (const __le32 *)(adev->mes.fw[pipe]->data + le32_to_cpu(mes_hdr->mes_ucode_data_offset_bytes)); fw_size = le32_to_cpu(mes_hdr->mes_ucode_data_size_bytes); gfx_v11_0_rlc_backdoor_autoload_copy_ucode(adev, data_id, fw_data, fw_size, fw_autoload_mask); } } static int gfx_v11_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev) { uint32_t rlc_g_offset, rlc_g_size; uint64_t gpu_addr; uint32_t autoload_fw_id[2]; memset(autoload_fw_id, 0, sizeof(uint32_t) * 2); /* RLC autoload sequence 2: copy ucode */ gfx_v11_0_rlc_backdoor_autoload_copy_sdma_ucode(adev, autoload_fw_id); gfx_v11_0_rlc_backdoor_autoload_copy_gfx_ucode(adev, autoload_fw_id); gfx_v11_0_rlc_backdoor_autoload_copy_mes_ucode(adev, autoload_fw_id); gfx_v11_0_rlc_backdoor_autoload_copy_toc_ucode(adev, autoload_fw_id); rlc_g_offset = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_G_UCODE].offset; rlc_g_size = rlc_autoload_info[SOC21_FIRMWARE_ID_RLC_G_UCODE].size; gpu_addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_g_offset; WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_ADDR_HI, upper_32_bits(gpu_addr)); WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_ADDR_LO, lower_32_bits(gpu_addr)); WREG32_SOC15(GC, 0, regGFX_IMU_RLC_BOOTLOADER_SIZE, rlc_g_size); /* RLC autoload sequence 3: load IMU fw */ if (adev->gfx.imu.funcs->load_microcode) adev->gfx.imu.funcs->load_microcode(adev); /* RLC autoload sequence 4 init IMU fw */ if (adev->gfx.imu.funcs->setup_imu) adev->gfx.imu.funcs->setup_imu(adev); if (adev->gfx.imu.funcs->start_imu) adev->gfx.imu.funcs->start_imu(adev); /* RLC autoload sequence 5 disable gpa mode */ gfx_v11_0_disable_gpa_mode(adev); return 0; } static int gfx_v11_0_sw_init(void *handle) { int i, j, k, r, ring_id = 0; struct amdgpu_kiq *kiq; struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfxhub.funcs->init(adev); switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 2): case IP_VERSION(11, 0, 3): adev->gfx.me.num_me = 1; adev->gfx.me.num_pipe_per_me = 1; adev->gfx.me.num_queue_per_pipe = 1; adev->gfx.mec.num_mec = 2; adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 4; break; case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 4): adev->gfx.me.num_me = 1; adev->gfx.me.num_pipe_per_me = 1; adev->gfx.me.num_queue_per_pipe = 1; adev->gfx.mec.num_mec = 1; adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 4; break; default: adev->gfx.me.num_me = 1; adev->gfx.me.num_pipe_per_me = 1; adev->gfx.me.num_queue_per_pipe = 1; adev->gfx.mec.num_mec = 1; adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; break; } /* Enable CG flag in one VF mode for enabling RLC safe mode enter/exit */ if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(11, 0, 3) && amdgpu_sriov_is_pp_one_vf(adev)) adev->cg_flags = AMD_CG_SUPPORT_GFX_CGCG; /* EOP Event */ r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP, GFX_11_0_0__SRCID__CP_EOP_INTERRUPT, &adev->gfx.eop_irq); if (r) return r; /* Privileged reg */ r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP, GFX_11_0_0__SRCID__CP_PRIV_REG_FAULT, &adev->gfx.priv_reg_irq); if (r) return r; /* Privileged inst */ r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GRBM_CP, GFX_11_0_0__SRCID__CP_PRIV_INSTR_FAULT, &adev->gfx.priv_inst_irq); if (r) return r; /* FED error */ r = amdgpu_irq_add_id(adev, SOC21_IH_CLIENTID_GFX, GFX_11_0_0__SRCID__RLC_GC_FED_INTERRUPT, &adev->gfx.rlc_gc_fed_irq); if (r) return r; adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE; if (adev->gfx.imu.funcs) { if (adev->gfx.imu.funcs->init_microcode) { r = adev->gfx.imu.funcs->init_microcode(adev); if (r) DRM_ERROR("Failed to load imu firmware!\n"); } } gfx_v11_0_me_init(adev); r = gfx_v11_0_rlc_init(adev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } r = gfx_v11_0_mec_init(adev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } /* set up the gfx ring */ for (i = 0; i < adev->gfx.me.num_me; i++) { for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) { if (!amdgpu_gfx_is_me_queue_enabled(adev, i, k, j)) continue; r = gfx_v11_0_gfx_ring_init(adev, ring_id, i, k, j); if (r) return r; ring_id++; } } } ring_id = 0; /* set up the compute queues - allocate horizontally across pipes */ for (i = 0; i < adev->gfx.mec.num_mec; ++i) { for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) { if (!amdgpu_gfx_is_mec_queue_enabled(adev, 0, i, k, j)) continue; r = gfx_v11_0_compute_ring_init(adev, ring_id, i, k, j); if (r) return r; ring_id++; } } } if (!adev->enable_mes_kiq) { r = amdgpu_gfx_kiq_init(adev, GFX11_MEC_HPD_SIZE, 0); if (r) { DRM_ERROR("Failed to init KIQ BOs!\n"); return r; } kiq = &adev->gfx.kiq[0]; r = amdgpu_gfx_kiq_init_ring(adev, &kiq->ring, &kiq->irq, 0); if (r) return r; } r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct v11_compute_mqd), 0); if (r) return r; /* allocate visible FB for rlc auto-loading fw */ if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { r = gfx_v11_0_rlc_autoload_buffer_init(adev); if (r) return r; } r = gfx_v11_0_gpu_early_init(adev); if (r) return r; if (amdgpu_gfx_ras_sw_init(adev)) { dev_err(adev->dev, "Failed to initialize gfx ras block!\n"); return -EINVAL; } return 0; } static void gfx_v11_0_pfp_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_obj, &adev->gfx.pfp.pfp_fw_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_ptr); amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_data_obj, &adev->gfx.pfp.pfp_fw_data_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_data_ptr); } static void gfx_v11_0_me_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_obj, &adev->gfx.me.me_fw_gpu_addr, (void **)&adev->gfx.me.me_fw_ptr); amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_data_obj, &adev->gfx.me.me_fw_data_gpu_addr, (void **)&adev->gfx.me.me_fw_data_ptr); } static void gfx_v11_0_rlc_autoload_buffer_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_autoload_bo, &adev->gfx.rlc.rlc_autoload_gpu_addr, (void **)&adev->gfx.rlc.rlc_autoload_ptr); } static int gfx_v11_0_sw_fini(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->gfx.num_gfx_rings; i++) amdgpu_ring_fini(&adev->gfx.gfx_ring[i]); for (i = 0; i < adev->gfx.num_compute_rings; i++) amdgpu_ring_fini(&adev->gfx.compute_ring[i]); amdgpu_gfx_mqd_sw_fini(adev, 0); if (!adev->enable_mes_kiq) { amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq[0].ring); amdgpu_gfx_kiq_fini(adev, 0); } gfx_v11_0_pfp_fini(adev); gfx_v11_0_me_fini(adev); gfx_v11_0_rlc_fini(adev); gfx_v11_0_mec_fini(adev); if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) gfx_v11_0_rlc_autoload_buffer_fini(adev); gfx_v11_0_free_microcode(adev); return 0; } static void gfx_v11_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance, int xcc_id) { u32 data; if (instance == 0xffffffff) data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX, instance); if (se_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num); if (sh_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_INDEX, sh_num); WREG32_SOC15(GC, 0, regGRBM_GFX_INDEX, data); } static u32 gfx_v11_0_get_sa_active_bitmap(struct amdgpu_device *adev) { u32 gc_disabled_sa_mask, gc_user_disabled_sa_mask, sa_mask; gc_disabled_sa_mask = RREG32_SOC15(GC, 0, regCC_GC_SA_UNIT_DISABLE); gc_disabled_sa_mask = REG_GET_FIELD(gc_disabled_sa_mask, CC_GC_SA_UNIT_DISABLE, SA_DISABLE); gc_user_disabled_sa_mask = RREG32_SOC15(GC, 0, regGC_USER_SA_UNIT_DISABLE); gc_user_disabled_sa_mask = REG_GET_FIELD(gc_user_disabled_sa_mask, GC_USER_SA_UNIT_DISABLE, SA_DISABLE); sa_mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_sh_per_se * adev->gfx.config.max_shader_engines); return sa_mask & (~(gc_disabled_sa_mask | gc_user_disabled_sa_mask)); } static u32 gfx_v11_0_get_rb_active_bitmap(struct amdgpu_device *adev) { u32 gc_disabled_rb_mask, gc_user_disabled_rb_mask; u32 rb_mask; gc_disabled_rb_mask = RREG32_SOC15(GC, 0, regCC_RB_BACKEND_DISABLE); gc_disabled_rb_mask = REG_GET_FIELD(gc_disabled_rb_mask, CC_RB_BACKEND_DISABLE, BACKEND_DISABLE); gc_user_disabled_rb_mask = RREG32_SOC15(GC, 0, regGC_USER_RB_BACKEND_DISABLE); gc_user_disabled_rb_mask = REG_GET_FIELD(gc_user_disabled_rb_mask, GC_USER_RB_BACKEND_DISABLE, BACKEND_DISABLE); rb_mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se * adev->gfx.config.max_shader_engines); return rb_mask & (~(gc_disabled_rb_mask | gc_user_disabled_rb_mask)); } static void gfx_v11_0_setup_rb(struct amdgpu_device *adev) { u32 rb_bitmap_width_per_sa; u32 max_sa; u32 active_sa_bitmap; u32 global_active_rb_bitmap; u32 active_rb_bitmap = 0; u32 i; /* query sa bitmap from SA_UNIT_DISABLE registers */ active_sa_bitmap = gfx_v11_0_get_sa_active_bitmap(adev); /* query rb bitmap from RB_BACKEND_DISABLE registers */ global_active_rb_bitmap = gfx_v11_0_get_rb_active_bitmap(adev); /* generate active rb bitmap according to active sa bitmap */ max_sa = adev->gfx.config.max_shader_engines * adev->gfx.config.max_sh_per_se; rb_bitmap_width_per_sa = adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se; for (i = 0; i < max_sa; i++) { if (active_sa_bitmap & (1 << i)) active_rb_bitmap |= (0x3 << (i * rb_bitmap_width_per_sa)); } active_rb_bitmap |= global_active_rb_bitmap; adev->gfx.config.backend_enable_mask = active_rb_bitmap; adev->gfx.config.num_rbs = hweight32(active_rb_bitmap); } #define DEFAULT_SH_MEM_BASES (0x6000) #define LDS_APP_BASE 0x1 #define SCRATCH_APP_BASE 0x2 static void gfx_v11_0_init_compute_vmid(struct amdgpu_device *adev) { int i; uint32_t sh_mem_bases; uint32_t data; /* * Configure apertures: * LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB) * Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB) * GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB) */ sh_mem_bases = (LDS_APP_BASE << SH_MEM_BASES__SHARED_BASE__SHIFT) | SCRATCH_APP_BASE; mutex_lock(&adev->srbm_mutex); for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) { soc21_grbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32_SOC15(GC, 0, regSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG); WREG32_SOC15(GC, 0, regSH_MEM_BASES, sh_mem_bases); /* Enable trap for each kfd vmid. */ data = RREG32_SOC15(GC, 0, regSPI_GDBG_PER_VMID_CNTL); data = REG_SET_FIELD(data, SPI_GDBG_PER_VMID_CNTL, TRAP_EN, 1); WREG32_SOC15(GC, 0, regSPI_GDBG_PER_VMID_CNTL, data); } soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); /* Initialize all compute VMIDs to have no GDS, GWS, or OA acccess. These should be enabled by FW for target VMIDs. */ for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) { WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_BASE, 2 * i, 0); WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_SIZE, 2 * i, 0); WREG32_SOC15_OFFSET(GC, 0, regGDS_GWS_VMID0, i, 0); WREG32_SOC15_OFFSET(GC, 0, regGDS_OA_VMID0, i, 0); } } static void gfx_v11_0_init_gds_vmid(struct amdgpu_device *adev) { int vmid; /* * Initialize all compute and user-gfx VMIDs to have no GDS, GWS, or OA * access. Compute VMIDs should be enabled by FW for target VMIDs, * the driver can enable them for graphics. VMID0 should maintain * access so that HWS firmware can save/restore entries. */ for (vmid = 1; vmid < 16; vmid++) { WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_BASE, 2 * vmid, 0); WREG32_SOC15_OFFSET(GC, 0, regGDS_VMID0_SIZE, 2 * vmid, 0); WREG32_SOC15_OFFSET(GC, 0, regGDS_GWS_VMID0, vmid, 0); WREG32_SOC15_OFFSET(GC, 0, regGDS_OA_VMID0, vmid, 0); } } static void gfx_v11_0_tcp_harvest(struct amdgpu_device *adev) { /* TODO: harvest feature to be added later. */ } static void gfx_v11_0_get_tcc_info(struct amdgpu_device *adev) { /* TCCs are global (not instanced). */ uint32_t tcc_disable = RREG32_SOC15(GC, 0, regCGTS_TCC_DISABLE) | RREG32_SOC15(GC, 0, regCGTS_USER_TCC_DISABLE); adev->gfx.config.tcc_disabled_mask = REG_GET_FIELD(tcc_disable, CGTS_TCC_DISABLE, TCC_DISABLE) | (REG_GET_FIELD(tcc_disable, CGTS_TCC_DISABLE, HI_TCC_DISABLE) << 16); } static void gfx_v11_0_constants_init(struct amdgpu_device *adev) { u32 tmp; int i; if (!amdgpu_sriov_vf(adev)) WREG32_FIELD15_PREREG(GC, 0, GRBM_CNTL, READ_TIMEOUT, 0xff); gfx_v11_0_setup_rb(adev); gfx_v11_0_get_cu_info(adev, &adev->gfx.cu_info); gfx_v11_0_get_tcc_info(adev); adev->gfx.config.pa_sc_tile_steering_override = 0; /* Set whether texture coordinate truncation is conformant. */ tmp = RREG32_SOC15(GC, 0, regTA_CNTL2); adev->gfx.config.ta_cntl2_truncate_coord_mode = REG_GET_FIELD(tmp, TA_CNTL2, TRUNCATE_COORD_MODE); /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->vm_manager.id_mgr[AMDGPU_GFXHUB(0)].num_ids; i++) { soc21_grbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32_SOC15(GC, 0, regSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG); if (i != 0) { tmp = REG_SET_FIELD(0, SH_MEM_BASES, PRIVATE_BASE, (adev->gmc.private_aperture_start >> 48)); tmp = REG_SET_FIELD(tmp, SH_MEM_BASES, SHARED_BASE, (adev->gmc.shared_aperture_start >> 48)); WREG32_SOC15(GC, 0, regSH_MEM_BASES, tmp); } } soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); gfx_v11_0_init_compute_vmid(adev); gfx_v11_0_init_gds_vmid(adev); } static void gfx_v11_0_enable_gui_idle_interrupt(struct amdgpu_device *adev, bool enable) { u32 tmp; if (amdgpu_sriov_vf(adev)) return; tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL_RING0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE, enable ? 1 : 0); WREG32_SOC15(GC, 0, regCP_INT_CNTL_RING0, tmp); } static int gfx_v11_0_init_csb(struct amdgpu_device *adev) { adev->gfx.rlc.funcs->get_csb_buffer(adev, adev->gfx.rlc.cs_ptr); WREG32_SOC15(GC, 0, regRLC_CSIB_ADDR_HI, adev->gfx.rlc.clear_state_gpu_addr >> 32); WREG32_SOC15(GC, 0, regRLC_CSIB_ADDR_LO, adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc); WREG32_SOC15(GC, 0, regRLC_CSIB_LENGTH, adev->gfx.rlc.clear_state_size); return 0; } static void gfx_v11_0_rlc_stop(struct amdgpu_device *adev) { u32 tmp = RREG32_SOC15(GC, 0, regRLC_CNTL); tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0); WREG32_SOC15(GC, 0, regRLC_CNTL, tmp); } static void gfx_v11_0_rlc_reset(struct amdgpu_device *adev) { WREG32_FIELD15_PREREG(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); udelay(50); WREG32_FIELD15_PREREG(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0); udelay(50); } static void gfx_v11_0_rlc_smu_handshake_cntl(struct amdgpu_device *adev, bool enable) { uint32_t rlc_pg_cntl; rlc_pg_cntl = RREG32_SOC15(GC, 0, regRLC_PG_CNTL); if (!enable) { /* RLC_PG_CNTL[23] = 0 (default) * RLC will wait for handshake acks with SMU * GFXOFF will be enabled * RLC_PG_CNTL[23] = 1 * RLC will not issue any message to SMU * hence no handshake between SMU & RLC * GFXOFF will be disabled */ rlc_pg_cntl |= RLC_PG_CNTL__SMU_HANDSHAKE_DISABLE_MASK; } else rlc_pg_cntl &= ~RLC_PG_CNTL__SMU_HANDSHAKE_DISABLE_MASK; WREG32_SOC15(GC, 0, regRLC_PG_CNTL, rlc_pg_cntl); } static void gfx_v11_0_rlc_start(struct amdgpu_device *adev) { /* TODO: enable rlc & smu handshake until smu * and gfxoff feature works as expected */ if (!