/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_psp.h" #include "amdgpu_smu.h" #include "nv.h" #include "nvd.h" #include "gc/gc_10_1_0_offset.h" #include "gc/gc_10_1_0_sh_mask.h" #include "navi10_enum.h" #include "hdp/hdp_5_0_0_offset.h" #include "ivsrcid/gfx/irqsrcs_gfx_10_1.h" #include "soc15.h" #include "soc15_common.h" #include "clearstate_gfx10.h" #include "v10_structs.h" #include "gfx_v10_0.h" #include "nbio_v2_3.h" /** * Navi10 has two graphic rings to share each graphic pipe. * 1. Primary ring * 2. Async ring * * In bring-up phase, it just used primary ring so set gfx ring number as 1 at * first. */ #define GFX10_NUM_GFX_RINGS 2 #define GFX10_MEC_HPD_SIZE 2048 #define F32_CE_PROGRAM_RAM_SIZE 65536 #define RLCG_UCODE_LOADING_START_ADDRESS 0x00002000L #define mmCGTT_GS_NGG_CLK_CTRL 0x5087 #define mmCGTT_GS_NGG_CLK_CTRL_BASE_IDX 1 MODULE_FIRMWARE("amdgpu/navi10_ce.bin"); MODULE_FIRMWARE("amdgpu/navi10_pfp.bin"); MODULE_FIRMWARE("amdgpu/navi10_me.bin"); MODULE_FIRMWARE("amdgpu/navi10_mec.bin"); MODULE_FIRMWARE("amdgpu/navi10_mec2.bin"); MODULE_FIRMWARE("amdgpu/navi10_rlc.bin"); MODULE_FIRMWARE("amdgpu/navi14_ce.bin"); MODULE_FIRMWARE("amdgpu/navi14_pfp.bin"); MODULE_FIRMWARE("amdgpu/navi14_me.bin"); MODULE_FIRMWARE("amdgpu/navi14_mec.bin"); MODULE_FIRMWARE("amdgpu/navi14_mec2.bin"); MODULE_FIRMWARE("amdgpu/navi14_rlc.bin"); MODULE_FIRMWARE("amdgpu/navi12_ce.bin"); MODULE_FIRMWARE("amdgpu/navi12_pfp.bin"); MODULE_FIRMWARE("amdgpu/navi12_me.bin"); MODULE_FIRMWARE("amdgpu/navi12_mec.bin"); MODULE_FIRMWARE("amdgpu/navi12_mec2.bin"); MODULE_FIRMWARE("amdgpu/navi12_rlc.bin"); static const struct soc15_reg_golden golden_settings_gc_10_1[] = { SOC15_REG_GOLDEN_VALUE(GC, 0, mmCB_HW_CONTROL_4, 0xffffffff, 0x00400014), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_CPF_CLK_CTRL, 0xfcff8fff, 0xf8000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SPI_CLK_CTRL, 0xc0000000, 0xc0000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQ_CLK_CTRL, 0x60000ff0, 0x60000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQG_CLK_CTRL, 0x40000000, 0x40000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_VGT_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_WD_CLK_CTRL, 0xfeff8fff, 0xfeff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_PIPE_STEER, 0xffffffff, 0xe4e4e4e4), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_VC5_ENABLE, 0x00000002, 0x00000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCP_SD_CNTL, 0x000007ff, 0x000005ff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG, 0x20000000, 0x20000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG2, 0xffffffff, 0x00000420), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG3, 0x00000200, 0x00000200), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG4, 0x07900000, 0x04900000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DFSM_TILES_IN_FLIGHT, 0x0000ffff, 0x0000003f), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_LAST_OF_BURST_CONFIG, 0xffffffff, 0x03860204), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGCR_GENERAL_CNTL, 0x1ff0ffff, 0x00000500), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGE_PRIV_CONTROL, 0x000007ff, 0x000001fe), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL1_PIPE_STEER, 0xffffffff, 0xe4e4e4e4), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2_PIPE_STEER_0, 0x77777777, 0x10321032), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2_PIPE_STEER_1, 0x77777777, 0x02310231), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2A_ADDR_MATCH_MASK, 0xffffffff, 0xffffffcf), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_ADDR_MATCH_MASK, 0xffffffff, 0xffffffcf), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CGTT_SCLK_CTRL, 0x10000000, 0x10000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL2, 0xffffffff, 0x1402002f), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL3, 0xffff9fff, 0x00001188), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE, 0x3fffffff, 0x08000009), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE_1, 0x00400000, 0x04440000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmRMI_SPARE, 0xffffffff, 0xffff3101), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ALU_CLK_CTRL, 0xffffffff, 0xffffffff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ARB_CONFIG, 0x00000100, 0x00000130), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_LDS_CLK_CTRL, 0xffffffff, 0xffffffff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmTA_CNTL_AUX, 0xfff7ffff, 0x01030000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmTCP_CNTL, 0x60000010, 0x479c0010), SOC15_REG_GOLDEN_VALUE(GC, 0, mmUTCL1_CGTT_CLK_CTRL, 0xfeff0fff, 0x40000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmUTCL1_CTRL, 0x00800000, 0x00800000) }; static const struct soc15_reg_golden golden_settings_gc_10_0_nv10[] = { /* Pending on emulation bring up */ }; static const struct soc15_reg_golden golden_settings_gc_10_1_1[] = { SOC15_REG_GOLDEN_VALUE(GC, 0, mmCB_HW_CONTROL_4, 0xffffffff, 0x003c0014), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_GS_NGG_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_IA_CLK_CTRL, 0xffff0fff, 0xffff0100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SPI_CLK_CTRL, 0xc0000000, 0xc0000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQ_CLK_CTRL, 0xf8ff0fff, 0x60000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQG_CLK_CTRL, 0x40000ff0, 0x40000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_VGT_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_WD_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_PIPE_STEER, 0xffffffff, 0xe4e4e4e4), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_VC5_ENABLE, 0x00000002, 0x00000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCP_SD_CNTL, 0x800007ff, 0x000005ff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG, 0xffffffff, 0x20000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG2, 0xffffffff, 0x00000420), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG3, 0x00000200, 0x00000200), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG4, 0xffffffff, 0x04900000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DFSM_TILES_IN_FLIGHT, 0x0000ffff, 0x0000003f), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_LAST_OF_BURST_CONFIG, 0xffffffff, 0x03860204), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGCR_GENERAL_CNTL, 0x1ff0ffff, 0x00000500), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGE_PRIV_CONTROL, 0x000007ff, 0x000001fe), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL1_PIPE_STEER, 0xffffffff, 0xe4e4e4e4), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2A_ADDR_MATCH_MASK, 0xffffffff, 0xffffffe7), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_ADDR_MATCH_MASK, 0xffffffff, 0xffffffe7), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CGTT_SCLK_CTRL, 0xffff0fff, 0x10000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL2, 0xffffffff, 0x1402002f), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL3, 0xffffbfff, 0x00000188), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE, 0x3fffffff, 0x08000009), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE_1, 0x00400000, 0x04440000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmRMI_SPARE, 0xffffffff, 0xffff3101), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ALU_CLK_CTRL, 0xffffffff, 0xffffffff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ARB_CONFIG, 0x00000133, 0x00000130), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_LDS_CLK_CTRL, 0xffffffff, 0xffffffff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmTA_CNTL_AUX, 0xfff7ffff, 0x01030000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmTCP_CNTL, 0x60000010, 0x479c0010), SOC15_REG_GOLDEN_VALUE(GC, 0, mmUTCL1_CTRL, 0x00800000, 0x00800000), }; static const struct soc15_reg_golden golden_settings_gc_10_1_2[] = { SOC15_REG_GOLDEN_VALUE(GC, 0, mmCB_HW_CONTROL_4, 0x003e001f, 0x003c0014), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_GS_NGG_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_IA_CLK_CTRL, 0xffff0fff, 0xffff0100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SPI_CLK_CTRL, 0xff7f0fff, 0xc0000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQ_CLK_CTRL, 0xffffcfff, 0x60000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_SQG_CLK_CTRL, 0xffff0fff, 0x40000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_VGT_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCGTT_WD_CLK_CTRL, 0xffff8fff, 0xffff8100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_PIPE_STEER, 0xffffffff, 0xe4e4e4e4), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCH_VC5_ENABLE, 0x00000003, 0x00000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmCP_SD_CNTL, 0x800007ff, 0x000005ff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG, 0xffffffff, 0x20000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG2, 0xffffffff, 0x00000420), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG3, 0xffffffff, 0x00000200), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DEBUG4, 0xffffffff, 0x04800000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_DFSM_TILES_IN_FLIGHT, 0x0000ffff, 0x0000003f), SOC15_REG_GOLDEN_VALUE(GC, 0, mmDB_LAST_OF_BURST_CONFIG, 0xffffffff, 0x03860204), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGCR_GENERAL_CNTL, 0x1ff0ffff, 0x00000500), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGE_PRIV_CONTROL, 0x00007fff, 0x000001fe), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL1_PIPE_STEER, 0xffffffff, 0xe4e4e4e4), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2_PIPE_STEER_0, 0x77777777, 0x10321032), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2_PIPE_STEER_1, 0x77777777, 0x02310231), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2A_ADDR_MATCH_MASK, 0xffffffff, 0xffffffcf), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_ADDR_MATCH_MASK, 0xffffffff, 0xffffffcf), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CGTT_SCLK_CTRL, 0xffff0fff, 0x10000100), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL2, 0xffffffff, 0x1402002f), SOC15_REG_GOLDEN_VALUE(GC, 0, mmGL2C_CTRL3, 0xffffbfff, 0x00000188), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_BINNER_EVENT_CNTL_0, 0xffffffff, 0x842a4c02), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_BINNER_TIMEOUT_COUNTER, 0xffffffff, 0x00000800), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE, 0x3fffffff, 0x08000009), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE_1, 0xffffffff, 0x04440000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_ENHANCE_2, 0x00000820, 0x00000820), SOC15_REG_GOLDEN_VALUE(GC, 0, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmRMI_SPARE, 0xffffffff, 0xffff3101), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ALU_CLK_CTRL, 0xffffffff, 0xffffffff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_ARB_CONFIG, 0x00000133, 0x00000130), SOC15_REG_GOLDEN_VALUE(GC, 0, mmSQ_LDS_CLK_CTRL, 0xffffffff, 0xffffffff), SOC15_REG_GOLDEN_VALUE(GC, 0, mmTA_CNTL_AUX, 0xfff7ffff, 0x01030000), SOC15_REG_GOLDEN_VALUE(GC, 0, mmTCP_CNTL, 0xffdf80ff, 0x479c0010), SOC15_REG_GOLDEN_VALUE(GC, 0, mmUTCL1_CTRL, 0xffffffff, 0x00800000) }; static const struct soc15_reg_golden golden_settings_gc_10_1_nv14[] = { /* Pending on emulation bring up */ }; static const struct soc15_reg_golden golden_settings_gc_10_1_2_nv12[] = { /* Pending on emulation bring up */ }; #define DEFAULT_SH_MEM_CONFIG \ ((SH_MEM_ADDRESS_MODE_64 << SH_MEM_CONFIG__ADDRESS_MODE__SHIFT) | \ (SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT) | \ (SH_MEM_RETRY_MODE_ALL << SH_MEM_CONFIG__RETRY_MODE__SHIFT) | \ (3 << SH_MEM_CONFIG__INITIAL_INST_PREFETCH__SHIFT)) static void gfx_v10_0_set_ring_funcs(struct amdgpu_device *adev); static void gfx_v10_0_set_irq_funcs(struct amdgpu_device *adev); static void gfx_v10_0_set_gds_init(struct amdgpu_device *adev); static void gfx_v10_0_set_rlc_funcs(struct amdgpu_device *adev); static int gfx_v10_0_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info); static uint64_t gfx_v10_0_get_gpu_clock_counter(struct amdgpu_device *adev); static void gfx_v10_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance); static u32 gfx_v10_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev); static int gfx_v10_0_rlc_backdoor_autoload_buffer_init(struct amdgpu_device *adev); static void gfx_v10_0_rlc_backdoor_autoload_buffer_fini(struct amdgpu_device *adev); static int gfx_v10_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev); static int gfx_v10_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev); static