(amdgpu_pp_feature_mask & PP_GFXOFF_MASK)) gfx_v11_0_rlc_smu_handshake_cntl(adev, false); WREG32_FIELD15_PREREG(GC, 0, RLC_CNTL, RLC_ENABLE_F32, 1); udelay(50); } static void gfx_v11_0_rlc_enable_srm(struct amdgpu_device *adev) { uint32_t tmp; /* enable Save Restore Machine */ tmp = RREG32(SOC15_REG_OFFSET(GC, 0, regRLC_SRM_CNTL)); tmp |= RLC_SRM_CNTL__AUTO_INCR_ADDR_MASK; tmp |= RLC_SRM_CNTL__SRM_ENABLE_MASK; WREG32(SOC15_REG_OFFSET(GC, 0, regRLC_SRM_CNTL), tmp); } static void gfx_v11_0_load_rlcg_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_0 *hdr; const __le32 *fw_data; unsigned i, fw_size; hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_ADDR, RLCG_UCODE_LOADING_START_ADDRESS); for (i = 0; i < fw_size; i++) WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SOC15(GC, 0, regRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version); } static void gfx_v11_0_load_rlc_iram_dram_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_2 *hdr; const __le32 *fw_data; unsigned i, fw_size; u32 tmp; hdr = (const struct rlc_firmware_header_v2_2 *)adev->gfx.rlc_fw->data; fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->rlc_iram_ucode_offset_bytes)); fw_size = le32_to_cpu(hdr->rlc_iram_ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, 0); for (i = 0; i < fw_size; i++) { if ((amdgpu_emu_mode == 1) && (i % 100 == 99)) msleep(1); WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_DATA, le32_to_cpup(fw_data++)); } WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, adev->gfx.rlc_fw_version); fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->rlc_dram_ucode_offset_bytes)); fw_size = le32_to_cpu(hdr->rlc_dram_ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, regRLC_LX6_DRAM_ADDR, 0); for (i = 0; i < fw_size; i++) { if ((amdgpu_emu_mode == 1) && (i % 100 == 99)) msleep(1); WREG32_SOC15(GC, 0, regRLC_LX6_DRAM_DATA, le32_to_cpup(fw_data++)); } WREG32_SOC15(GC, 0, regRLC_LX6_IRAM_ADDR, adev->gfx.rlc_fw_version); tmp = RREG32_SOC15(GC, 0, regRLC_LX6_CNTL); tmp = REG_SET_FIELD(tmp, RLC_LX6_CNTL, PDEBUG_ENABLE, 1); tmp = REG_SET_FIELD(tmp, RLC_LX6_CNTL, BRESET, 0); WREG32_SOC15(GC, 0, regRLC_LX6_CNTL, tmp); } static void gfx_v11_0_load_rlcp_rlcv_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_3 *hdr; const __le32 *fw_data; unsigned i, fw_size; u32 tmp; hdr = (const struct rlc_firmware_header_v2_3 *)adev->gfx.rlc_fw->data; fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->rlcp_ucode_offset_bytes)); fw_size = le32_to_cpu(hdr->rlcp_ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) { if ((amdgpu_emu_mode == 1) && (i % 100 == 99)) msleep(1); WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_DATA, le32_to_cpup(fw_data++)); } WREG32_SOC15(GC, 0, regRLC_PACE_UCODE_ADDR, adev->gfx.rlc_fw_version); tmp = RREG32_SOC15(GC, 0, regRLC_GPM_THREAD_ENABLE); tmp = REG_SET_FIELD(tmp, RLC_GPM_THREAD_ENABLE, THREAD1_ENABLE, 1); WREG32_SOC15(GC, 0, regRLC_GPM_THREAD_ENABLE, tmp); fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->rlcv_ucode_offset_bytes)); fw_size = le32_to_cpu(hdr->rlcv_ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) { if ((amdgpu_emu_mode == 1) && (i % 100 == 99)) msleep(1); WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_DATA, le32_to_cpup(fw_data++)); } WREG32_SOC15(GC, 0, regRLC_GPU_IOV_UCODE_ADDR, adev->gfx.rlc_fw_version); tmp = RREG32_SOC15(GC, 0, regRLC_GPU_IOV_F32_CNTL); tmp = REG_SET_FIELD(tmp, RLC_GPU_IOV_F32_CNTL, ENABLE, 1); WREG32_SOC15(GC, 0, regRLC_GPU_IOV_F32_CNTL, tmp); } static int gfx_v11_0_rlc_load_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_0 *hdr; uint16_t version_major; uint16_t version_minor; if (!adev->gfx.rlc_fw) return -EINVAL; hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; amdgpu_ucode_print_rlc_hdr(&hdr->header); version_major = le16_to_cpu(hdr->header.header_version_major); version_minor = le16_to_cpu(hdr->header.header_version_minor); if (version_major == 2) { gfx_v11_0_load_rlcg_microcode(adev); if (amdgpu_dpm == 1) { if (version_minor >= 2) gfx_v11_0_load_rlc_iram_dram_microcode(adev); if (version_minor == 3) gfx_v11_0_load_rlcp_rlcv_microcode(adev); } return 0; } return -EINVAL; } static int gfx_v11_0_rlc_resume(struct amdgpu_device *adev) { int r; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { gfx_v11_0_init_csb(adev); if (!amdgpu_sriov_vf(adev)) /* enable RLC SRM */ gfx_v11_0_rlc_enable_srm(adev); } else { if (amdgpu_sriov_vf(adev)) { gfx_v11_0_init_csb(adev); return 0; } adev->gfx.rlc.funcs->stop(adev); /* disable CG */ WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, 0); /* disable PG */ WREG32_SOC15(GC, 0, regRLC_PG_CNTL, 0); if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { /* legacy rlc firmware loading */ r = gfx_v11_0_rlc_load_microcode(adev); if (r) return r; } gfx_v11_0_init_csb(adev); adev->gfx.rlc.funcs->start(adev); } return 0; } static int gfx_v11_0_config_me_cache(struct amdgpu_device *adev, uint64_t addr) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->hdp.funcs->flush_hdp(adev, NULL); tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp); /* Program me ucode address into intruction cache address register */ WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v11_0_config_pfp_cache(struct amdgpu_device *adev, uint64_t addr) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->hdp.funcs->flush_hdp(adev, NULL); tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp); /* Program pfp ucode address into intruction cache address register */ WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v11_0_config_mec_cache(struct amdgpu_device *adev, uint64_t addr) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->hdp.funcs->flush_hdp(adev, NULL); tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp); /* Program mec1 ucode address into intruction cache address register */ WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v11_0_config_pfp_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; unsigned i, pipe_id; const struct gfx_firmware_header_v2_0 *pfp_hdr; pfp_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO, lower_32_bits(addr)); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI, upper_32_bits(addr)); tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp); /* * Programming any of the CP_PFP_IC_BASE registers * forces invalidation of the ME L1 I$. Wait for the * invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Prime the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, PRIME_ICACHE, 1); WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp); /* Waiting for cache primed*/ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, ICACHE_PRIMED)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to prime instruction cache\n"); return -EINVAL; } mutex_lock(&adev->srbm_mutex); for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) { soc21_grbm_select(adev, 0, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START, (pfp_hdr->ucode_start_addr_hi << 30) | (pfp_hdr->ucode_start_addr_lo >> 2)); WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI, pfp_hdr->ucode_start_addr_hi >> 2); /* * Program CP_ME_CNTL to reset given PIPE to take * effect of CP_PFP_PRGRM_CNTR_START. */ tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 1); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* Clear pfp pipe0 reset bit. */ if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 0); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 0); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_LO, lower_32_bits(addr2)); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_HI, upper_32_bits(addr2)); } soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp); /* Invalidate the data caches */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp); for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate RS64 data cache\n"); return -EINVAL; } return 0; } static int gfx_v11_0_config_me_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; unsigned i, pipe_id; const struct gfx_firmware_header_v2_0 *me_hdr; me_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO, lower_32_bits(addr)); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI, upper_32_bits(addr)); tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp); /* * Programming any of the CP_ME_IC_BASE registers * forces invalidation of the ME L1 I$. Wait for the * invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Prime the instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, PRIME_ICACHE, 1); WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp); /* Waiting for instruction cache primed*/ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, ICACHE_PRIMED)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to prime instruction cache\n"); return -EINVAL; } mutex_lock(&adev->srbm_mutex); for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) { soc21_grbm_select(adev, 0, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START, (me_hdr->ucode_start_addr_hi << 30) | (me_hdr->ucode_start_addr_lo >> 2) ); WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI, me_hdr->ucode_start_addr_hi>>2); /* * Program CP_ME_CNTL to reset given PIPE to take * effect of CP_PFP_PRGRM_CNTR_START. */ tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 1); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* Clear pfp pipe0 reset bit. */ if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 0); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 0); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_LO, lower_32_bits(addr2)); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_HI, upper_32_bits(addr2)); } soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp); /* Invalidate the data caches */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp); for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate RS64 data cache\n"); return -EINVAL; } return 0; } static int gfx_v11_0_config_mec_cache_rs64(struct amdgpu_device *adev, uint64_t addr, uint64_t addr2) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; unsigned i; const struct gfx_firmware_header_v2_0 *mec_hdr; mec_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp); tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL, tmp); mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) { soc21_grbm_select(adev, 1, i, 0, 0); WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_LO, addr2); WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_HI, upper_32_bits(addr2)); WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START, mec_hdr->ucode_start_addr_lo >> 2 | mec_hdr->ucode_start_addr_hi << 30); WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI, mec_hdr->ucode_start_addr_hi >> 2); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, addr); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI, upper_32_bits(addr)); } mutex_unlock(&adev->srbm_mutex); soc21_grbm_select(adev, 0, 0, 0, 0); /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE, 1); WREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } return 0; } static void gfx_v11_0_config_gfx_rs64(struct amdgpu_device *adev) { const struct gfx_firmware_header_v2_0 *pfp_hdr; const struct gfx_firmware_header_v2_0 *me_hdr; const struct gfx_firmware_header_v2_0 *mec_hdr; uint32_t pipe_id, tmp; mec_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; me_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; pfp_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; /* config pfp program start addr */ for (pipe_id = 0; pipe_id < 2; pipe_id++) { soc21_grbm_select(adev, 0, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START, (pfp_hdr->ucode_start_addr_hi << 30) | (pfp_hdr->ucode_start_addr_lo >> 2)); WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI, pfp_hdr->ucode_start_addr_hi >> 2); } soc21_grbm_select(adev, 0, 0, 0, 0); /* reset pfp pipe */ tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* clear pfp pipe reset */ tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 0); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 0); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* config me program start addr */ for (pipe_id = 0; pipe_id < 2; pipe_id++) { soc21_grbm_select(adev, 0, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START, (me_hdr->ucode_start_addr_hi << 30) | (me_hdr->ucode_start_addr_lo >> 2) ); WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI, me_hdr->ucode_start_addr_hi>>2); } soc21_grbm_select(adev, 0, 0, 0, 0); /* reset me pipe */ tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* clear me pipe reset */ tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 0); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 0); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* config mec program start addr */ for (pipe_id = 0; pipe_id < 4; pipe_id++) { soc21_grbm_select(adev, 1, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START, mec_hdr->ucode_start_addr_lo >> 2 | mec_hdr->ucode_start_addr_hi << 30); WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI, mec_hdr->ucode_start_addr_hi >> 2); } soc21_grbm_select(adev, 0, 0, 0, 0); /* reset mec pipe */ tmp = RREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, 1); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, 1); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, 1); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, 1); WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, tmp); /* clear mec pipe reset */ tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, 0); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, 0); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, 0); tmp = REG_SET_FIELD(tmp, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, 0); WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, tmp); } static int gfx_v11_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev) { uint32_t cp_status; uint32_t bootload_status; int i, r; uint64_t addr, addr2; for (i = 0; i < adev->usec_timeout; i++) { cp_status = RREG32_SOC15(GC, 0, regCP_STAT); if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(11, 0, 1) || adev->ip_versions[GC_HWIP][0] == IP_VERSION(11, 0, 4)) bootload_status = RREG32_SOC15(GC, 0, regRLC_RLCS_BOOTLOAD_STATUS_gc_11_0_1); else bootload_status = RREG32_SOC15(GC, 0, regRLC_RLCS_BOOTLOAD_STATUS); if ((cp_status == 0) && (REG_GET_FIELD(bootload_status, RLC_RLCS_BOOTLOAD_STATUS, BOOTLOAD_COMPLETE) == 1)) { break; } udelay(1); } if (i >= adev->usec_timeout) { dev_err(adev->dev, "rlc autoload: gc ucode autoload timeout\n"); return -ETIMEDOUT; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { if (adev->gfx.rs64_enable) { addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_ME].offset; addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_ME_P0_STACK].offset; r = gfx_v11_0_config_me_cache_rs64(adev, addr, addr2); if (r) return r; addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_PFP].offset; addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_PFP_P0_STACK].offset; r = gfx_v11_0_config_pfp_cache_rs64(adev, addr, addr2); if (r) return r; addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_MEC].offset; addr2 = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_RS64_MEC_P0_STACK].offset; r = gfx_v11_0_config_mec_cache_rs64(adev, addr, addr2); if (r) return r; } else { addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_CP_ME].offset; r = gfx_v11_0_config_me_cache(adev, addr); if (r) return r; addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_CP_PFP].offset; r = gfx_v11_0_config_pfp_cache(adev, addr); if (r) return r; addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[SOC21_FIRMWARE_ID_CP_MEC].offset; r = gfx_v11_0_config_mec_cache(adev, addr); if (r) return r; } } return 0; } static int gfx_v11_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable) { int i; u32 tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, enable ? 