void gfx_v10_0_ring_emit_ce_meta(struct amdgpu_ring *ring, bool resume); static void gfx_v10_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume); static void gfx_v10_0_ring_emit_tmz(struct amdgpu_ring *ring, bool start); static void gfx10_kiq_set_resources(struct amdgpu_ring *kiq_ring, uint64_t queue_mask) { amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6)); amdgpu_ring_write(kiq_ring, PACKET3_SET_RESOURCES_VMID_MASK(0) | PACKET3_SET_RESOURCES_QUEUE_TYPE(0)); /* vmid_mask:0 queue_type:0 (KIQ) */ amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */ amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */ amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */ amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */ amdgpu_ring_write(kiq_ring, 0); /* oac mask */ amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */ } static void gfx10_kiq_map_queues(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring) { struct amdgpu_device *adev = kiq_ring->adev; uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj); uint64_t wptr_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); /* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/ amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(0) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(ring->queue) | PACKET3_MAP_QUEUES_PIPE(ring->pipe) | PACKET3_MAP_QUEUES_ME((ring->me == 1 ? 0 : 1)) | PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ENGINE_SEL(eng_sel) | PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index)); amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr)); } static void gfx10_kiq_unmap_queues(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring, enum amdgpu_unmap_queues_action action, u64 gpu_addr, u64 seq) { uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4)); amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_UNMAP_QUEUES_ACTION(action) | PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) | PACKET3_UNMAP_QUEUES_ENGINE_SEL(eng_sel) | PACKET3_UNMAP_QUEUES_NUM_QUEUES(1)); amdgpu_ring_write(kiq_ring, PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index)); if (action == PREEMPT_QUEUES_NO_UNMAP) { amdgpu_ring_write(kiq_ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(kiq_ring, seq); } else { amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); } } static void gfx10_kiq_query_status(struct amdgpu_ring *kiq_ring, struct amdgpu_ring *ring, u64 addr, u64 seq) { uint32_t eng_sel = ring->funcs->type == AMDGPU_RING_TYPE_GFX ? 4 : 0; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_QUERY_STATUS, 5)); amdgpu_ring_write(kiq_ring, PACKET3_QUERY_STATUS_CONTEXT_ID(0) | PACKET3_QUERY_STATUS_INTERRUPT_SEL(0) | PACKET3_QUERY_STATUS_COMMAND(2)); amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_QUERY_STATUS_DOORBELL_OFFSET(ring->doorbell_index) | PACKET3_QUERY_STATUS_ENG_SEL(eng_sel)); amdgpu_ring_write(kiq_ring, lower_32_bits(addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(seq)); amdgpu_ring_write(kiq_ring, upper_32_bits(seq)); } static const struct kiq_pm4_funcs gfx_v10_0_kiq_pm4_funcs = { .kiq_set_resources = gfx10_kiq_set_resources, .kiq_map_queues = gfx10_kiq_map_queues, .kiq_unmap_queues = gfx10_kiq_unmap_queues, .kiq_query_status = gfx10_kiq_query_status, .set_resources_size = 8, .map_queues_size = 7, .unmap_queues_size = 6, .query_status_size = 7, }; static void gfx_v10_0_set_kiq_pm4_funcs(struct amdgpu_device *adev) { adev->gfx.kiq.pmf = &gfx_v10_0_kiq_pm4_funcs; } static void gfx_v10_0_init_golden_registers(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_NAVI10: soc15_program_register_sequence(adev, golden_settings_gc_10_1, (const u32)ARRAY_SIZE(golden_settings_gc_10_1)); soc15_program_register_sequence(adev, golden_settings_gc_10_0_nv10, (const u32)ARRAY_SIZE(golden_settings_gc_10_0_nv10)); break; case CHIP_NAVI14: soc15_program_register_sequence(adev, golden_settings_gc_10_1_1, (const u32)ARRAY_SIZE(golden_settings_gc_10_1_1)); soc15_program_register_sequence(adev, golden_settings_gc_10_1_nv14, (const u32)ARRAY_SIZE(golden_settings_gc_10_1_nv14)); break; case CHIP_NAVI12: soc15_program_register_sequence(adev, golden_settings_gc_10_1_2, (const u32)ARRAY_SIZE(golden_settings_gc_10_1_2)); soc15_program_register_sequence(adev, golden_settings_gc_10_1_2_nv12, (const u32)ARRAY_SIZE(golden_settings_gc_10_1_2_nv12)); break; default: break; } } static void gfx_v10_0_scratch_init(struct amdgpu_device *adev) { adev->gfx.scratch.num_reg = 8; adev->gfx.scratch.reg_base = SOC15_REG_OFFSET(GC, 0, mmSCRATCH_REG0); adev->gfx.scratch.free_mask = (1u << adev->gfx.scratch.num_reg) - 1; } static void gfx_v10_0_write_data_to_reg(struct amdgpu_ring *ring, int eng_sel, bool wc, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, WRITE_DATA_ENGINE_SEL(eng_sel) | WRITE_DATA_DST_SEL(0) | (wc ? WR_CONFIRM : 0)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v10_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel, int mem_space, int opt, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, /* memory (1) or register (0) */ (WAIT_REG_MEM_MEM_SPACE(mem_space) | WAIT_REG_MEM_OPERATION(opt) | /* wait */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(eng_sel))); if (mem_space) BUG_ON(addr0 & 0x3); /* Dword align */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); amdgpu_ring_write(ring, ref); amdgpu_ring_write(ring, mask); amdgpu_ring_write(ring, inv); /* poll interval */ } static int gfx_v10_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("amdgpu: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r); amdgpu_gfx_scratch_free(adev, scratch); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(ring, (scratch - PACKET3_SET_UCONFIG_REG_START)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) break; if (amdgpu_emu_mode == 1) msleep(1); else udelay(1); } if (i < adev->usec_timeout) { if (amdgpu_emu_mode == 1) DRM_INFO("ring test on %d succeeded in %d msecs\n", ring->idx, i); else DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("amdgpu: ring %d test failed (scratch(0x%04X)=0x%08X)\n", ring->idx, scratch, tmp); r = -EINVAL; } amdgpu_gfx_scratch_free(adev, scratch); return r; } static int gfx_v10_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; uint32_t scratch; uint32_t tmp = 0; long r; r = amdgpu_gfx_scratch_get(adev, &scratch); if (r) { DRM_ERROR("amdgpu: failed to get scratch reg (%ld).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, &ib); if (r) { DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); goto err1; } ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1); ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START)); ib.ptr[2] = 0xDEADBEEF; ib.length_dw = 3; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err2; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { DRM_ERROR("amdgpu: IB test timed out.\n"); r = -ETIMEDOUT; goto err2; } else if (r < 0) { DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); goto err2; } tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) { DRM_INFO("ib test on ring %d succeeded\n", ring->idx); r = 0; } else { DRM_ERROR("amdgpu: ib test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } err2: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err1: amdgpu_gfx_scratch_free(adev, scratch); return r; } static void gfx_v10_0_free_microcode(struct amdgpu_device *adev) { release_firmware(adev->gfx.pfp_fw); adev->gfx.pfp_fw = NULL; release_firmware(adev->gfx.me_fw); adev->gfx.me_fw = NULL; release_firmware(adev->gfx.ce_fw); adev->gfx.ce_fw = NULL; release_firmware(adev->gfx.rlc_fw); adev->gfx.rlc_fw = NULL; release_firmware(adev->gfx.mec_fw); adev->gfx.mec_fw = NULL; release_firmware(adev->gfx.mec2_fw); adev->gfx.mec2_fw = NULL; kfree(adev->gfx.rlc.register_list_format); } static void gfx_v10_0_init_rlc_ext_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_1 *rlc_hdr; rlc_hdr = (const struct rlc_firmware_header_v2_1 *)adev->gfx.rlc_fw->data; adev->gfx.rlc_srlc_fw_version = le32_to_cpu(rlc_hdr->save_restore_list_cntl_ucode_ver); adev->gfx.rlc_srlc_feature_version = le32_to_cpu(rlc_hdr->save_restore_list_cntl_feature_ver); adev->gfx.rlc.save_restore_list_cntl_size_bytes = le32_to_cpu(rlc_hdr->save_restore_list_cntl_size_bytes); adev->gfx.rlc.save_restore_list_cntl = (u8 *)rlc_hdr + le32_to_cpu(rlc_hdr->save_restore_list_cntl_offset_bytes); adev->gfx.rlc_srlg_fw_version = le32_to_cpu(rlc_hdr->save_restore_list_gpm_ucode_ver); adev->gfx.rlc_srlg_feature_version = le32_to_cpu(rlc_hdr->save_restore_list_gpm_feature_ver); adev->gfx.rlc.save_restore_list_gpm_size_bytes = le32_to_cpu(rlc_hdr->save_restore_list_gpm_size_bytes); adev->gfx.rlc.save_restore_list_gpm = (u8 *)rlc_hdr + le32_to_cpu(rlc_hdr->save_restore_list_gpm_offset_bytes); adev->gfx.rlc_srls_fw_version = le32_to_cpu(rlc_hdr->save_restore_list_srm_ucode_ver); adev->gfx.rlc_srls_feature_version = le32_to_cpu(rlc_hdr->save_restore_list_srm_feature_ver); adev->gfx.rlc.save_restore_list_srm_size_bytes = le32_to_cpu(rlc_hdr->save_restore_list_srm_size_bytes); adev->gfx.rlc.save_restore_list_srm = (u8 *)rlc_hdr + le32_to_cpu(rlc_hdr->save_restore_list_srm_offset_bytes); adev->gfx.rlc.reg_list_format_direct_reg_list_length = le32_to_cpu(rlc_hdr->reg_list_format_direct_reg_list_length); } static void gfx_v10_0_check_gfxoff_flag(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_NAVI10: adev->pm.pp_feature &= ~PP_GFXOFF_MASK; break; default: break; } } static int gfx_v10_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; char fw_name[30]; int err; struct amdgpu_firmware_info *info = NULL; const struct common_firmware_header *header = NULL; const struct gfx_firmware_header_v1_0 *cp_hdr; const struct rlc_firmware_header_v2_0 *rlc_hdr; unsigned int *tmp = NULL; unsigned int i = 0; uint16_t version_major; uint16_t version_minor; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_NAVI10: chip_name = "navi10"; break; case CHIP_NAVI14: chip_name = "navi14"; break; case CHIP_NAVI12: chip_name = "navi12"; break; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_pfp.bin", chip_name); err = request_firmware(&adev->gfx.pfp_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.pfp_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_me.bin", chip_name); err = request_firmware(&adev->gfx.me_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.me_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_ce.bin", chip_name); err = request_firmware(&adev->gfx.ce_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.ce_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data; adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_rlc.bin", chip_name); err = request_firmware(&adev->gfx.rlc_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.rlc_fw); rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; version_major = le16_to_cpu(rlc_hdr->header.header_version_major); version_minor = le16_to_cpu(rlc_hdr->header.header_version_minor); if (version_major == 2 && version_minor == 1) adev->gfx.rlc.is_rlc_v2_1 = true; adev->gfx.rlc_fw_version = le32_to_cpu(rlc_hdr->header.ucode_version); adev->gfx.rlc_feature_version = le32_to_cpu(rlc_hdr->ucode_feature_version); adev->gfx.rlc.save_and_restore_offset = le32_to_cpu(rlc_hdr->save_and_restore_offset); adev->gfx.rlc.clear_state_descriptor_offset = le32_to_cpu(rlc_hdr->clear_state_descriptor_offset); adev->gfx.rlc.avail_scratch_ram_locations = le32_to_cpu(rlc_hdr->avail_scratch_ram_locations); adev->gfx.rlc.reg_restore_list_size = le32_to_cpu(rlc_hdr->reg_restore_list_size); adev->gfx.rlc.reg_list_format_start = le32_to_cpu(rlc_hdr->reg_list_format_start); adev->gfx.rlc.reg_list_format_separate_start = le32_to_cpu(rlc_hdr->reg_list_format_separate_start); adev->gfx.rlc.starting_offsets_start = le32_to_cpu(rlc_hdr->starting_offsets_start); adev->gfx.rlc.reg_list_format_size_bytes = le32_to_cpu(rlc_hdr->reg_list_format_size_bytes); adev->gfx.rlc.reg_list_size_bytes = le32_to_cpu(rlc_hdr->reg_list_size_bytes); adev->gfx.rlc.register_list_format = kmalloc(adev->gfx.rlc.reg_list_format_size_bytes + adev->gfx.rlc.reg_list_size_bytes, GFP_KERNEL); if (!adev->gfx.rlc.register_list_format) { err = -ENOMEM; goto out; } tmp = (unsigned int *)((uintptr_t)rlc_hdr + le32_to_cpu(rlc_hdr->reg_list_format_array_offset_bytes)); for (i = 0 ; i < (rlc_hdr->reg_list_format_size_bytes >> 2); i++) adev->gfx.rlc.register_list_format[i] = le32_to_cpu(tmp[i]); adev->gfx.rlc.register_restore = adev->gfx.rlc.register_list_format + i; tmp = (unsigned int *)((uintptr_t)rlc_hdr + le32_to_cpu(rlc_hdr->reg_list_array_offset_bytes)); for (i = 0 ; i < (rlc_hdr->reg_list_size_bytes >> 2); i++) adev->gfx.rlc.register_restore[i] = le32_to_cpu(tmp[i]); if (adev->gfx.rlc.is_rlc_v2_1) gfx_v10_0_init_rlc_ext_microcode(adev); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec.bin", chip_name); err = request_firmware(&adev->gfx.mec_fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->gfx.mec_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_mec2.bin", chip_name); err = request_firmware(&adev->gfx.mec2_fw, fw_name, adev->dev); if (!err) { err = amdgpu_ucode_validate(adev->gfx.mec2_fw); if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; adev->gfx.mec2_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec2_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); } else { err = 0; adev->gfx.mec2_fw = NULL; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_PFP]; info->ucode_id = AMDGPU_UCODE_ID_CP_PFP; info->fw = adev->gfx.pfp_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_ME]; info->ucode_id = AMDGPU_UCODE_ID_CP_ME; info->fw = adev->gfx.me_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_CE]; info->ucode_id = AMDGPU_UCODE_ID_CP_CE; info->fw = adev->gfx.ce_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_G]; info->ucode_id = AMDGPU_UCODE_ID_RLC_G; info->fw = adev->gfx.rlc_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); if (adev->gfx.rlc.is_rlc_v2_1 && adev->gfx.rlc.save_restore_list_cntl_size_bytes && adev->gfx.rlc.save_restore_list_gpm_size_bytes && adev->gfx.rlc.save_restore_list_srm_size_bytes) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_RESTORE_LIST_CNTL]; info->ucode_id = AMDGPU_UCODE_ID_RLC_RESTORE_LIST_CNTL; info->fw = adev->gfx.rlc_fw; adev->firmware.fw_size += ALIGN(adev->gfx.rlc.save_restore_list_cntl_size_bytes, PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_RESTORE_LIST_GPM_MEM]; info->ucode_id = AMDGPU_UCODE_ID_RLC_RESTORE_LIST_GPM_MEM; info->fw = adev->gfx.rlc_fw; adev->firmware.fw_size += ALIGN(adev->gfx.rlc.save_restore_list_gpm_size_bytes, PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_RESTORE_LIST_SRM_MEM]; info->ucode_id = AMDGPU_UCODE_ID_RLC_RESTORE_LIST_SRM_MEM; info->fw = adev->gfx.rlc_fw; adev->firmware.fw_size += ALIGN(adev->gfx.rlc.save_restore_list_srm_size_bytes, PAGE_SIZE); } info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1; info->fw = adev->gfx.mec_fw; header = (const struct common_firmware_header *)info->fw->data; cp_hdr = (const struct gfx_firmware_header_v1_0 *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1_JT]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1_JT; info->fw = adev->gfx.mec_fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); if (adev->gfx.mec2_fw) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2; info->fw = adev->gfx.mec2_fw; header = (const struct common_firmware_header *)info->fw->data; cp_hdr = (const struct gfx_firmware_header_v1_0 *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2_JT]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2_JT; info->fw = adev->gfx.mec2_fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(cp_hdr->jt_size) * 4, PAGE_SIZE); } } out: if (err) { dev_err(adev->dev, "gfx10: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->gfx.pfp_fw); adev->gfx.pfp_fw = NULL; release_firmware(adev->gfx.me_fw); adev->gfx.me_fw = NULL; release_firmware(adev->gfx.ce_fw); adev->gfx.ce_fw = NULL; release_firmware(adev->gfx.rlc_fw); adev->gfx.rlc_fw = NULL; release_firmware(adev->gfx.mec_fw); adev->gfx.mec_fw = NULL; release_firmware(adev->gfx.mec2_fw); adev->gfx.mec2_fw = NULL; } gfx_v10_0_check_gfxoff_flag(adev); return err; } static u32 gfx_v10_0_get_csb_size(struct amdgpu_device *adev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = gfx10_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* set PA_SC_TILE_STEERING_OVERRIDE */ count += 3; /* end clear state */ count += 2; /* clear state */ count += 2; return count; } static void gfx_v10_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int ctx_reg_offset; if (adev->gfx.rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } ctx_reg_offset = SOC15_REG_OFFSET(GC, 0, mmPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1)); buffer[count++] = cpu_to_le32(ctx_reg_offset); buffer[count++] = cpu_to_le32(adev->gfx.config.pa_sc_tile_steering_override); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static void gfx_v10_0_rlc_fini(struct amdgpu_device *adev) { /* clear state block */ amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj, &adev->gfx.rlc.clear_state_gpu_addr, (void **)&adev->gfx.rlc.cs_ptr); /* jump table block */ amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj, &adev->gfx.rlc.cp_table_gpu_addr, (void **)&adev->gfx.rlc.cp_table_ptr); } static int gfx_v10_0_rlc_init(struct amdgpu_device *adev) { const struct cs_section_def *cs_data; int r; adev->gfx.rlc.cs_data = gfx10_cs_data; cs_data = adev->gfx.rlc.cs_data; if (cs_data) { /* init clear state block */ r = amdgpu_gfx_rlc_init_csb(adev); if (r) return r; } return 0; } static int gfx_v10_0_csb_vram_pin(struct amdgpu_device *adev) { int r; r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, false); if (unlikely(r != 0)) return r; r = amdgpu_bo_pin(adev->gfx.rlc.clear_state_obj, AMDGPU_GEM_DOMAIN_VRAM); if (!r) adev->gfx.rlc.clear_state_gpu_addr = amdgpu_bo_gpu_offset(adev->gfx.rlc.clear_state_obj); amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj); return r; } static void gfx_v10_0_csb_vram_unpin(struct amdgpu_device *adev) { int r; if (!adev->gfx.rlc.clear_state_obj) return; r = amdgpu_bo_reserve(adev->gfx.rlc.clear_state_obj, true); if (likely(r == 0)) { amdgpu_bo_unpin(adev->gfx.rlc.clear_state_obj); amdgpu_bo_unreserve(adev->gfx.rlc.clear_state_obj); } } static void gfx_v10_0_mec_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL); amdgpu_bo_free_kernel(&adev->gfx.mec.mec_fw_obj, NULL, NULL); } static int gfx_v10_0_me_init(struct amdgpu_device *adev) { int r; bitmap_zero(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); amdgpu_gfx_graphics_queue_acquire(adev); r = gfx_v10_0_init_microcode(adev); if (r) DRM_ERROR("Failed to load gfx firmware!