0 : 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, enable ? 0 : 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); for (i = 0; i < adev->usec_timeout; i++) { if (RREG32_SOC15(GC, 0, regCP_STAT) == 0) break; udelay(1); } if (i >= adev->usec_timeout) DRM_ERROR("failed to %s cp gfx\n", enable ? "unhalt" : "halt"); return 0; } static int gfx_v11_0_cp_gfx_load_pfp_microcode(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v1_0 *pfp_hdr; const __le32 *fw_data; unsigned i, fw_size; pfp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header); fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, pfp_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.pfp.pfp_fw_obj, &adev->gfx.pfp.pfp_fw_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create pfp fw bo\n", r); gfx_v11_0_pfp_fini(adev); return r; } memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj); amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj); gfx_v11_0_config_pfp_cache(adev, adev->gfx.pfp.pfp_fw_gpu_addr); WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_ADDR, 0); for (i = 0; i < pfp_hdr->jt_size; i++) WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_DATA, le32_to_cpup(fw_data + pfp_hdr->jt_offset + i)); WREG32_SOC15(GC, 0, regCP_HYP_PFP_UCODE_ADDR, adev->gfx.pfp_fw_version); return 0; } static int gfx_v11_0_cp_gfx_load_pfp_microcode_rs64(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v2_0 *pfp_hdr; const __le32 *fw_ucode, *fw_data; unsigned i, pipe_id, fw_ucode_size, fw_data_size; uint32_t tmp; uint32_t usec_timeout = 50000; /* wait for 50ms */ pfp_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header); /* instruction */ fw_ucode = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->ucode_offset_bytes)); fw_ucode_size = le32_to_cpu(pfp_hdr->ucode_size_bytes); /* data */ fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->data_offset_bytes)); fw_data_size = le32_to_cpu(pfp_hdr->data_size_bytes); /* 64kb align */ r = amdgpu_bo_create_reserved(adev, fw_ucode_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.pfp.pfp_fw_obj, &adev->gfx.pfp.pfp_fw_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create pfp ucode fw bo\n", r); gfx_v11_0_pfp_fini(adev); return r; } r = amdgpu_bo_create_reserved(adev, fw_data_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.pfp.pfp_fw_data_obj, &adev->gfx.pfp.pfp_fw_data_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_data_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create pfp data fw bo\n", r); gfx_v11_0_pfp_fini(adev); return r; } memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_ucode, fw_ucode_size); memcpy(adev->gfx.pfp.pfp_fw_data_ptr, fw_data, fw_data_size); amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj); amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_data_obj); amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj); amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_data_obj); if (amdgpu_emu_mode == 1) adev->hdp.funcs->flush_hdp(adev, NULL); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_LO, lower_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr)); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_HI, upper_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr)); tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0); WREG32_SOC15(GC, 0, regCP_PFP_IC_BASE_CNTL, tmp); /* * Programming any of the CP_PFP_IC_BASE registers * forces invalidation of the ME L1 I$. Wait for the * invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Prime the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, PRIME_ICACHE, 1); WREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL, tmp); /* Waiting for cache primed*/ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, ICACHE_PRIMED)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to prime instruction cache\n"); return -EINVAL; } mutex_lock(&adev->srbm_mutex); for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) { soc21_grbm_select(adev, 0, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START, (pfp_hdr->ucode_start_addr_hi << 30) | (pfp_hdr->ucode_start_addr_lo >> 2) ); WREG32_SOC15(GC, 0, regCP_PFP_PRGRM_CNTR_START_HI, pfp_hdr->ucode_start_addr_hi>>2); /* * Program CP_ME_CNTL to reset given PIPE to take * effect of CP_PFP_PRGRM_CNTR_START. */ tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 1); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* Clear pfp pipe0 reset bit. */ if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE0_RESET, 0); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_PIPE1_RESET, 0); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_LO, lower_32_bits(adev->gfx.pfp.pfp_fw_data_gpu_addr)); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE0_HI, upper_32_bits(adev->gfx.pfp.pfp_fw_data_gpu_addr)); } soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp); /* Invalidate the data caches */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp); for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate RS64 data cache\n"); return -EINVAL; } return 0; } static int gfx_v11_0_cp_gfx_load_me_microcode(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v1_0 *me_hdr; const __le32 *fw_data; unsigned i, fw_size; me_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; amdgpu_ucode_print_gfx_hdr(&me_hdr->header); fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, me_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.me.me_fw_obj, &adev->gfx.me.me_fw_gpu_addr, (void **)&adev->gfx.me.me_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create me fw bo\n", r); gfx_v11_0_me_fini(adev); return r; } memcpy(adev->gfx.me.me_fw_ptr, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj); amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj); gfx_v11_0_config_me_cache(adev, adev->gfx.me.me_fw_gpu_addr); WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_ADDR, 0); for (i = 0; i < me_hdr->jt_size; i++) WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_DATA, le32_to_cpup(fw_data + me_hdr->jt_offset + i)); WREG32_SOC15(GC, 0, regCP_HYP_ME_UCODE_ADDR, adev->gfx.me_fw_version); return 0; } static int gfx_v11_0_cp_gfx_load_me_microcode_rs64(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v2_0 *me_hdr; const __le32 *fw_ucode, *fw_data; unsigned i, pipe_id, fw_ucode_size, fw_data_size; uint32_t tmp; uint32_t usec_timeout = 50000; /* wait for 50ms */ me_hdr = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; amdgpu_ucode_print_gfx_hdr(&me_hdr->header); /* instruction */ fw_ucode = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(me_hdr->ucode_offset_bytes)); fw_ucode_size = le32_to_cpu(me_hdr->ucode_size_bytes); /* data */ fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(me_hdr->data_offset_bytes)); fw_data_size = le32_to_cpu(me_hdr->data_size_bytes); /* 64kb align*/ r = amdgpu_bo_create_reserved(adev, fw_ucode_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.me.me_fw_obj, &adev->gfx.me.me_fw_gpu_addr, (void **)&adev->gfx.me.me_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create me ucode bo\n", r); gfx_v11_0_me_fini(adev); return r; } r = amdgpu_bo_create_reserved(adev, fw_data_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.me.me_fw_data_obj, &adev->gfx.me.me_fw_data_gpu_addr, (void **)&adev->gfx.me.me_fw_data_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create me data bo\n", r); gfx_v11_0_pfp_fini(adev); return r; } memcpy(adev->gfx.me.me_fw_ptr, fw_ucode, fw_ucode_size); memcpy(adev->gfx.me.me_fw_data_ptr, fw_data, fw_data_size); amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj); amdgpu_bo_kunmap(adev->gfx.me.me_fw_data_obj); amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj); amdgpu_bo_unreserve(adev->gfx.me.me_fw_data_obj); if (amdgpu_emu_mode == 1) adev->hdp.funcs->flush_hdp(adev, NULL); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_LO, lower_32_bits(adev->gfx.me.me_fw_gpu_addr)); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_HI, upper_32_bits(adev->gfx.me.me_fw_gpu_addr)); tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0); WREG32_SOC15(GC, 0, regCP_ME_IC_BASE_CNTL, tmp); /* * Programming any of the CP_ME_IC_BASE registers * forces invalidation of the ME L1 I$. Wait for the * invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Prime the instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, PRIME_ICACHE, 1); WREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL, tmp); /* Waiting for instruction cache primed*/ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, ICACHE_PRIMED)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to prime instruction cache\n"); return -EINVAL; } mutex_lock(&adev->srbm_mutex); for (pipe_id = 0; pipe_id < adev->gfx.me.num_pipe_per_me; pipe_id++) { soc21_grbm_select(adev, 0, pipe_id, 0, 0); WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START, (me_hdr->ucode_start_addr_hi << 30) | (me_hdr->ucode_start_addr_lo >> 2) ); WREG32_SOC15(GC, 0, regCP_ME_PRGRM_CNTR_START_HI, me_hdr->ucode_start_addr_hi>>2); /* * Program CP_ME_CNTL to reset given PIPE to take * effect of CP_PFP_PRGRM_CNTR_START. */ tmp = RREG32_SOC15(GC, 0, regCP_ME_CNTL); if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 1); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 1); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); /* Clear pfp pipe0 reset bit. */ if (pipe_id == 0) tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE0_RESET, 0); else tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_PIPE1_RESET, 0); WREG32_SOC15(GC, 0, regCP_ME_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_LO, lower_32_bits(adev->gfx.me.me_fw_data_gpu_addr)); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE1_HI, upper_32_bits(adev->gfx.me.me_fw_data_gpu_addr)); } soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_BASE_CNTL, tmp); /* Invalidate the data caches */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE, 1); WREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL, tmp); for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_GFX_RS64_DC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_GFX_RS64_DC_OP_CNTL, INVALIDATE_DCACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate RS64 data cache\n"); return -EINVAL; } return 0; } static int gfx_v11_0_cp_gfx_load_microcode(struct amdgpu_device *adev) { int r; if (!adev->gfx.me_fw || !adev->gfx.pfp_fw) return -EINVAL; gfx_v11_0_cp_gfx_enable(adev, false); if (adev->gfx.rs64_enable) r = gfx_v11_0_cp_gfx_load_pfp_microcode_rs64(adev); else r = gfx_v11_0_cp_gfx_load_pfp_microcode(adev); if (r) { dev_err(adev->dev, "(%d) failed to load pfp fw\n", r); return r; } if (adev->gfx.rs64_enable) r = gfx_v11_0_cp_gfx_load_me_microcode_rs64(adev); else r = gfx_v11_0_cp_gfx_load_me_microcode(adev); if (r) { dev_err(adev->dev, "(%d) failed to load me fw\n", r); return r; } return 0; } static int gfx_v11_0_cp_gfx_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int r, i; int ctx_reg_offset; /* init the CP */ WREG32_SOC15(GC, 0, regCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1); WREG32_SOC15(GC, 0, regCP_DEVICE_ID, 1); if (!amdgpu_async_gfx_ring) gfx_v11_0_cp_gfx_enable(adev, true); ring = &adev->gfx.gfx_ring[0]; r = amdgpu_ring_alloc(ring, gfx_v11_0_get_csb_size(adev)); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, 0x80000000); amdgpu_ring_write(ring, 0x80000000); for (sect = gfx11_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); amdgpu_ring_write(ring, ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) amdgpu_ring_write(ring, ext->extent[i]); } } } ctx_reg_offset = SOC15_REG_OFFSET(GC, 0, regPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START; amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 1)); amdgpu_ring_write(ring, ctx_reg_offset); amdgpu_ring_write(ring, adev->gfx.config.pa_sc_tile_steering_override); amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_commit(ring); /* submit cs packet to copy state 0 to next available state */ if (adev->gfx.num_gfx_rings > 1) { /* maximum supported gfx ring is 2 */ ring = &adev->gfx.gfx_ring[1]; r = amdgpu_ring_alloc(ring, 2); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_commit(ring); } return 0; } static void gfx_v11_0_cp_gfx_switch_pipe(struct amdgpu_device *adev, CP_PIPE_ID pipe) { u32 tmp; tmp = RREG32_SOC15(GC, 0, regGRBM_GFX_CNTL); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, pipe); WREG32_SOC15(GC, 0, regGRBM_GFX_CNTL, tmp); } static void gfx_v11_0_cp_gfx_set_doorbell(struct amdgpu_device *adev, struct amdgpu_ring *ring) { u32 tmp; tmp = RREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 1); } else { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0); } WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL, tmp); tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER, DOORBELL_RANGE_LOWER, ring->doorbell_index); WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_LOWER, tmp); WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_UPPER, CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK); } static int gfx_v11_0_cp_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 tmp; u32 rb_bufsz; u64 rb_addr, rptr_addr, wptr_gpu_addr; /* Set the write pointer delay */ WREG32_SOC15(GC, 0, regCP_RB_WPTR_DELAY, 0); /* set the RB to use vmid 0 */ WREG32_SOC15(GC, 0, regCP_RB_VMID, 0); /* Init gfx ring 0 for pipe 0 */ mutex_lock(&adev->srbm_mutex); gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID0); /* Set ring buffer size */ ring = &adev->gfx.gfx_ring[0]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2); WREG32_SOC15(GC, 0, regCP_RB0_CNTL, tmp); /* Initialize the ring buffer's write pointers */ ring->wptr = 0; WREG32_SOC15(GC, 0, regCP_RB0_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI, upper_32_bits(ring->wptr)); /* set the wb address wether it's enabled or not */ rptr_addr = ring->rptr_gpu_addr; WREG32_SOC15(GC, 0, regCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32_SOC15(GC, 0, regCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & CP_RB_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK); wptr_gpu_addr = ring->wptr_gpu_addr; WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); mdelay(1); WREG32_SOC15(GC, 0, regCP_RB0_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32_SOC15(GC, 0, regCP_RB0_BASE, rb_addr); WREG32_SOC15(GC, 0, regCP_RB0_BASE_HI, upper_32_bits(rb_addr)); WREG32_SOC15(GC, 0, regCP_RB_ACTIVE, 1); gfx_v11_0_cp_gfx_set_doorbell(adev, ring); mutex_unlock(&adev->srbm_mutex); /* Init gfx ring 1 for pipe 1 */ if (adev->gfx.num_gfx_rings > 1) { mutex_lock(&adev->srbm_mutex); gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID1); /* maximum supported gfx ring is 2 */ ring = &adev->gfx.gfx_ring[1]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = REG_SET_FIELD(0, CP_RB1_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_RB1_CNTL, RB_BLKSZ, rb_bufsz - 2); WREG32_SOC15(GC, 0, regCP_RB1_CNTL, tmp); /* Initialize the ring buffer's write pointers */ ring->wptr = 0; WREG32_SOC15(GC, 0, regCP_RB1_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, regCP_RB1_WPTR_HI, upper_32_bits(ring->wptr)); /* Set the wb address wether it's enabled or not */ rptr_addr = ring->rptr_gpu_addr; WREG32_SOC15(GC, 0, regCP_RB1_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32_SOC15(GC, 0, regCP_RB1_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & CP_RB1_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK); wptr_gpu_addr = ring->wptr_gpu_addr; WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); mdelay(1); WREG32_SOC15(GC, 0, regCP_RB1_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32_SOC15(GC, 0, regCP_RB1_BASE, rb_addr); WREG32_SOC15(GC, 0, regCP_RB1_BASE_HI, upper_32_bits(rb_addr)); WREG32_SOC15(GC, 0, regCP_RB1_ACTIVE, 1); gfx_v11_0_cp_gfx_set_doorbell(adev, ring); mutex_unlock(&adev->srbm_mutex); } /* Switch to pipe 0 */ mutex_lock(&adev->srbm_mutex); gfx_v11_0_cp_gfx_switch_pipe(adev, PIPE_ID0); mutex_unlock(&adev->srbm_mutex); /* start the ring */ gfx_v11_0_cp_gfx_start(adev); return 0; } static void gfx_v11_0_cp_compute_enable(struct amdgpu_device *adev, bool enable) { u32 data; if (adev->gfx.rs64_enable) { data = RREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_INVALIDATE_ICACHE, enable ? 