\n"); return r; } static int gfx_v10_0_mec_init(struct amdgpu_device *adev) { int r; u32 *hpd; const __le32 *fw_data = NULL; unsigned fw_size; u32 *fw = NULL; size_t mec_hpd_size; const struct gfx_firmware_header_v1_0 *mec_hdr = NULL; bitmap_zero(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); /* take ownership of the relevant compute queues */ amdgpu_gfx_compute_queue_acquire(adev); mec_hpd_size = adev->gfx.num_compute_rings * GFX10_MEC_HPD_SIZE; r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.hpd_eop_obj, &adev->gfx.mec.hpd_eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r); gfx_v10_0_mec_fini(adev); return r; } memset(hpd, 0, adev->gfx.mec.hpd_eop_obj->tbo.mem.size); amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(mec_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, mec_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.mec_fw_obj, &adev->gfx.mec.mec_fw_gpu_addr, (void **)&fw); if (r) { dev_err(adev->dev, "(%d) failed to create mec fw bo\n", r); gfx_v10_0_mec_fini(adev); return r; } memcpy(fw, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.mec.mec_fw_obj); amdgpu_bo_unreserve(adev->gfx.mec.mec_fw_obj); } return 0; } static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t wave, uint32_t address) { WREG32_SOC15(GC, 0, mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (address << SQ_IND_INDEX__INDEX__SHIFT)); return RREG32_SOC15(GC, 0, mmSQ_IND_DATA); } static void wave_read_regs(struct amdgpu_device *adev, uint32_t wave, uint32_t thread, uint32_t regno, uint32_t num, uint32_t *out) { WREG32_SOC15(GC, 0, mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (regno << SQ_IND_INDEX__INDEX__SHIFT) | (thread << SQ_IND_INDEX__WORKITEM_ID__SHIFT) | (SQ_IND_INDEX__AUTO_INCR_MASK)); while (num--) *(out++) = RREG32_SOC15(GC, 0, mmSQ_IND_DATA); } static void gfx_v10_0_read_wave_data(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields) { /* in gfx10 the SIMD_ID is specified as part of the INSTANCE * field when performing a select_se_sh so it should be * zero here */ WARN_ON(simd != 0); /* type 2 wave data */ dst[(*no_fields)++] = 2; dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_STATUS); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_LO); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_PC_HI); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_LO); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_EXEC_HI); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID1); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_HW_ID2); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_INST_DW0); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_GPR_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_LDS_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_TRAPSTS); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_STS2); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_IB_DBG1); dst[(*no_fields)++] = wave_read_ind(adev, wave, ixSQ_WAVE_M0); } static void gfx_v10_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t start, uint32_t size, uint32_t *dst) { WARN_ON(simd != 0); wave_read_regs( adev, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size, dst); } static void gfx_v10_0_read_wave_vgprs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs( adev, wave, thread, start + SQIND_WAVE_VGPRS_OFFSET, size, dst); } static void gfx_v10_0_select_me_pipe_q(struct amdgpu_device *adev, u32 me, u32 pipe, u32 q, u32 vm) { nv_grbm_select(adev, me, pipe, q, vm); } static const struct amdgpu_gfx_funcs gfx_v10_0_gfx_funcs = { .get_gpu_clock_counter = &gfx_v10_0_get_gpu_clock_counter, .select_se_sh = &gfx_v10_0_select_se_sh, .read_wave_data = &gfx_v10_0_read_wave_data, .read_wave_sgprs = &gfx_v10_0_read_wave_sgprs, .read_wave_vgprs = &gfx_v10_0_read_wave_vgprs, .select_me_pipe_q = &gfx_v10_0_select_me_pipe_q, }; static void gfx_v10_0_gpu_early_init(struct amdgpu_device *adev) { u32 gb_addr_config; adev->gfx.funcs = &gfx_v10_0_gfx_funcs; switch (adev->asic_type) { case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x4C0; gb_addr_config = RREG32_SOC15(GC, 0, mmGB_ADDR_CONFIG); break; default: BUG(); break; } adev->gfx.config.gb_addr_config = gb_addr_config; adev->gfx.config.gb_addr_config_fields.num_pipes = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_PIPES); adev->gfx.config.max_tile_pipes = adev->gfx.config.gb_addr_config_fields.num_pipes; adev->gfx.config.gb_addr_config_fields.max_compress_frags = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, MAX_COMPRESSED_FRAGS); adev->gfx.config.gb_addr_config_fields.num_rb_per_se = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_RB_PER_SE); adev->gfx.config.gb_addr_config_fields.num_se = 1 << REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, NUM_SHADER_ENGINES); adev->gfx.config.gb_addr_config_fields.pipe_interleave_size = 1 << (8 + REG_GET_FIELD(adev->gfx.config.gb_addr_config, GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE)); } static int gfx_v10_0_gfx_ring_init(struct amdgpu_device *adev, int ring_id, int me, int pipe, int queue) { int r; struct amdgpu_ring *ring; unsigned int irq_type; ring = &adev->gfx.gfx_ring[ring_id]; ring->me = me; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; if (!ring_id) ring->doorbell_index = adev->doorbell_index.gfx_ring0 << 1; else ring->doorbell_index = adev->doorbell_index.gfx_ring1 << 1; sprintf(ring->name, "gfx_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP + ring->pipe; r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type); if (r) return r; return 0; } static int gfx_v10_0_compute_ring_init(struct amdgpu_device *adev, int ring_id, int mec, int pipe, int queue) { int r; unsigned irq_type; struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id]; ring = &adev->gfx.compute_ring[ring_id]; /* mec0 is me1 */ ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = (adev->doorbell_index.mec_ring0 + ring_id) << 1; ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (ring_id * GFX10_MEC_HPD_SIZE); sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec) + ring->pipe; /* type-2 packets are deprecated on MEC, use type-3 instead */ r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type); if (r) return r; return 0; } static int gfx_v10_0_sw_init(void *handle) { int i, j, k, r, ring_id = 0; struct amdgpu_kiq *kiq; struct amdgpu_device *adev = (struct amdgpu_device *)handle; switch (adev->asic_type) { case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: adev->gfx.me.num_me = 