0 : 1); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE0_RESET, enable ? 0 : 1); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE1_RESET, enable ? 0 : 1); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE2_RESET, enable ? 0 : 1); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE3_RESET, enable ? 0 : 1); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE0_ACTIVE, enable ? 1 : 0); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE1_ACTIVE, enable ? 1 : 0); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE2_ACTIVE, enable ? 1 : 0); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_PIPE3_ACTIVE, enable ? 1 : 0); data = REG_SET_FIELD(data, CP_MEC_RS64_CNTL, MEC_HALT, enable ? 0 : 1); WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, data); } else { data = RREG32_SOC15(GC, 0, regCP_MEC_CNTL); if (enable) { data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME1_HALT, 0); if (!adev->enable_mes_kiq) data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME2_HALT, 0); } else { data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME1_HALT, 1); data = REG_SET_FIELD(data, CP_MEC_CNTL, MEC_ME2_HALT, 1); } WREG32_SOC15(GC, 0, regCP_MEC_CNTL, data); } udelay(50); } static int gfx_v11_0_cp_compute_load_microcode(struct amdgpu_device *adev) { const struct gfx_firmware_header_v1_0 *mec_hdr; const __le32 *fw_data; unsigned i, fw_size; u32 *fw = NULL; int r; if (!adev->gfx.mec_fw) return -EINVAL; gfx_v11_0_cp_compute_enable(adev, false); mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; amdgpu_ucode_print_gfx_hdr(&mec_hdr->header); fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, mec_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.mec_fw_obj, &adev->gfx.mec.mec_fw_gpu_addr, (void **)&fw); if (r) { dev_err(adev->dev, "(%d) failed to create mec fw bo\n", r); gfx_v11_0_mec_fini(adev); return r; } memcpy(fw, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj); gfx_v11_0_config_mec_cache(adev, adev->gfx.mec.mec_fw_gpu_addr); /* MEC1 */ WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_ADDR, 0); for (i = 0; i < mec_hdr->jt_size; i++) WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_DATA, le32_to_cpup(fw_data + mec_hdr->jt_offset + i)); WREG32_SOC15(GC, 0, regCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version); return 0; } static int gfx_v11_0_cp_compute_load_microcode_rs64(struct amdgpu_device *adev) { const struct gfx_firmware_header_v2_0 *mec_hdr; const __le32 *fw_ucode, *fw_data; u32 tmp, fw_ucode_size, fw_data_size; u32 i, usec_timeout = 50000; /* Wait for 50 ms */ u32 *fw_ucode_ptr, *fw_data_ptr; int r; if (!adev->gfx.mec_fw) return -EINVAL; gfx_v11_0_cp_compute_enable(adev, false); mec_hdr = (const struct gfx_firmware_header_v2_0 *)adev->gfx.mec_fw->data; amdgpu_ucode_print_gfx_hdr(&mec_hdr->header); fw_ucode = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->ucode_offset_bytes)); fw_ucode_size = le32_to_cpu(mec_hdr->ucode_size_bytes); fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->data_offset_bytes)); fw_data_size = le32_to_cpu(mec_hdr->data_size_bytes); r = amdgpu_bo_create_reserved(adev, fw_ucode_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.mec_fw_obj, &adev->gfx.mec.mec_fw_gpu_addr, (void **)&fw_ucode_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create mec fw ucode bo\n", r); gfx_v11_0_mec_fini(adev); return r; } r = amdgpu_bo_create_reserved(adev, fw_data_size, 64 * 1024, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.mec_fw_data_obj, &adev->gfx.mec.mec_fw_data_gpu_addr, (void **)&fw_data_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create mec fw ucode bo\n", r); gfx_v11_0_mec_fini(adev); return r; } memcpy(fw_ucode_ptr, fw_ucode, fw_ucode_size); memcpy(fw_data_ptr, fw_data, fw_data_size); amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj); amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_data_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_data_obj); tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_CNTL, tmp); tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_MEC_DC_BASE_CNTL, CACHE_POLICY, 0); WREG32_SOC15(GC, 0, regCP_MEC_DC_BASE_CNTL, tmp); mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) { soc21_grbm_select(adev, 1, i, 0, 0); WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_LO, adev->gfx.mec.mec_fw_data_gpu_addr); WREG32_SOC15(GC, 0, regCP_MEC_MDBASE_HI, upper_32_bits(adev->gfx.mec.mec_fw_data_gpu_addr)); WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START, mec_hdr->ucode_start_addr_lo >> 2 | mec_hdr->ucode_start_addr_hi << 30); WREG32_SOC15(GC, 0, regCP_MEC_RS64_PRGRM_CNTR_START_HI, mec_hdr->ucode_start_addr_hi >> 2); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr); WREG32_SOC15(GC, 0, regCP_CPC_IC_BASE_HI, upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr)); } mutex_unlock(&adev->srbm_mutex); soc21_grbm_select(adev, 0, 0, 0, 0); /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE, 1); WREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_MEC_DC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_MEC_DC_OP_CNTL, INVALIDATE_DCACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, regCP_CPC_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } return 0; } static void gfx_v11_0_kiq_setting(struct amdgpu_ring *ring) { uint32_t tmp; struct amdgpu_device *adev = ring->adev; /* tell RLC which is KIQ queue */ tmp = RREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS); tmp &= 0xffffff00; tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue); WREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS, tmp); tmp |= 0x80; WREG32_SOC15(GC, 0, regRLC_CP_SCHEDULERS, tmp); } static void gfx_v11_0_cp_set_doorbell_range(struct amdgpu_device *adev) { /* set graphics engine doorbell range */ WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_LOWER, (adev->doorbell_index.gfx_ring0 * 2) << 2); WREG32_SOC15(GC, 0, regCP_RB_DOORBELL_RANGE_UPPER, (adev->doorbell_index.gfx_userqueue_end * 2) << 2); /* set compute engine doorbell range */ WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_LOWER, (adev->doorbell_index.kiq * 2) << 2); WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_UPPER, (adev->doorbell_index.userqueue_end * 2) << 2); } static int gfx_v11_0_gfx_mqd_init(struct amdgpu_device *adev, void *m, struct amdgpu_mqd_prop *prop) { struct v11_gfx_mqd *mqd = m; uint64_t hqd_gpu_addr, wb_gpu_addr; uint32_t tmp; uint32_t rb_bufsz; /* set up gfx hqd wptr */ mqd->cp_gfx_hqd_wptr = 0; mqd->cp_gfx_hqd_wptr_hi = 0; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr = prop->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(prop->mqd_gpu_addr); /* set up mqd control */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, CACHE_POLICY, 0); mqd->cp_gfx_mqd_control = tmp; /* set up gfx_hqd_vimd with 0x0 to indicate the ring buffer's vmid */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_VMID); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_VMID, VMID, 0); mqd->cp_gfx_hqd_vmid = 0; /* set up default queue priority level * 0x0 = low priority, 0x1 = high priority */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_QUEUE_PRIORITY); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUEUE_PRIORITY, PRIORITY_LEVEL, 0); mqd->cp_gfx_hqd_queue_priority = tmp; /* set up time quantum */ tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_QUANTUM); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUANTUM, QUANTUM_EN, 1); mqd->cp_gfx_hqd_quantum = tmp; /* set up gfx hqd base. this is similar as CP_RB_BASE */ hqd_gpu_addr = prop->hqd_base_gpu_addr >> 8; mqd->cp_gfx_hqd_base = hqd_gpu_addr; mqd->cp_gfx_hqd_base_hi = upper_32_bits(hqd_gpu_addr); /* set up hqd_rptr_addr/_hi, similar as CP_RB_RPTR */ wb_gpu_addr = prop->rptr_gpu_addr; mqd->cp_gfx_hqd_rptr_addr = wb_gpu_addr & 0xfffffffc; mqd->cp_gfx_hqd_rptr_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* set up rb_wptr_poll addr */ wb_gpu_addr = prop->wptr_gpu_addr; mqd->cp_rb_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* set up the gfx_hqd_control, similar as CP_RB0_CNTL */ rb_bufsz = order_base_2(prop->queue_size / 4) - 1; tmp = RREG32_SOC15(GC, 0, regCP_GFX_HQD_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BLKSZ, rb_bufsz - 2); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, BUF_SWAP, 1); #endif mqd->cp_gfx_hqd_cntl = tmp; /* set up cp_doorbell_control */ tmp = RREG32_SOC15(GC, 0, regCP_RB_DOORBELL_CONTROL); if (prop->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_OFFSET, prop->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 1); } else tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0); mqd->cp_rb_doorbell_control = tmp; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ mqd->cp_gfx_hqd_rptr = RREG32_SOC15(GC, 0, regCP_GFX_HQD_RPTR); /* active the queue */ mqd->cp_gfx_hqd_active = 1; return 0; } static int gfx_v11_0_gfx_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v11_gfx_mqd *mqd = ring->mqd_ptr; int mqd_idx = ring - &adev->gfx.gfx_ring[0]; if (!amdgpu_in_reset(adev) && !adev->in_suspend) { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); amdgpu_ring_init_mqd(ring); soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.me.mqd_backup[mqd_idx]) memcpy(adev->gfx.me.mqd_backup[mqd_idx], mqd, sizeof(*mqd)); } else { /* restore mqd with the backup copy */ if (adev->gfx.me.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.me.mqd_backup[mqd_idx], sizeof(*mqd)); /* reset the ring */ ring->wptr = 0; *ring->wptr_cpu_addr = 0; amdgpu_ring_clear_ring(ring); } return 0; } static int gfx_v11_0_cp_async_gfx_ring_resume(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *ring; for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) return r; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v11_0_gfx_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) return r; } r = amdgpu_gfx_enable_kgq(adev, 0); if (r) return r; return gfx_v11_0_cp_gfx_start(adev); } static int gfx_v11_0_compute_mqd_init(struct amdgpu_device *adev, void *m, struct amdgpu_mqd_prop *prop) { struct v11_compute_mqd *mqd = m; uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr; uint32_t tmp; mqd->header = 0xC0310800; mqd->compute_pipelinestat_enable = 0x00000001; mqd->compute_static_thread_mgmt_se0 = 0xffffffff; mqd->compute_static_thread_mgmt_se1 = 0xffffffff; mqd->compute_static_thread_mgmt_se2 = 0xffffffff; mqd->compute_static_thread_mgmt_se3 = 0xffffffff; mqd->compute_misc_reserved = 0x00000007; eop_base_addr = prop->eop_gpu_addr >> 8; mqd->cp_hqd_eop_base_addr_lo = eop_base_addr; mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE, (order_base_2(GFX11_MEC_HPD_SIZE / 4) - 1)); mqd->cp_hqd_eop_control = tmp; /* enable doorbell? */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL); if (prop->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, prop->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } else { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* disable the queue if it's active */ mqd->cp_hqd_dequeue_request = 0; mqd->cp_hqd_pq_rptr = 0; mqd->cp_hqd_pq_wptr_lo = 0; mqd->cp_hqd_pq_wptr_hi = 0; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr_lo = prop->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(prop->mqd_gpu_addr); /* set MQD vmid to 0 */ tmp = RREG32_SOC15(GC, 0, regCP_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0); mqd->cp_mqd_control = tmp; /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = prop->hqd_base_gpu_addr >> 8; mqd->cp_hqd_pq_base_lo = hqd_gpu_addr; mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); /* set up the HQD, this is similar to CP_RB0_CNTL */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE, (order_base_2(prop->queue_size / 4) - 1)); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE, (order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1)); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, TUNNEL_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1); mqd->cp_hqd_pq_control = tmp; /* set the wb address whether it's enabled or not */ wb_gpu_addr = prop->rptr_gpu_addr; mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ wb_gpu_addr = prop->wptr_gpu_addr; mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; tmp = 0; /* enable the doorbell if requested */ if (prop->use_doorbell) { tmp = RREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, prop->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR); /* set the vmid for the queue */ mqd->cp_hqd_vmid = 0; tmp = RREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE); tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x55); mqd->cp_hqd_persistent_state = tmp; /* set MIN_IB_AVAIL_SIZE */ tmp = RREG32_SOC15(GC, 0, regCP_HQD_IB_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3); mqd->cp_hqd_ib_control = tmp; /* set static priority for a compute queue/ring */ mqd->cp_hqd_pipe_priority = prop->hqd_pipe_priority; mqd->cp_hqd_queue_priority = prop->hqd_queue_priority; mqd->cp_hqd_active = prop->hqd_active; return 0; } static int gfx_v11_0_kiq_init_register(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v11_compute_mqd *mqd = ring->mqd_ptr; int j; /* inactivate the queue */ if (amdgpu_sriov_vf(adev)) WREG32_SOC15(GC, 0, regCP_HQD_ACTIVE, 0); /* disable wptr polling */ WREG32_FIELD15_PREREG(GC, 0, CP_PQ_WPTR_POLL_CNTL, EN, 0); /* write the EOP addr */ WREG32_SOC15(GC, 0, regCP_HQD_EOP_BASE_ADDR, mqd->cp_hqd_eop_base_addr_lo); WREG32_SOC15(GC, 0, regCP_HQD_EOP_BASE_ADDR_HI, mqd->cp_hqd_eop_base_addr_hi); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ WREG32_SOC15(GC, 0, regCP_HQD_EOP_CONTROL, mqd->cp_hqd_eop_control); /* enable doorbell? */ WREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* disable the queue if it's active */ if (RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1) { WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 1); for (j = 0; j < adev->usec_timeout; j++) { if (!(RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) & 1)) break; udelay(1); } WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, mqd->cp_hqd_dequeue_request); WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR, mqd->cp_hqd_pq_rptr); WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); } /* set the pointer to the MQD */ WREG32_SOC15(GC, 0, regCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr_lo); WREG32_SOC15(GC, 0, regCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi); /* set MQD vmid to 0 */ WREG32_SOC15(GC, 0, regCP_MQD_CONTROL, mqd->cp_mqd_control); /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ WREG32_SOC15(GC, 0, regCP_HQD_PQ_BASE, mqd->cp_hqd_pq_base_lo); WREG32_SOC15(GC, 0, regCP_HQD_PQ_BASE_HI, mqd->cp_hqd_pq_base_hi); /* set up the HQD, this is similar to CP_RB0_CNTL */ WREG32_SOC15(GC, 0, regCP_HQD_PQ_CONTROL, mqd->cp_hqd_pq_control); /* set the wb address whether it's enabled or not */ WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR_REPORT_ADDR, mqd->cp_hqd_pq_rptr_report_addr_lo); WREG32_SOC15(GC, 0, regCP_HQD_PQ_RPTR_REPORT_ADDR_HI, mqd->cp_hqd_pq_rptr_report_addr_hi); /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR, mqd->cp_hqd_pq_wptr_poll_addr_lo); WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_POLL_ADDR_HI, mqd->cp_hqd_pq_wptr_poll_addr_hi); /* enable the doorbell if requested */ if (ring->use_doorbell) { WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_LOWER, (adev->doorbell_index.kiq * 2) << 2); WREG32_SOC15(GC, 0, regCP_MEC_DOORBELL_RANGE_UPPER, (adev->doorbell_index.userqueue_end * 2) << 2); } WREG32_SOC15(GC, 0, regCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15(GC, 0, regCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); /* set the vmid for the queue */ WREG32_SOC15(GC, 0, regCP_HQD_VMID, mqd->cp_hqd_vmid); WREG32_SOC15(GC, 0, regCP_HQD_PERSISTENT_STATE, mqd->cp_hqd_persistent_state); /* activate the queue */ WREG32_SOC15(GC, 0, regCP_HQD_ACTIVE, mqd->cp_hqd_active); if (ring->use_doorbell) WREG32_FIELD15_PREREG(GC, 0, CP_PQ_STATUS, DOORBELL_ENABLE, 1); return 0; } static int gfx_v11_0_kiq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v11_compute_mqd *mqd = ring->mqd_ptr; gfx_v11_0_kiq_setting(ring); if (amdgpu_in_reset(adev)) { /* for GPU_RESET case */ /* reset MQD to a clean status */ if (adev->gfx.kiq[0].mqd_backup) memcpy(mqd, adev->gfx.kiq[0].mqd_backup, sizeof(*mqd)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v11_0_kiq_init_register(ring); soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } else { memset((void *)mqd, 0, sizeof(*mqd)); if (amdgpu_sriov_vf(adev) && adev->in_suspend) amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); amdgpu_ring_init_mqd(ring); gfx_v11_0_kiq_init_register(ring); soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.kiq[0].mqd_backup) memcpy(adev->gfx.kiq[0].mqd_backup, mqd, sizeof(*mqd)); } return 0; } static int gfx_v11_0_kcq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v11_compute_mqd *mqd = ring->mqd_ptr; int mqd_idx = ring - &adev->gfx.compute_ring[0]; if (!amdgpu_in_reset(adev) && !adev->in_suspend) { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); soc21_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); amdgpu_ring_init_mqd(ring); soc21_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd)); } else { /* restore MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd)); /* reset ring buffer */ ring->wptr = 0; atomic64_set((atomic64_t *)ring->wptr_cpu_addr, 0); amdgpu_ring_clear_ring(ring); } return 0; } static int gfx_v11_0_kiq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int r; ring = &adev->gfx.kiq[0].ring; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) return r; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (unlikely(r != 0)) { amdgpu_bo_unreserve(ring->mqd_obj); return r; } gfx_v11_0_kiq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; amdgpu_bo_unreserve(ring->mqd_obj); ring->sched.ready = true; return 0; } static int gfx_v11_0_kcq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int r = 0, i; if (!amdgpu_async_gfx_ring) gfx_v11_0_cp_compute_enable(adev, true); for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v11_0_kcq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; } r = amdgpu_gfx_enable_kcq(adev, 0); done: return r; } static int gfx_v11_0_cp_resume(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *ring; if (!(adev->flags & AMD_IS_APU)) gfx_v11_0_enable_gui_idle_interrupt(adev, false); if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { /* legacy firmware loading */ r = gfx_v11_0_cp_gfx_load_microcode(adev); if (r) return r; if (adev->gfx.rs64_enable) r = gfx_v11_0_cp_compute_load_microcode_rs64(adev); else r = gfx_v11_0_cp_compute_load_microcode(adev); if (r) return r; } gfx_v11_0_cp_set_doorbell_range(adev); if (amdgpu_async_gfx_ring) { gfx_v11_0_cp_compute_enable(adev, true); gfx_v11_0_cp_gfx_enable(adev, true); } if (adev->enable_mes_kiq && adev->mes.kiq_hw_init) r = amdgpu_mes_kiq_hw_init(adev); else r = gfx_v11_0_kiq_resume(adev); if (r) return r; r = gfx_v11_0_kcq_resume(adev); if (r) return r; if (!amdgpu_async_gfx_ring) { r = gfx_v11_0_cp_gfx_resume(adev); if (r) return r; } else { r = gfx_v11_0_cp_async_gfx_ring_resume(adev); if (r) return r; } for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; r = amdgpu_ring_test_helper(ring); if (r) return r; } for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; r = amdgpu_ring_test_helper(ring); if (r) return r; } return 0; } static void gfx_v11_0_cp_enable(struct amdgpu_device *adev, bool enable) { gfx_v11_0_cp_gfx_enable(adev, enable); gfx_v11_0_cp_compute_enable(adev, enable); } static int gfx_v11_0_gfxhub_enable(struct amdgpu_device *adev) { int r; bool value; r = adev->gfxhub.funcs->gart_enable(adev); if (r) return r; adev->hdp.funcs->flush_hdp(adev, NULL); value = (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_ALWAYS) ? false : true; adev->gfxhub.funcs->set_fault_enable_default(adev, value); amdgpu_gmc_flush_gpu_tlb(adev, 0, AMDGPU_GFXHUB(0), 0); return 0; } static void gfx_v11_0_select_cp_fw_arch(struct amdgpu_device *adev) { u32 tmp; /* select RS64 */ if (adev->gfx.rs64_enable) { tmp = RREG32_SOC15(GC, 0, regCP_GFX_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_CNTL, ENGINE_SEL, 1); WREG32_SOC15(GC, 0, regCP_GFX_CNTL, tmp); tmp = RREG32_SOC15(GC, 0, regCP_MEC_ISA_CNTL); tmp = REG_SET_FIELD(tmp, CP_MEC_ISA_CNTL, ISA_MODE, 1); WREG32_SOC15(GC, 0, regCP_MEC_ISA_CNTL, tmp); } if (amdgpu_emu_mode == 1) msleep(100); } static int get_gb_addr_config(struct amdgpu_device * adev) { u32 gb_addr_config; gb_addr_config = RREG32_SOC15(GC, 0, regGB_ADDR_CONFIG); if (gb_addr_config == 0) return -EINVAL; adev->gfx.config.gb_addr_config_fields.num_pkrs = 1 << REG_GET_FIELD(gb_addr_config, GB_ADDR_CONFIG, NUM_PKRS); adev->gfx.config.gb_addr_config = gb_addr_config; adev->gfx.config.gb_addr_config_fields.num_pipes = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_PIPES); adev->gfx.config.max_tile_pipes = adev->gfx.config.gb_addr_config_fields.num_pipes; adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS); adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_RB_PER_SE); adev->gfx.config.gb_addr_config_fields.num_se = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_SHADER_ENGINES); adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 + REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE)); return 0; } static void gfx_v11_0_disable_gpa_mode(struct amdgpu_device *adev) { uint32_t data; data = RREG32_SOC15(GC, 0, regCPC_PSP_DEBUG); data |= CPC_PSP_DEBUG__GPA_OVERRIDE_MASK; WREG32_SOC15(GC, 0, regCPC_PSP_DEBUG, data); data = RREG32_SOC15(GC, 0, regCPG_PSP_DEBUG); data |= CPG_PSP_DEBUG__GPA_OVERRIDE_MASK; WREG32_SOC15(GC, 0, regCPG_PSP_DEBUG, data); } static int gfx_v11_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { if (adev->gfx.imu.funcs) { /* RLC autoload sequence 1: Program rlc ram */ if (adev->gfx.imu.funcs->program_rlc_ram) adev->gfx.imu.funcs->program_rlc_ram(adev); } /* rlc autoload firmware */ r = gfx_v11_0_rlc_backdoor_autoload_enable(adev); if (r) return r; } else { if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { if (adev->gfx.imu.funcs && (amdgpu_dpm > 0)) { if (adev->gfx.imu.funcs->load_microcode) adev->gfx.imu.funcs->load_microcode(adev); if (adev->gfx.imu.funcs->setup_imu) adev->gfx.imu.funcs->setup_imu(adev); if (adev->gfx.imu.funcs->start_imu) adev->gfx.imu.funcs->start_imu(adev); } /* disable gpa mode in backdoor loading */ gfx_v11_0_disable_gpa_mode(adev); } } if ((adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) || (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP)) { r = gfx_v11_0_wait_for_rlc_autoload_complete(adev); if (r) { dev_err(adev->dev, "(%d) failed to wait rlc autoload complete\n", r); return r; } } adev->gfx.is_poweron = true; if(get_gb_addr_config(adev)) DRM_WARN("Invalid gb_addr_config !\n"); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP && adev->gfx.rs64_enable) gfx_v11_0_config_gfx_rs64(adev); r = gfx_v11_0_gfxhub_enable(adev); if (r) return r; if (!amdgpu_emu_mode) gfx_v11_0_init_golden_registers(adev); if ((adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) || (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO && amdgpu_dpm == 1)) { /** * For gfx 11, rlc firmware loading relies on smu firmware is * loaded firstly, so in direct type, it has to load smc ucode * here before rlc. */ if (!(adev->flags & AMD_IS_APU)) { r = amdgpu_pm_load_smu_firmware(adev, NULL); if (r) return r; } } gfx_v11_0_constants_init(adev); if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) gfx_v11_0_select_cp_fw_arch(adev); if (adev->nbio.funcs->gc_doorbell_init) adev->nbio.funcs->gc_doorbell_init(adev); r = gfx_v11_0_rlc_resume(adev); if (r) return r; /* * init golden registers and rlc resume may override some registers, * reconfig them here */ gfx_v11_0_tcp_harvest(adev); r = gfx_v11_0_cp_resume(adev); if (r) return r; return r; } static int gfx_v11_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0); amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0); if (!adev->no_hw_access) { if (amdgpu_async_gfx_ring) { if (amdgpu_gfx_disable_kgq(adev, 0)) DRM_ERROR("KGQ disable failed\n"); } if (amdgpu_gfx_disable_kcq(adev, 0)) DRM_ERROR("KCQ disable failed\n"); amdgpu_mes_kiq_hw_fini(adev); } if (amdgpu_sriov_vf(adev)) /* Remove the steps disabling CPG and clearing KIQ position, * so that CP could perform IDLE-SAVE during switch. Those * steps are necessary to avoid a DMAR error in gfx9 but it is * not reproduced on gfx11. */ return 0; gfx_v11_0_cp_enable(adev, false); gfx_v11_0_enable_gui_idle_interrupt(adev, false); adev->gfxhub.funcs->gart_disable(adev); adev->gfx.is_poweron = false; return 0; } static int gfx_v11_0_suspend(void *handle) { return gfx_v11_0_hw_fini(handle); } static int gfx_v11_0_resume(void *handle) { return gfx_v11_0_hw_init(handle); } static bool gfx_v11_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (REG_GET_FIELD(RREG32_SOC15(GC, 0, regGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE)) return false; else return true; } static int gfx_v11_0_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32_SOC15(GC, 0, regGRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK; if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE)) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v11_0_soft_reset(void *handle) { u32 grbm_soft_reset = 0; u32 tmp; int i, j, k; struct amdgpu_device *adev = (struct amdgpu_device *)handle; tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 0); WREG32_SOC15(GC, 0, regCP_INT_CNTL, tmp); gfx_v11_0_set_safe_mode(adev, 0); for (i = 0; i < adev->gfx.mec.num_mec; ++i) { for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) { tmp = RREG32_SOC15(GC, 0, regGRBM_GFX_CNTL); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, MEID, i); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, QUEUEID, j); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, k); WREG32_SOC15(GC, 0, regGRBM_GFX_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_HQD_DEQUEUE_REQUEST, 0x2); WREG32_SOC15(GC, 0, regSPI_COMPUTE_QUEUE_RESET, 0x1); } } } for (i = 0; i < adev->gfx.me.num_me; ++i) { for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) { tmp = RREG32_SOC15(GC, 0, regGRBM_GFX_CNTL); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, MEID, i); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, QUEUEID, j); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, k); WREG32_SOC15(GC, 0, regGRBM_GFX_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_GFX_HQD_DEQUEUE_REQUEST, 0x1); } } } WREG32_SOC15(GC, 0, regCP_VMID_RESET, 0xfffffffe); // Read CP_VMID_RESET register three times. // to get sufficient time for GFX_HQD_ACTIVE reach 0 RREG32_SOC15(GC, 0, regCP_VMID_RESET); RREG32_SOC15(GC, 0, regCP_VMID_RESET); RREG32_SOC15(GC, 0, regCP_VMID_RESET); for (i = 0; i < adev->usec_timeout; i++) { if (!RREG32_SOC15(GC, 0, regCP_HQD_ACTIVE) && !RREG32_SOC15(GC, 0, regCP_GFX_HQD_ACTIVE)) break; udelay(1); } if (i >= adev->usec_timeout) { printk("Failed to wait all pipes clean\n"); return -EINVAL; } /********** trigger soft reset ***********/ grbm_soft_reset = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG, 1); WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, grbm_soft_reset); /********** exit soft reset ***********/ grbm_soft_reset = RREG32_SOC15(GC, 0, regGRBM_SOFT_RESET); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 0); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX, 0); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF, 0); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC, 0); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG, 0); WREG32_SOC15(GC, 0, regGRBM_SOFT_RESET, grbm_soft_reset); tmp = RREG32_SOC15(GC, 0, regCP_SOFT_RESET_CNTL); tmp = REG_SET_FIELD(tmp, CP_SOFT_RESET_CNTL, CMP_HQD_REG_RESET, 0x1); WREG32_SOC15(GC, 0, regCP_SOFT_RESET_CNTL, tmp); WREG32_SOC15(GC, 0, regCP_ME_CNTL, 0x0); WREG32_SOC15(GC, 0, regCP_MEC_RS64_CNTL, 0x0); for (i = 0; i < adev->usec_timeout; i++) { if (!RREG32_SOC15(GC, 0, regCP_VMID_RESET)) break; udelay(1); } if (i >= adev->usec_timeout) { printk("Failed to wait CP_VMID_RESET to 0\n"); return -EINVAL; } tmp = RREG32_SOC15(GC, 0, regCP_INT_CNTL); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 1); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 1); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 1); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 1); WREG32_SOC15(GC, 0, regCP_INT_CNTL, tmp); gfx_v11_0_unset_safe_mode(adev, 0); return gfx_v11_0_cp_resume(adev); } static bool gfx_v11_0_check_soft_reset(void *handle) { int i, r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring; long tmo = msecs_to_jiffies(1000); for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; r = amdgpu_ring_test_ib(ring, tmo); if (r) return true; } for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; r = amdgpu_ring_test_ib(ring, tmo); if (r) return true; } return false; } static int gfx_v11_0_post_soft_reset(void *handle) { /** * GFX soft reset will impact MES, need resume MES when do GFX soft reset */ return amdgpu_mes_resume((struct amdgpu_device *)handle); } static uint64_t gfx_v11_0_get_gpu_clock_counter(struct amdgpu_device *adev) { uint64_t clock; uint64_t clock_counter_lo, clock_counter_hi_pre, clock_counter_hi_after; if (amdgpu_sriov_vf(adev)) { amdgpu_gfx_off_ctrl(adev, false); mutex_lock(&adev->gfx.gpu_clock_mutex); clock_counter_hi_pre = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_HI); clock_counter_lo = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_LO); clock_counter_hi_after = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_HI); if (clock_counter_hi_pre != clock_counter_hi_after) clock_counter_lo = (uint64_t)RREG32_SOC15(GC, 0, regCP_MES_MTIME_LO); mutex_unlock(&adev->gfx.gpu_clock_mutex); amdgpu_gfx_off_ctrl(adev, true); } else { preempt_disable(); clock_counter_hi_pre = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_UPPER); clock_counter_lo = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_LOWER); clock_counter_hi_after = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_UPPER); if (clock_counter_hi_pre != clock_counter_hi_after) clock_counter_lo = (uint64_t)RREG32_SOC15(SMUIO, 0, regGOLDEN_TSC_COUNT_LOWER); preempt_enable(); } clock = clock_counter_lo | (clock_counter_hi_after << 32ULL); return clock; } static void gfx_v11_0_ring_emit_gds_switch(struct amdgpu_ring *ring, uint32_t vmid, uint32_t gds_base, uint32_t gds_size, uint32_t gws_base, uint32_t gws_size, uint32_t oa_base, uint32_t oa_size) { struct amdgpu_device *adev = ring->adev; /* GDS Base */ gfx_v11_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_BASE) + 2 * vmid, gds_base); /* GDS Size */ gfx_v11_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_VMID0_SIZE) + 2 * vmid, gds_size); /* GWS */ gfx_v11_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_GWS_VMID0) + vmid, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base); /* OA */ gfx_v11_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, regGDS_OA_VMID0) + vmid, (1 << (oa_size + oa_base)) - (1 << oa_base)); } static int gfx_v11_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfx.funcs = &gfx_v11_0_gfx_funcs; adev->gfx.num_gfx_rings = GFX11_NUM_GFX_RINGS; adev->gfx.num_compute_rings = min(amdgpu_gfx_get_num_kcq(adev), AMDGPU_MAX_COMPUTE_RINGS); gfx_v11_0_set_kiq_pm4_funcs(adev); gfx_v11_0_set_ring_funcs(adev); gfx_v11_0_set_irq_funcs(adev); gfx_v11_0_set_gds_init(adev); gfx_v11_0_set_rlc_funcs(adev); gfx_v11_0_set_mqd_funcs(adev); gfx_v11_0_set_imu_funcs(adev); gfx_v11_0_init_rlcg_reg_access_ctrl(adev); return gfx_v11_0_init_microcode(adev); } static int gfx_v11_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0); if (r) return r; return 0; } static bool gfx_v11_0_is_rlc_enabled(struct amdgpu_device *adev) { uint32_t rlc_cntl; /* if RLC is not enabled, do nothing */ rlc_cntl = RREG32_SOC15(GC, 0, regRLC_CNTL); return (REG_GET_FIELD(rlc_cntl, RLC_CNTL, RLC_ENABLE_F32)) ? true : false; } static void gfx_v11_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id) { uint32_t data; unsigned i; data = RLC_SAFE_MODE__CMD_MASK; data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT); WREG32_SOC15(GC, 0, regRLC_SAFE_MODE, data); /* wait for RLC_SAFE_MODE */ for (i = 0; i < adev->usec_timeout; i++) { if (!REG_GET_FIELD(RREG32_SOC15(GC, 0, regRLC_SAFE_MODE), RLC_SAFE_MODE, CMD)) break; udelay(1); } } static void gfx_v11_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id) { WREG32_SOC15(GC, 0, regRLC_SAFE_MODE, RLC_SAFE_MODE__CMD_MASK); } static void gfx_v11_0_update_perf_clk(struct amdgpu_device *adev, bool enable) { uint32_t def, data; if (!(adev->cg_flags & AMD_CG_SUPPORT_GFX_PERF_CLK)) return; def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); if (enable) data &= ~RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK; else data |= RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK; if (def != data) WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data); } static void gfx_v11_0_update_sram_fgcg(struct amdgpu_device *adev, bool enable) { uint32_t def, data; if (!(adev->cg_flags & AMD_CG_SUPPORT_GFX_FGCG)) return; def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); if (enable) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK; else data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK; if (def != data) WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data); } static void gfx_v11_0_update_repeater_fgcg(struct amdgpu_device *adev, bool enable) { uint32_t def, data; if (!(adev->cg_flags & AMD_CG_SUPPORT_REPEATER_FGCG)) return; def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); if (enable) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK; else data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK; if (def != data) WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data); } static void gfx_v11_0_update_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, def; if (!(adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS))) return; /* It is disabled by HW by default */ if (enable) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) { /* 1 - RLC_CGTT_MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); data &= ~(RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK); if (def != data) WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data); } } else { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) { def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); data |= (RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK); if (def != data) WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data); } } } static void gfx_v11_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t def, data; if (!(adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_CGLS | AMD_CG_SUPPORT_GFX_3D_CGCG | AMD_CG_SUPPORT_GFX_3D_CGLS))) return; if (enable) { def = data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); /* unset CGCG override */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG || adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_GFX3D_CG_OVERRIDE_MASK; /* update CGCG override bits */ if (def != data) WREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE, data); /* enable cgcg FSM(0x0000363F) */ def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) { data &= ~RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD_MASK; data |= (0x36 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) { data &= ~RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY_MASK; data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; } if (def != data) WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, data); /* Program RLC_CGCG_CGLS_CTRL_3D */ def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG) { data &= ~RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD_MASK; data |= (0x36 << RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) { data &= ~RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY_MASK; data |= (0xf << RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK; } if (def != data) WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D, data); /* set IDLE_POLL_COUNT(0x00900100) */ def = data = RREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_CNTL); data &= ~(CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY_MASK | CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT_MASK); data |= (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) | (0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); if (def != data) WREG32_SOC15(GC, 0, regCP_RB_WPTR_POLL_CNTL, data); data = RREG32_SOC15(GC, 0, regCP_INT_CNTL); data = REG_SET_FIELD(data, CP_INT_CNTL, CNTX_BUSY_INT_ENABLE, 1); data = REG_SET_FIELD(data, CP_INT_CNTL, CNTX_EMPTY_INT_ENABLE, 1); data = REG_SET_FIELD(data, CP_INT_CNTL, CMP_BUSY_INT_ENABLE, 1); data = REG_SET_FIELD(data, CP_INT_CNTL, GFX_IDLE_INT_ENABLE, 1); WREG32_SOC15(GC, 0, regCP_INT_CNTL, data); data = RREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL); data = REG_SET_FIELD(data, SDMA0_RLC_CGCG_CTRL, CGCG_INT_ENABLE, 1); WREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL, data); /* Some ASICs only have one SDMA instance, not need to configure SDMA1 */ if (adev->sdma.num_instances > 1) { data = RREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL); data = REG_SET_FIELD(data, SDMA1_RLC_CGCG_CTRL, CGCG_INT_ENABLE, 1); WREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL, data); } } else { /* Program RLC_CGCG_CGLS_CTRL */ def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) data &= ~RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data &= ~RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL, data); /* Program RLC_CGCG_CGLS_CTRL_3D */ def = data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG) data &= ~RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) data &= ~RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D, data); data = RREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL); data &= ~SDMA0_RLC_CGCG_CTRL__CGCG_INT_ENABLE_MASK; WREG32_SOC15(GC, 0, regSDMA0_RLC_CGCG_CTRL, data); /* Some ASICs only have one SDMA instance, not need to configure SDMA1 */ if (adev->sdma.num_instances > 1) { data = RREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL); data &= ~SDMA1_RLC_CGCG_CTRL__CGCG_INT_ENABLE_MASK; WREG32_SOC15(GC, 0, regSDMA1_RLC_CGCG_CTRL, data); } } } static int gfx_v11_0_update_gfx_clock_gating(struct amdgpu_device *adev, bool enable) { amdgpu_gfx_rlc_enter_safe_mode(adev, 0); gfx_v11_0_update_coarse_grain_clock_gating(adev, enable); gfx_v11_0_update_medium_grain_clock_gating(adev, enable); gfx_v11_0_update_repeater_fgcg(adev, enable); gfx_v11_0_update_sram_fgcg(adev, enable); gfx_v11_0_update_perf_clk(adev, enable); if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_CGLS | AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_3D_CGCG | AMD_CG_SUPPORT_GFX_3D_CGLS)) gfx_v11_0_enable_gui_idle_interrupt(adev, enable); amdgpu_gfx_rlc_exit_safe_mode(adev, 0); return 0; } static void gfx_v11_0_update_spm_vmid(struct amdgpu_device *adev, unsigned vmid) { u32 reg, data; amdgpu_gfx_off_ctrl(adev, false); reg = SOC15_REG_OFFSET(GC, 0, regRLC_SPM_MC_CNTL); if (amdgpu_sriov_is_pp_one_vf(adev)) data = RREG32_NO_KIQ(reg); else data = RREG32(reg); data &= ~RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK; data |= (vmid & RLC_SPM_MC_CNTL__RLC_SPM_VMID_MASK) << RLC_SPM_MC_CNTL__RLC_SPM_VMID__SHIFT; if (amdgpu_sriov_is_pp_one_vf(adev)) WREG32_SOC15_NO_KIQ(GC, 0, regRLC_SPM_MC_CNTL, data); else WREG32_SOC15(GC, 0, regRLC_SPM_MC_CNTL, data); amdgpu_gfx_off_ctrl(adev, true); } static const struct amdgpu_rlc_funcs gfx_v11_0_rlc_funcs = { .is_rlc_enabled = gfx_v11_0_is_rlc_enabled, .set_safe_mode = gfx_v11_0_set_safe_mode, .unset_safe_mode = gfx_v11_0_unset_safe_mode, .init = gfx_v11_0_rlc_init, .get_csb_size = gfx_v11_0_get_csb_size, .get_csb_buffer = gfx_v11_0_get_csb_buffer, .resume = gfx_v11_0_rlc_resume, .stop = gfx_v11_0_rlc_stop, .reset = gfx_v11_0_rlc_reset, .start = gfx_v11_0_rlc_start, .update_spm_vmid = gfx_v11_0_update_spm_vmid, }; static void gfx_v11_cntl_power_gating(struct amdgpu_device *adev, bool enable) { u32 data = RREG32_SOC15(GC, 0, regRLC_PG_CNTL); if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) data |= RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK; else data &= ~RLC_PG_CNTL__GFX_POWER_GATING_ENABLE_MASK; WREG32_SOC15(GC, 0, regRLC_PG_CNTL, data); // Program RLC_PG_DELAY3 for CGPG hysteresis if (enable && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) { switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 4): WREG32_SOC15(GC, 0, regRLC_PG_DELAY_3, RLC_PG_DELAY_3_DEFAULT_GC_11_0_1); break; default: break; } } } static void gfx_v11_cntl_pg(struct amdgpu_device *adev, bool enable) { amdgpu_gfx_rlc_enter_safe_mode(adev, 0); gfx_v11_cntl_power_gating(adev, enable); amdgpu_gfx_rlc_exit_safe_mode(adev, 0); } static int gfx_v11_0_set_powergating_state(void *handle, enum amd_powergating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool enable = (state == AMD_PG_STATE_GATE); if (amdgpu_sriov_vf(adev)) return 0; switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 2): case IP_VERSION(11, 0, 3): amdgpu_gfx_off_ctrl(adev, enable); break; case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 4): if (!enable) amdgpu_gfx_off_ctrl(adev, false); gfx_v11_cntl_pg(adev, enable); if (enable) amdgpu_gfx_off_ctrl(adev, true); break; default: break; } return 0; } static int gfx_v11_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->ip_versions[GC_HWIP][0]) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 2): case IP_VERSION(11, 0, 3): case IP_VERSION(11, 0, 4): gfx_v11_0_update_gfx_clock_gating(adev, state == AMD_CG_STATE_GATE); break; default: break; } return 0; } static void gfx_v11_0_get_clockgating_state(void *handle, u64 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; /* AMD_CG_SUPPORT_GFX_MGCG */ data = RREG32_SOC15(GC, 0, regRLC_CGTT_MGCG_OVERRIDE); if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_MGCG; /* AMD_CG_SUPPORT_REPEATER_FGCG */ if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_REPEATER_FGCG_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_REPEATER_FGCG; /* AMD_CG_SUPPORT_GFX_FGCG */ if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_FGCG_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_FGCG; /* AMD_CG_SUPPORT_GFX_PERF_CLK */ if (!(data & RLC_CGTT_MGCG_OVERRIDE__PERFMON_CLOCK_STATE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_PERF_CLK; /* AMD_CG_SUPPORT_GFX_CGCG */ data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL); if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGCG; /* AMD_CG_SUPPORT_GFX_CGLS */ if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGLS; /* AMD_CG_SUPPORT_GFX_3D_CGCG */ data = RREG32_SOC15(GC, 0, regRLC_CGCG_CGLS_CTRL_3D); if (data & RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_3D_CGCG; /* AMD_CG_SUPPORT_GFX_3D_CGLS */ if (data & RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_3D_CGLS; } static u64 gfx_v11_0_ring_get_rptr_gfx(struct amdgpu_ring *ring) { /* gfx11 is 32bit rptr*/ return *(uint32_t *)ring->rptr_cpu_addr; } static u64 gfx_v11_0_ring_get_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr); } else { wptr = RREG32_SOC15(GC, 0, regCP_RB0_WPTR); wptr += (u64)RREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI) << 32; } return wptr; } static void gfx_v11_0_ring_set_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t *wptr_saved; uint32_t *is_queue_unmap; uint64_t aggregated_db_index; uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_GFX].mqd_size; uint64_t wptr_tmp; if (ring->is_mes_queue) { wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size); is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size + sizeof(uint32_t)); aggregated_db_index = amdgpu_mes_get_aggregated_doorbell_index(adev, ring->hw_prio); wptr_tmp = ring->wptr & ring->buf_mask; atomic64_set((atomic64_t *)ring->wptr_cpu_addr, wptr_tmp); *wptr_saved = wptr_tmp; /* assume doorbell always being used by mes mapped queue */ if (*is_queue_unmap) { WDOORBELL64(aggregated_db_index, wptr_tmp); WDOORBELL64(ring->doorbell_index, wptr_tmp); } else { WDOORBELL64(ring->doorbell_index, wptr_tmp); if (*is_queue_unmap) WDOORBELL64(aggregated_db_index, wptr_tmp); } } else { if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else { WREG32_SOC15(GC, 0, regCP_RB0_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, regCP_RB0_WPTR_HI, upper_32_bits(ring->wptr)); } } } static u64 gfx_v11_0_ring_get_rptr_compute(struct amdgpu_ring *ring) { /* gfx11 hardware is 32bit rptr */ return *(uint32_t *)ring->rptr_cpu_addr; } static u64 gfx_v11_0_ring_get_wptr_compute(struct amdgpu_ring *ring) { u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) wptr = atomic64_read((atomic64_t *)ring->wptr_cpu_addr); else BUG(); return wptr; } static void gfx_v11_0_ring_set_wptr_compute(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t *wptr_saved; uint32_t *is_queue_unmap; uint64_t aggregated_db_index; uint32_t mqd_size = adev->mqds[AMDGPU_HW_IP_COMPUTE].mqd_size; uint64_t wptr_tmp; if (ring->is_mes_queue) { wptr_saved = (uint32_t *)(ring->mqd_ptr + mqd_size); is_queue_unmap = (uint32_t *)(ring->mqd_ptr + mqd_size + sizeof(uint32_t)); aggregated_db_index = amdgpu_mes_get_aggregated_doorbell_index(adev, ring->hw_prio); wptr_tmp = ring->wptr & ring->buf_mask; atomic64_set((atomic64_t *)ring->wptr_cpu_addr, wptr_tmp); *wptr_saved = wptr_tmp; /* assume doorbell always used by mes mapped queue */ if (*is_queue_unmap) { WDOORBELL64(aggregated_db_index, wptr_tmp); WDOORBELL64(ring->doorbell_index, wptr_tmp); } else { WDOORBELL64(ring->doorbell_index, wptr_tmp); if (*is_queue_unmap) WDOORBELL64(aggregated_db_index, wptr_tmp); } } else { /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else { BUG(); /* only DOORBELL method supported on gfx11 now */ } } } static void gfx_v11_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 ref_and_mask, reg_mem_engine; const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { switch (ring->me) { case 1: ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe; break; case 2: ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe; break; default: return; } reg_mem_engine = 0; } else { ref_and_mask = nbio_hf_reg->ref_and_mask_cp0; reg_mem_engine = 1; /* pfp */ } gfx_v11_0_wait_reg_mem(ring, reg_mem_engine, 0, 1, adev->nbio.funcs->get_hdp_flush_req_offset(adev), adev->nbio.funcs->get_hdp_flush_done_offset(adev), ref_and_mask, ref_and_mask, 0x20); } static void gfx_v11_0_ring_emit_ib_gfx(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 header, control = 0; BUG_ON(ib->flags & AMDGPU_IB_FLAG_CE); header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); control |= ib->length_dw | (vmid << 24); if (ring->adev->gfx.mcbp && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) { control |= INDIRECT_BUFFER_PRE_ENB(1); if (flags & AMDGPU_IB_PREEMPTED) control |= INDIRECT_BUFFER_PRE_RESUME(1); if (vmid) gfx_v11_0_ring_emit_de_meta(ring, (!amdgpu_sriov_vf(ring->adev) && flags & AMDGPU_IB_PREEMPTED) ? true : false); } if (ring->is_mes_queue) /* inherit vmid from mqd */ control |= 0x400000; amdgpu_ring_write(ring, header); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v11_0_ring_emit_ib_compute(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24); if (ring->is_mes_queue) /* inherit vmid from mqd */ control |= 0x40000000; /* Currently, there is a high possibility to get wave ID mismatch * between ME and GDS, leading to a hw deadlock, because ME generates * different wave IDs than the GDS expects. This situation happens * randomly when at least 5 compute pipes use GDS ordered append. * The wave IDs generated by ME are also wrong after suspend/resume. * Those are probably bugs somewhere else in the kernel driver. * * Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and * GDS to 0 for this ring (me/pipe). */ if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); amdgpu_ring_write(ring, regGDS_COMPUTE_MAX_WAVE_ID); amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id); } amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v11_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; /* RELEASE_MEM - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6)); amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_GCR_SEQ | PACKET3_RELEASE_MEM_GCR_GL2_WB | PACKET3_RELEASE_MEM_GCR_GL2_INV | PACKET3_RELEASE_MEM_GCR_GL2_US | PACKET3_RELEASE_MEM_GCR_GL1_INV | PACKET3_RELEASE_MEM_GCR_GLV_INV | PACKET3_RELEASE_MEM_GCR_GLM_INV | PACKET3_RELEASE_MEM_GCR_GLM_WB | PACKET3_RELEASE_MEM_CACHE_POLICY(3) | PACKET3_RELEASE_MEM_EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | PACKET3_RELEASE_MEM_EVENT_INDEX(5))); amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_DATA_SEL(write64bit ? 2 : 1) | PACKET3_RELEASE_MEM_INT_SEL(int_sel ? 2 : 0))); /* * the address should be Qword aligned if 64bit write, Dword * aligned if only send 32bit data low (discard data high) */ if (write64bit) BUG_ON(addr & 0x7); else BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); amdgpu_ring_write(ring, ring->is_mes_queue ? (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0); } static void gfx_v11_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; gfx_v11_0_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr), upper_32_bits(addr), seq, 0xffffffff, 4); } static void gfx_v11_0_ring_invalidate_tlbs(struct amdgpu_ring *ring, uint16_t pasid, uint32_t flush_type, bool all_hub, uint8_t dst_sel) { amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0)); amdgpu_ring_write(ring, PACKET3_INVALIDATE_TLBS_DST_SEL(dst_sel) | PACKET3_INVALIDATE_TLBS_ALL_HUB(all_hub) | PACKET3_INVALIDATE_TLBS_PASID(pasid) | PACKET3_INVALIDATE_TLBS_FLUSH_TYPE(flush_type)); } static void gfx_v11_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { if (ring->is_mes_queue) gfx_v11_0_ring_invalidate_tlbs(ring, 0, 0, false, 0); else amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); /* compute doesn't have PFP */ if (ring->funcs->type == AMDGPU_RING_TYPE_GFX) { /* sync PFP to ME, otherwise we might get invalid PFP reads */ amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); amdgpu_ring_write(ring, 0x0); } } static void gfx_v11_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned int flags) { struct amdgpu_device *adev = ring->adev; /* we only allocate 32bit for each seq wb address */ BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT); /* write fence seq to the "addr" */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(5) | WR_CONFIRM)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); if (flags & AMDGPU_FENCE_FLAG_INT) { /* set register to trigger INT */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0) | WR_CONFIRM)); amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, regCPC_INT_STATUS)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */ } } static void gfx_v11_0_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags) { uint32_t dw2 = 0; dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */ if (flags & AMDGPU_HAVE_CTX_SWITCH) { /* set load_global_config & load_global_uconfig */ dw2 |= 0x8001; /* set load_cs_sh_regs */ dw2 |= 0x01000000; /* set load_per_context_state & load_gfx_sh_regs for GFX */ dw2 |= 0x10002; } amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, dw2); amdgpu_ring_write(ring, 0); } static void gfx_v11_0_ring_emit_gfx_shadow(struct amdgpu_ring *ring, u64 shadow_va, u64 csa_va, u64 gds_va, bool init_shadow, int vmid) { struct amdgpu_device *adev = ring->adev; if (!adev->gfx.cp_gfx_shadow) return; amdgpu_ring_write(ring, PACKET3(PACKET3_SET_Q_PREEMPTION_MODE, 7)); amdgpu_ring_write(ring, lower_32_bits(shadow_va)); amdgpu_ring_write(ring, upper_32_bits(shadow_va)); amdgpu_ring_write(ring, lower_32_bits(gds_va)); amdgpu_ring_write(ring, upper_32_bits(gds_va)); amdgpu_ring_write(ring, lower_32_bits(csa_va)); amdgpu_ring_write(ring, upper_32_bits(csa_va)); amdgpu_ring_write(ring, shadow_va ? PACKET3_SET_Q_PREEMPTION_MODE_IB_VMID(vmid) : 0); amdgpu_ring_write(ring, init_shadow ? PACKET3_SET_Q_PREEMPTION_MODE_INIT_SHADOW_MEM : 0); } static unsigned gfx_v11_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring) { unsigned ret; amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3)); amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); amdgpu_ring_write(ring, 0); /* discard following DWs if *cond_exec_gpu_addr==0 */ ret = ring->wptr & ring->buf_mask; amdgpu_ring_write(ring, 0x55aa55aa); /* patch dummy value later */ return ret; } static void gfx_v11_0_ring_emit_patch_cond_exec(struct amdgpu_ring *ring, unsigned offset) { unsigned cur; BUG_ON(offset > ring->buf_mask); BUG_ON(ring->ring[offset] != 0x55aa55aa); cur = (ring->wptr - 1) & ring->buf_mask; if (likely(cur > offset)) ring->ring[offset] = cur - offset; else ring->ring[offset] = (ring->buf_mask + 1) - offset + cur; } static int gfx_v11_0_ring_preempt_ib(struct amdgpu_ring *ring) { int i, r = 0; struct amdgpu_device *adev = ring->adev; struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; struct amdgpu_ring *kiq_ring = &kiq->ring; unsigned long flags; if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; spin_lock_irqsave(&kiq->ring_lock, flags); if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size)) { spin_unlock_irqrestore(&kiq->ring_lock, flags); return -ENOMEM; } /* assert preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, false); /* assert IB preemption, emit the trailing fence */ kiq->pmf->kiq_unmap_queues(kiq_ring, ring, PREEMPT_QUEUES_NO_UNMAP, ring->trail_fence_gpu_addr, ++ring->trail_seq); amdgpu_ring_commit(kiq_ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); /* poll the trailing fence */ for (i = 0; i < adev->usec_timeout; i++) { if (ring->trail_seq == le32_to_cpu(*(ring->trail_fence_cpu_addr))) break; udelay(1); } if (i >= adev->usec_timeout) { r = -EINVAL; DRM_ERROR("ring %d failed to preempt ib\n", ring->idx); } /* deassert preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, true); return r; } static void gfx_v11_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume) { struct amdgpu_device *adev = ring->adev; struct v10_de_ib_state de_payload = {0}; uint64_t offset, gds_addr, de_payload_gpu_addr; void *de_payload_cpu_addr; int cnt; if (ring->is_mes_queue) { offset = offsetof(struct amdgpu_mes_ctx_meta_data, gfx[0].gfx_meta_data) + offsetof(struct v10_gfx_meta_data, de_payload); de_payload_gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); de_payload_cpu_addr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); offset = offsetof(struct amdgpu_mes_ctx_meta_data, gfx[0].gds_backup) + offsetof(struct v10_gfx_meta_data, de_payload); gds_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); } else { offset = offsetof(struct v10_gfx_meta_data, de_payload); de_payload_gpu_addr = amdgpu_csa_vaddr(ring->adev) + offset; de_payload_cpu_addr = adev->virt.csa_cpu_addr + offset; gds_addr = ALIGN(amdgpu_csa_vaddr(ring->adev) + AMDGPU_CSA_SIZE - adev->gds.gds_size, PAGE_SIZE); } de_payload.gds_backup_addrlo = lower_32_bits(gds_addr); de_payload.gds_backup_addrhi = upper_32_bits(gds_addr); cnt = (sizeof(de_payload) >> 2) + 4 - 2; amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(de_payload_gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(de_payload_gpu_addr)); if (resume) amdgpu_ring_write_multiple(ring, de_payload_cpu_addr, sizeof(de_payload) >> 2); else amdgpu_ring_write_multiple(ring, (void *)&de_payload, sizeof(de_payload) >> 2); } static void gfx_v11_0_ring_emit_frame_cntl(struct amdgpu_ring *ring, bool start, bool secure) { uint32_t v = secure ? FRAME_TMZ : 0; amdgpu_ring_write(ring, PACKET3(PACKET3_FRAME_CONTROL, 0)); amdgpu_ring_write(ring, v | FRAME_CMD(start ? 0 : 1)); } static void gfx_v11_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t reg_val_offs) { struct amdgpu_device *adev = ring->adev; amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4)); amdgpu_ring_write(ring, 0 | /* src: register*/ (5 << 8) | /* dst: memory */ (1 << 20)); /* write confirm */ amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr + reg_val_offs * 4)); amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr + reg_val_offs * 4)); } static void gfx_v11_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { uint32_t cmd = 0; switch (ring->funcs->type) { case AMDGPU_RING_TYPE_GFX: cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM; break; case AMDGPU_RING_TYPE_KIQ: cmd = (1 << 16); /* no inc addr */ break; default: cmd = WR_CONFIRM; break; } amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, cmd); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v11_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { gfx_v11_0_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20); } static void gfx_v11_0_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, uint32_t reg0, uint32_t reg1, uint32_t ref, uint32_t mask) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); gfx_v11_0_wait_reg_mem(ring, usepfp, 0, 1, reg0, reg1, ref, mask, 0x20); } static void gfx_v11_0_ring_soft_recovery(struct amdgpu_ring *ring, unsigned vmid) { struct amdgpu_device *adev = ring->adev; uint32_t value = 0; value = REG_SET_FIELD(value, SQ_CMD, CMD, 0x03); value = REG_SET_FIELD(value, SQ_CMD, MODE, 0x01); value = REG_SET_FIELD(value, SQ_CMD, CHECK_VMID, 1); value = REG_SET_FIELD(value, SQ_CMD, VM_ID, vmid); WREG32_SOC15(GC, 0, regSQ_CMD, value); } static void gfx_v11_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev, uint32_t me, uint32_t pipe, enum amdgpu_interrupt_state state) { uint32_t cp_int_cntl, cp_int_cntl_reg; if (!me) { switch (pipe) { case 0: cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING0); break; case 1: cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_INT_CNTL_RING1); break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } } else { DRM_DEBUG("invalid me %d\n", me); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg); cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE, 0); cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0, GENERIC0_INT_ENABLE, 0); WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: cp_int_cntl = RREG32_SOC15_IP(GC, cp_int_cntl_reg); cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE, 1); cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0, GENERIC0_INT_ENABLE, 1); WREG32_SOC15_IP(GC, cp_int_cntl_reg, cp_int_cntl); break; default: break; } } static void gfx_v11_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev, int me, int pipe, enum amdgpu_interrupt_state state) { u32 mec_int_cntl, mec_int_cntl_reg; /* * amdgpu controls only the first MEC. That's why this function only * handles the setting of interrupts for this specific MEC. All other * pipes' interrupts are set by amdkfd. */ if (me == 1) { switch (pipe) { case 0: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL); break; case 1: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE1_INT_CNTL); break; case 2: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE2_INT_CNTL); break; case 3: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE3_INT_CNTL); break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } } else { DRM_DEBUG("invalid me %d\n", me); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: mec_int_cntl = RREG32_SOC15_IP(GC, mec_int_cntl_reg); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, TIME_STAMP_INT_ENABLE, 0); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, GENERIC0_INT_ENABLE, 0); WREG32_SOC15_IP(GC, mec_int_cntl_reg, mec_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: mec_int_cntl = RREG32_SOC15_IP(GC, mec_int_cntl_reg); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, TIME_STAMP_INT_ENABLE, 1); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, GENERIC0_INT_ENABLE, 1); WREG32_SOC15_IP(GC, mec_int_cntl_reg, mec_int_cntl); break; default: break; } } static int gfx_v11_0_set_eop_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { switch (type) { case AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP: gfx_v11_0_set_gfx_eop_interrupt_state(adev, 0, 0, state); break; case AMDGPU_CP_IRQ_GFX_ME0_PIPE1_EOP: gfx_v11_0_set_gfx_eop_interrupt_state(adev, 0, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP: gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP: gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP: gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP: gfx_v11_0_set_compute_eop_interrupt_state(adev, 1, 3, state); break; default: break; } return 0; } static int gfx_v11_0_eop_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int i; u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; uint32_t mes_queue_id = entry->src_data[0]; DRM_DEBUG("IH: CP EOP\n"); if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) { struct amdgpu_mes_queue *queue; mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK; spin_lock(&adev->mes.queue_id_lock); queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id); if (queue) { DRM_DEBUG("process mes queue id = %d\n", mes_queue_id); amdgpu_fence_process(queue->ring); } spin_unlock(&adev->mes.queue_id_lock); } else { me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: if (pipe_id == 0) amdgpu_fence_process(&adev->gfx.gfx_ring[0]); else amdgpu_fence_process(&adev->gfx.gfx_ring[1]); break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; /* Per-queue interrupt is supported for MEC starting from VI. * The interrupt can only be enabled/disabled per pipe instead * of per queue. */ if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id)) amdgpu_fence_process(ring); } break; } } return 0; } static int gfx_v11_0_set_priv_reg_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15_PREREG(GC, 0, CP_INT_CNTL_RING0, PRIV_REG_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } return 0; } static int gfx_v11_0_set_priv_inst_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15_PREREG(GC, 0, CP_INT_CNTL_RING0, PRIV_INSTR_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } return 0; } static void gfx_v11_0_handle_priv_fault(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; int i; me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; /* we only enabled 1 gfx queue per pipe for now */ if (ring->me == me_id && ring->pipe == pipe_id) drm_sched_fault(&ring->sched); } break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if (ring->me == me_id && ring->pipe == pipe_id && ring->queue == queue_id) drm_sched_fault(&ring->sched); } break; default: BUG(); break; } } static int gfx_v11_0_priv_reg_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal register access in command stream\n"); gfx_v11_0_handle_priv_fault(adev, entry); return 0; } static int gfx_v11_0_priv_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal instruction in command stream\n"); gfx_v11_0_handle_priv_fault(adev, entry); return 0; } static int gfx_v11_0_rlc_gc_fed_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { if (adev->gfx.ras && adev->gfx.ras->rlc_gc_fed_irq) return adev->gfx.ras->rlc_gc_fed_irq(adev, source, entry); return 0; } #if 0 static int gfx_v11_0_kiq_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned int type, enum amdgpu_interrupt_state state) { uint32_t tmp, target; struct amdgpu_ring *ring = &(adev->gfx.kiq[0].ring); target = SOC15_REG_OFFSET(GC, 0, regCP_ME1_PIPE0_INT_CNTL); target += ring->pipe; switch (type) { case AMDGPU_CP_KIQ_IRQ_DRIVER0: if (state == AMDGPU_IRQ_STATE_DISABLE) { tmp = RREG32_SOC15(GC, 0, regCPC_INT_CNTL); tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL, GENERIC2_INT_ENABLE, 0); WREG32_SOC15(GC, 0, regCPC_INT_CNTL, tmp); tmp = RREG32_SOC15_IP(GC, target); tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE0_INT_CNTL, GENERIC2_INT_ENABLE, 0); WREG32_SOC15_IP(GC, target, tmp); } else { tmp = RREG32_SOC15(GC, 0, regCPC_INT_CNTL); tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL, GENERIC2_INT_ENABLE, 1); WREG32_SOC15(GC, 0, regCPC_INT_CNTL, tmp); tmp = RREG32_SOC15_IP(GC, target); tmp = REG_SET_FIELD(tmp, CP_ME1_PIPE0_INT_CNTL, GENERIC2_INT_ENABLE, 1); WREG32_SOC15_IP(GC, target, tmp); } break; default: BUG(); /* kiq only support GENERIC2_INT now */ break; } return 0; } #endif static void gfx_v11_0_emit_mem_sync(struct amdgpu_ring *ring) { const unsigned int gcr_cntl = PACKET3_ACQUIRE_MEM_GCR_CNTL_GL2_INV(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GL2_WB(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GLM_INV(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GLM_WB(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GL1_INV(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GLV_INV(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GLK_INV(1) | PACKET3_ACQUIRE_MEM_GCR_CNTL_GLI_INV(1); /* ACQUIRE_MEM - make one or more surfaces valid for use by the subsequent operations */ amdgpu_ring_write(ring, PACKET3(PACKET3_ACQUIRE_MEM, 6)); amdgpu_ring_write(ring, 0); /* CP_COHER_CNTL */ amdgpu_ring_write(ring, 0xffffffff); /* CP_COHER_SIZE */ amdgpu_ring_write(ring, 0xffffff); /* CP_COHER_SIZE_HI */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE_HI */ amdgpu_ring_write(ring, 0x0000000A); /* POLL_INTERVAL */ amdgpu_ring_write(ring, gcr_cntl); /* GCR_CNTL */ } static const struct amd_ip_funcs gfx_v11_0_ip_funcs = { .name = "gfx_v11_0", .early_init = gfx_v11_0_early_init, .late_init = gfx_v11_0_late_init, .sw_init = gfx_v11_0_sw_init, .sw_fini = gfx_v11_0_sw_fini, .hw_init = gfx_v11_0_hw_init, .hw_fini = gfx_v11_0_hw_fini, .suspend = gfx_v11_0_suspend, .resume = gfx_v11_0_resume, .is_idle = gfx_v11_0_is_idle, .wait_for_idle = gfx_v11_0_wait_for_idle, .soft_reset = gfx_v11_0_soft_reset, .check_soft_reset = gfx_v11_0_check_soft_reset, .post_soft_reset = gfx_v11_0_post_soft_reset, .set_clockgating_state = gfx_v11_0_set_clockgating_state, .set_powergating_state = gfx_v11_0_set_powergating_state, .get_clockgating_state = gfx_v11_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_gfx = { .type = AMDGPU_RING_TYPE_GFX, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .secure_submission_supported = true, .get_rptr = gfx_v11_0_ring_get_rptr_gfx, .get_wptr = gfx_v11_0_ring_get_wptr_gfx, .set_wptr = gfx_v11_0_ring_set_wptr_gfx, .emit_frame_size = /* totally 242 maximum if 16 IBs */ 5 + /* COND_EXEC */ 9 + /* SET_Q_PREEMPTION_MODE */ 7 + /* PIPELINE_SYNC */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* VM_FLUSH */ 8 + /* FENCE for VM_FLUSH */ 20 + /* GDS switch */ 5 + /* COND_EXEC */ 7 + /* HDP_flush */ 4 + /* VGT_flush */ 31 + /* DE_META */ 3 + /* CNTX_CTRL */ 5 + /* HDP_INVL */ 8 + 8 + /* FENCE x2 */ 8, /* gfx_v11_0_emit_mem_sync */ .emit_ib_size = 4, /* gfx_v11_0_ring_emit_ib_gfx */ .emit_ib = gfx_v11_0_ring_emit_ib_gfx, .emit_fence = gfx_v11_0_ring_emit_fence, .emit_pipeline_sync = gfx_v11_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v11_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v11_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v11_0_ring_emit_hdp_flush, .test_ring = gfx_v11_0_ring_test_ring, .test_ib = gfx_v11_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_cntxcntl = gfx_v11_0_ring_emit_cntxcntl, .emit_gfx_shadow = gfx_v11_0_ring_emit_gfx_shadow, .init_cond_exec = gfx_v11_0_ring_emit_init_cond_exec, .patch_cond_exec = gfx_v11_0_ring_emit_patch_cond_exec, .preempt_ib = gfx_v11_0_ring_preempt_ib, .emit_frame_cntl = gfx_v11_0_ring_emit_frame_cntl, .emit_wreg = gfx_v11_0_ring_emit_wreg, .emit_reg_wait = gfx_v11_0_ring_emit_reg_wait, .emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait, .soft_recovery = gfx_v11_0_ring_soft_recovery, .emit_mem_sync = gfx_v11_0_emit_mem_sync, }; static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_compute = { .type = AMDGPU_RING_TYPE_COMPUTE, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .get_rptr = gfx_v11_0_ring_get_rptr_compute, .get_wptr = gfx_v11_0_ring_get_wptr_compute, .set_wptr = gfx_v11_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v11_0_ring_emit_gds_switch */ 7 + /* gfx_v11_0_ring_emit_hdp_flush */ 5 + /* hdp invalidate */ 7 + /* gfx_v11_0_ring_emit_pipeline_sync */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* gfx_v11_0_ring_emit_vm_flush */ 8 + 8 + 8 + /* gfx_v11_0_ring_emit_fence x3 for user fence, vm fence */ 8, /* gfx_v11_0_emit_mem_sync */ .emit_ib_size = 7, /* gfx_v11_0_ring_emit_ib_compute */ .emit_ib = gfx_v11_0_ring_emit_ib_compute, .emit_fence = gfx_v11_0_ring_emit_fence, .emit_pipeline_sync = gfx_v11_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v11_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v11_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v11_0_ring_emit_hdp_flush, .test_ring = gfx_v11_0_ring_test_ring, .test_ib = gfx_v11_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_wreg = gfx_v11_0_ring_emit_wreg, .emit_reg_wait = gfx_v11_0_ring_emit_reg_wait, .emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait, .emit_mem_sync = gfx_v11_0_emit_mem_sync, }; static const struct amdgpu_ring_funcs gfx_v11_0_ring_funcs_kiq = { .type = AMDGPU_RING_TYPE_KIQ, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .get_rptr = gfx_v11_0_ring_get_rptr_compute, .get_wptr = gfx_v11_0_ring_get_wptr_compute, .set_wptr = gfx_v11_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v11_0_ring_emit_gds_switch */ 7 + /* gfx_v11_0_ring_emit_hdp_flush */ 5 + /*hdp invalidate */ 7 + /* gfx_v11_0_ring_emit_pipeline_sync */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* gfx_v11_0_ring_emit_vm_flush */ 8 + 8 + 8, /* gfx_v11_0_ring_emit_fence_kiq x3 for user fence, vm fence */ .emit_ib_size = 7, /* gfx_v11_0_ring_emit_ib_compute */ .emit_ib = gfx_v11_0_ring_emit_ib_compute, .emit_fence = gfx_v11_0_ring_emit_fence_kiq, .test_ring = gfx_v11_0_ring_test_ring, .test_ib = gfx_v11_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_rreg = gfx_v11_0_ring_emit_rreg, .emit_wreg = gfx_v11_0_ring_emit_wreg, .emit_reg_wait = gfx_v11_0_ring_emit_reg_wait, .emit_reg_write_reg_wait = gfx_v11_0_ring_emit_reg_write_reg_wait, }; static void gfx_v11_0_set_ring_funcs(struct amdgpu_device *adev) { int i; adev->gfx.kiq[0].ring.funcs = &gfx_v11_0_ring_funcs_kiq; for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].funcs = &gfx_v11_0_ring_funcs_gfx; for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].funcs = &gfx_v11_0_ring_funcs_compute; } static const struct amdgpu_irq_src_funcs gfx_v11_0_eop_irq_funcs = { .set = gfx_v11_0_set_eop_interrupt_state, .process = gfx_v11_0_eop_irq, }; static const struct amdgpu_irq_src_funcs gfx_v11_0_priv_reg_irq_funcs = { .set = gfx_v11_0_set_priv_reg_fault_state, .process = gfx_v11_0_priv_reg_irq, }; static const struct amdgpu_irq_src_funcs gfx_v11_0_priv_inst_irq_funcs = { .set = gfx_v11_0_set_priv_inst_fault_state, .process = gfx_v11_0_priv_inst_irq, }; static const struct amdgpu_irq_src_funcs gfx_v11_0_rlc_gc_fed_irq_funcs = { .process = gfx_v11_0_rlc_gc_fed_irq, }; static void gfx_v11_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST; adev->gfx.eop_irq.funcs = &gfx_v11_0_eop_irq_funcs; adev->gfx.priv_reg_irq.num_types = 1; adev->gfx.priv_reg_irq.funcs = &gfx_v11_0_priv_reg_irq_funcs; adev->gfx.priv_inst_irq.num_types = 1; adev->gfx.priv_inst_irq.funcs = &gfx_v11_0_priv_inst_irq_funcs; adev->gfx.rlc_gc_fed_irq.num_types = 1; /* 0x80 FED error */ adev->gfx.rlc_gc_fed_irq.funcs = &gfx_v11_0_rlc_gc_fed_irq_funcs; } static void gfx_v11_0_set_imu_funcs(struct amdgpu_device *adev) { if (adev->flags & AMD_IS_APU) adev->gfx.imu.mode = MISSION_MODE; else adev->gfx.imu.mode = DEBUG_MODE; adev->gfx.imu.funcs = &gfx_v11_0_imu_funcs; } static void gfx_v11_0_set_rlc_funcs(struct amdgpu_device *adev) { adev->gfx.rlc.funcs = &gfx_v11_0_rlc_funcs; } static void gfx_v11_0_set_gds_init(struct amdgpu_device *adev) { unsigned total_cu = adev->gfx.config.max_cu_per_sh * adev->gfx.config.max_sh_per_se * adev->gfx.config.max_shader_engines; adev->gds.gds_size = 0x1000; adev->gds.gds_compute_max_wave_id = total_cu * 32 - 1; adev->gds.gws_size = 64; adev->gds.oa_size = 16; } static void gfx_v11_0_set_mqd_funcs(struct amdgpu_device *adev) { /* set gfx eng mqd */ adev->mqds[AMDGPU_HW_IP_GFX].mqd_size = sizeof(struct v11_gfx_mqd); adev->mqds[AMDGPU_HW_IP_GFX].init_mqd = gfx_v11_0_gfx_mqd_init; /* set compute eng mqd */ adev->mqds[AMDGPU_HW_IP_COMPUTE].mqd_size = sizeof(struct v11_compute_mqd); adev->mqds[AMDGPU_HW_IP_COMPUTE].init_mqd = gfx_v11_0_compute_mqd_init; } static void gfx_v11_0_set_user_wgp_inactive_bitmap_per_sh(struct amdgpu_device *adev, u32 bitmap) { u32 data; if (!bitmap) return; data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT; data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK; WREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG, data); } static u32 gfx_v11_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev) { u32 data, wgp_bitmask; data = RREG32_SOC15(GC, 0, regCC_GC_SHADER_ARRAY_CONFIG); data |= RREG32_SOC15(GC, 0, regGC_USER_SHADER_ARRAY_CONFIG); data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK; data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT; wgp_bitmask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh >> 1); return (~data) & wgp_bitmask; } static u32 gfx_v11_0_get_cu_active_bitmap_per_sh(struct amdgpu_device *adev) { u32 wgp_idx, wgp_active_bitmap; u32 cu_bitmap_per_wgp, cu_active_bitmap; wgp_active_bitmap = gfx_v11_0_get_wgp_active_bitmap_per_sh(adev); cu_active_bitmap = 0; for (wgp_idx = 0; wgp_idx < 16; wgp_idx++) { /* if there is one WGP enabled, it means 2 CUs will be enabled */ cu_bitmap_per_wgp = 3 << (2 * wgp_idx); if (wgp_active_bitmap & (1 << wgp_idx)) cu_active_bitmap |= cu_bitmap_per_wgp; } return cu_active_bitmap; } static int gfx_v11_0_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info) { int i, j, k, counter, active_cu_number = 0; u32 mask, bitmap; unsigned disable_masks[8 * 2]; if (!adev || !cu_info) return -EINVAL; amdgpu_gfx_parse_disable_cu(disable_masks, 8, 2); mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { mask = 1; counter = 0; gfx_v11_0_select_se_sh(adev, i, j, 0xffffffff, 0); if (i < 8 && j < 2) gfx_v11_0_set_user_wgp_inactive_bitmap_per_sh( adev, disable_masks[i * 2 + j]); bitmap = gfx_v11_0_get_cu_active_bitmap_per_sh(adev); /** * GFX11 could support more than 4 SEs, while the bitmap * in cu_info struct is 4x4 and ioctl interface struct * drm_amdgpu_info_device should keep stable. * So we use last two columns of bitmap to store cu mask for * SEs 4 to 7, the layout of the bitmap is as below: * SE0: {SH0,SH1} --> {bitmap[0][0], bitmap[0][1]} * SE1: {SH0,SH1} --> {bitmap[1][0], bitmap[1][1]} * SE2: {SH0,SH1} --> {bitmap[2][0], bitmap[2][1]} * SE3: {SH0,SH1} --> {bitmap[3][0], bitmap[3][1]} * SE4: {SH0,SH1} --> {bitmap[0][2], bitmap[0][3]} * SE5: {SH0,SH1} --> {bitmap[1][2], bitmap[1][3]} * SE6: {SH0,SH1} --> {bitmap[2][2], bitmap[2][3]} * SE7: {SH0,SH1} --> {bitmap[3][2], bitmap[3][3]} */ cu_info->bitmap[i % 4][j + (i / 4) * 2] = bitmap; for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) { if (bitmap & mask) counter++; mask <<= 1; } active_cu_number += counter; } } gfx_v11_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); cu_info->number = active_cu_number; cu_info->simd_per_cu = NUM_SIMD_PER_CU; return 0; } const struct amdgpu_ip_block_version gfx_v11_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 11, .minor = 0, .rev = 0, .funcs = &gfx_v11_0_ip_funcs, };