1; adev->gfx.me.num_pipe_per_me = 2; adev->gfx.me.num_queue_per_pipe = 1; adev->gfx.mec.num_mec = 2; adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; break; default: adev->gfx.me.num_me = 1; adev->gfx.me.num_pipe_per_me = 1; adev->gfx.me.num_queue_per_pipe = 1; adev->gfx.mec.num_mec = 1; adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; break; } /* KIQ event */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_10_1__SRCID__CP_IB2_INTERRUPT_PKT, &adev->gfx.kiq.irq); if (r) return r; /* EOP Event */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_10_1__SRCID__CP_EOP_INTERRUPT, &adev->gfx.eop_irq); if (r) return r; /* Privileged reg */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_10_1__SRCID__CP_PRIV_REG_FAULT, &adev->gfx.priv_reg_irq); if (r) return r; /* Privileged inst */ r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_GRBM_CP, GFX_10_1__SRCID__CP_PRIV_INSTR_FAULT, &adev->gfx.priv_inst_irq); if (r) return r; adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE; gfx_v10_0_scratch_init(adev); r = gfx_v10_0_me_init(adev); if (r) return r; r = gfx_v10_0_rlc_init(adev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } r = gfx_v10_0_mec_init(adev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } /* set up the gfx ring */ for (i = 0; i < adev->gfx.me.num_me; i++) { for (j = 0; j < adev->gfx.me.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.me.num_pipe_per_me; k++) { if (!amdgpu_gfx_is_me_queue_enabled(adev, i, k, j)) continue; r = gfx_v10_0_gfx_ring_init(adev, ring_id, i, k, j); if (r) return r; ring_id++; } } } ring_id = 0; /* set up the compute queues - allocate horizontally across pipes */ for (i = 0; i < adev->gfx.mec.num_mec; ++i) { for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) { if (!amdgpu_gfx_is_mec_queue_enabled(adev, i, k, j)) continue; r = gfx_v10_0_compute_ring_init(adev, ring_id, i, k, j); if (r) return r; ring_id++; } } } r = amdgpu_gfx_kiq_init(adev, GFX10_MEC_HPD_SIZE); if (r) { DRM_ERROR("Failed to init KIQ BOs!\n"); return r; } kiq = &adev->gfx.kiq; r = amdgpu_gfx_kiq_init_ring(adev, &kiq->ring, &kiq->irq); if (r) return r; r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct v10_compute_mqd)); if (r) return r; /* allocate visible FB for rlc auto-loading fw */ if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { r = gfx_v10_0_rlc_backdoor_autoload_buffer_init(adev); if (r) return r; } adev->gfx.ce_ram_size = F32_CE_PROGRAM_RAM_SIZE; gfx_v10_0_gpu_early_init(adev); return 0; } static void gfx_v10_0_pfp_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.pfp.pfp_fw_obj, &adev->gfx.pfp.pfp_fw_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_ptr); } static void gfx_v10_0_ce_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.ce.ce_fw_obj, &adev->gfx.ce.ce_fw_gpu_addr, (void **)&adev->gfx.ce.ce_fw_ptr); } static void gfx_v10_0_me_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.me.me_fw_obj, &adev->gfx.me.me_fw_gpu_addr, (void **)&adev->gfx.me.me_fw_ptr); } static int gfx_v10_0_sw_fini(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->gfx.num_gfx_rings; i++) amdgpu_ring_fini(&adev->gfx.gfx_ring[i]); for (i = 0; i < adev->gfx.num_compute_rings; i++) amdgpu_ring_fini(&adev->gfx.compute_ring[i]); amdgpu_gfx_mqd_sw_fini(adev); amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq.ring, &adev->gfx.kiq.irq); amdgpu_gfx_kiq_fini(adev); gfx_v10_0_pfp_fini(adev); gfx_v10_0_ce_fini(adev); gfx_v10_0_me_fini(adev); gfx_v10_0_rlc_fini(adev); gfx_v10_0_mec_fini(adev); if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) gfx_v10_0_rlc_backdoor_autoload_buffer_fini(adev); gfx_v10_0_free_microcode(adev); return 0; } static void gfx_v10_0_tiling_mode_table_init(struct amdgpu_device *adev) { /* TODO */ } static void gfx_v10_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance) { u32 data; if (instance == 0xffffffff) data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX, instance); if (se_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num); if (sh_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SA_INDEX, sh_num); WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data); } static u32 gfx_v10_0_get_rb_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32_SOC15(GC, 0, mmCC_RB_BACKEND_DISABLE); data |= RREG32_SOC15(GC, 0, mmGC_USER_RB_BACKEND_DISABLE); data &= CC_RB_BACKEND_DISABLE__BACKEND_DISABLE_MASK; data >>= GC_USER_RB_BACKEND_DISABLE__BACKEND_DISABLE__SHIFT; mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se); return (~data) & mask; } static void gfx_v10_0_setup_rb(struct amdgpu_device *adev) { int i, j; u32 data; u32 active_rbs = 0; u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v10_0_select_se_sh(adev, i, j, 0xffffffff); data = gfx_v10_0_get_rb_active_bitmap(adev); active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) * rb_bitmap_width_per_sh); } } gfx_v10_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); adev->gfx.config.backend_enable_mask = active_rbs; adev->gfx.config.num_rbs = hweight32(active_rbs); } static u32 gfx_v10_0_init_pa_sc_tile_steering_override(struct amdgpu_device *adev) { uint32_t num_sc; uint32_t enabled_rb_per_sh; uint32_t active_rb_bitmap; uint32_t num_rb_per_sc; uint32_t num_packer_per_sc; uint32_t pa_sc_tile_steering_override; /* init num_sc */ num_sc = adev->gfx.config.max_shader_engines * adev->gfx.config.max_sh_per_se * adev->gfx.config.num_sc_per_sh; /* init num_rb_per_sc */ active_rb_bitmap = gfx_v10_0_get_rb_active_bitmap(adev); enabled_rb_per_sh = hweight32(active_rb_bitmap); num_rb_per_sc = enabled_rb_per_sh / adev->gfx.config.num_sc_per_sh; /* init num_packer_per_sc */ num_packer_per_sc = adev->gfx.config.num_packer_per_sc; pa_sc_tile_steering_override = 0; pa_sc_tile_steering_override |= (order_base_2(num_sc) << PA_SC_TILE_STEERING_OVERRIDE__NUM_SC__SHIFT) & PA_SC_TILE_STEERING_OVERRIDE__NUM_SC_MASK; pa_sc_tile_steering_override |= (order_base_2(num_rb_per_sc) << PA_SC_TILE_STEERING_OVERRIDE__NUM_RB_PER_SC__SHIFT) & PA_SC_TILE_STEERING_OVERRIDE__NUM_RB_PER_SC_MASK; pa_sc_tile_steering_override |= (order_base_2(num_packer_per_sc) << PA_SC_TILE_STEERING_OVERRIDE__NUM_PACKER_PER_SC__SHIFT) & PA_SC_TILE_STEERING_OVERRIDE__NUM_PACKER_PER_SC_MASK; return pa_sc_tile_steering_override; } #define DEFAULT_SH_MEM_BASES (0x6000) #define FIRST_COMPUTE_VMID (8) #define LAST_COMPUTE_VMID (16) static void gfx_v10_0_init_compute_vmid(struct amdgpu_device *adev) { int i; uint32_t sh_mem_bases; /* * Configure apertures: * LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB) * Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB) * GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB) */ sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16); mutex_lock(&adev->srbm_mutex); for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) { nv_grbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG); WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases); } nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); /* Initialize all compute VMIDs to have no GDS, GWS, or OA acccess. These should be enabled by FW for target VMIDs. */ for (i = FIRST_COMPUTE_VMID; i < LAST_COMPUTE_VMID; i++) { WREG32_SOC15_OFFSET(GC, 0, mmGDS_VMID0_BASE, 2 * i, 0); WREG32_SOC15_OFFSET(GC, 0, mmGDS_VMID0_SIZE, 2 * i, 0); WREG32_SOC15_OFFSET(GC, 0, mmGDS_GWS_VMID0, i, 0); WREG32_SOC15_OFFSET(GC, 0, mmGDS_OA_VMID0, i, 0); } } static void gfx_v10_0_init_gds_vmid(struct amdgpu_device *adev) { int vmid; /* * Initialize all compute and user-gfx VMIDs to have no GDS, GWS, or OA * access. Compute VMIDs should be enabled by FW for target VMIDs, * the driver can enable them for graphics. VMID0 should maintain * access so that HWS firmware can save/restore entries. */ for (vmid = 1; vmid < 16; vmid++) { WREG32_SOC15_OFFSET(GC, 0, mmGDS_VMID0_BASE, 2 * vmid, 0); WREG32_SOC15_OFFSET(GC, 0, mmGDS_VMID0_SIZE, 2 * vmid, 0); WREG32_SOC15_OFFSET(GC, 0, mmGDS_GWS_VMID0, vmid, 0); WREG32_SOC15_OFFSET(GC, 0, mmGDS_OA_VMID0, vmid, 0); } } static void gfx_v10_0_tcp_harvest(struct amdgpu_device *adev) { int i, j, k; int max_wgp_per_sh = adev->gfx.config.max_cu_per_sh >> 1; u32 tmp, wgp_active_bitmap = 0; u32 gcrd_targets_disable_tcp = 0; u32 utcl_invreq_disable = 0; /* * GCRD_TARGETS_DISABLE field contains * for Navi10/Navi12: GL1C=[18:15], SQC=[14:10], TCP=[9:0] * for Navi14: GL1C=[21:18], SQC=[17:12], TCP=[11:0] */ u32 gcrd_targets_disable_mask = amdgpu_gfx_create_bitmask( 2 * max_wgp_per_sh + /* TCP */ max_wgp_per_sh + /* SQC */ 4); /* GL1C */ /* * UTCL1_UTCL0_INVREQ_DISABLE field contains * for Navi10Navi12: SQG=[24], RMI=[23:20], SQC=[19:10], TCP=[9:0] * for Navi14: SQG=[28], RMI=[27:24], SQC=[23:12], TCP=[11:0] */ u32 utcl_invreq_disable_mask = amdgpu_gfx_create_bitmask( 2 * max_wgp_per_sh + /* TCP */ 2 * max_wgp_per_sh + /* SQC */ 4 + /* RMI */ 1); /* SQG */ if (adev->asic_type == CHIP_NAVI10 || adev->asic_type == CHIP_NAVI14 || adev->asic_type == CHIP_NAVI12) { mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v10_0_select_se_sh(adev, i, j, 0xffffffff); wgp_active_bitmap = gfx_v10_0_get_wgp_active_bitmap_per_sh(adev); /* * Set corresponding TCP bits for the inactive WGPs in * GCRD_SA_TARGETS_DISABLE */ gcrd_targets_disable_tcp = 0; /* Set TCP & SQC bits in UTCL1_UTCL0_INVREQ_DISABLE */ utcl_invreq_disable = 0; for (k = 0; k < max_wgp_per_sh; k++) { if (!(wgp_active_bitmap & (1 << k))) { gcrd_targets_disable_tcp |= 3 << (2 * k); utcl_invreq_disable |= (3 << (2 * k)) | (3 << (2 * (max_wgp_per_sh + k))); } } tmp = RREG32_SOC15(GC, 0, mmUTCL1_UTCL0_INVREQ_DISABLE); /* only override TCP & SQC bits */ tmp &= 0xffffffff << (4 * max_wgp_per_sh); tmp |= (utcl_invreq_disable & utcl_invreq_disable_mask); WREG32_SOC15(GC, 0, mmUTCL1_UTCL0_INVREQ_DISABLE, tmp); tmp = RREG32_SOC15(GC, 0, mmGCRD_SA_TARGETS_DISABLE); /* only override TCP bits */ tmp &= 0xffffffff << (2 * max_wgp_per_sh); tmp |= (gcrd_targets_disable_tcp & gcrd_targets_disable_mask); WREG32_SOC15(GC, 0, mmGCRD_SA_TARGETS_DISABLE, tmp); } } gfx_v10_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); } } static void gfx_v10_0_constants_init(struct amdgpu_device *adev) { u32 tmp; int i; WREG32_FIELD15(GC, 0, GRBM_CNTL, READ_TIMEOUT, 0xff); gfx_v10_0_tiling_mode_table_init(adev); gfx_v10_0_setup_rb(adev); gfx_v10_0_get_cu_info(adev, &adev->gfx.cu_info); adev->gfx.config.pa_sc_tile_steering_override = gfx_v10_0_init_pa_sc_tile_steering_override(adev); /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->vm_manager.id_mgr[AMDGPU_GFXHUB_0].num_ids; i++) { nv_grbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, DEFAULT_SH_MEM_CONFIG); if (i != 0) { tmp = REG_SET_FIELD(0, SH_MEM_BASES, PRIVATE_BASE, (adev->gmc.private_aperture_start >> 48)); tmp = REG_SET_FIELD(tmp, SH_MEM_BASES, SHARED_BASE, (adev->gmc.shared_aperture_start >> 48)); WREG32_SOC15(GC, 0, mmSH_MEM_BASES, tmp); } } nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); gfx_v10_0_init_compute_vmid(adev); gfx_v10_0_init_gds_vmid(adev); } static void gfx_v10_0_enable_gui_idle_interrupt(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32_SOC15(GC, 0, mmCP_INT_CNTL_RING0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE, enable ? 1 : 0); WREG32_SOC15(GC, 0, mmCP_INT_CNTL_RING0, tmp); } static void gfx_v10_0_init_csb(struct amdgpu_device *adev) { /* csib */ WREG32_SOC15(GC, 0, mmRLC_CSIB_ADDR_HI, adev->gfx.rlc.clear_state_gpu_addr >> 32); WREG32_SOC15(GC, 0, mmRLC_CSIB_ADDR_LO, adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc); WREG32_SOC15(GC, 0, mmRLC_CSIB_LENGTH, adev->gfx.rlc.clear_state_size); } static void gfx_v10_0_init_pg(struct amdgpu_device *adev) { int i; gfx_v10_0_init_csb(adev); for (i = 0; i < adev->num_vmhubs; i++) amdgpu_gmc_flush_gpu_tlb(adev, 0, i, 0); /* TODO: init power gating */ return; } void gfx_v10_0_rlc_stop(struct amdgpu_device *adev) { u32 tmp = RREG32_SOC15(GC, 0, mmRLC_CNTL); tmp = REG_SET_FIELD(tmp, RLC_CNTL, RLC_ENABLE_F32, 0); WREG32_SOC15(GC, 0, mmRLC_CNTL, tmp); } static void gfx_v10_0_rlc_reset(struct amdgpu_device *adev) { WREG32_FIELD15(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); udelay(50); WREG32_FIELD15(GC, 0, GRBM_SOFT_RESET, SOFT_RESET_RLC, 0); udelay(50); } static void gfx_v10_0_rlc_smu_handshake_cntl(struct amdgpu_device *adev, bool enable) { uint32_t rlc_pg_cntl; rlc_pg_cntl = RREG32_SOC15(GC, 0, mmRLC_PG_CNTL); if (!enable) { /* RLC_PG_CNTL[23] = 0 (default) * RLC will wait for handshake acks with SMU * GFXOFF will be enabled * RLC_PG_CNTL[23] = 1 * RLC will not issue any message to SMU * hence no handshake between SMU & RLC * GFXOFF will be disabled */ rlc_pg_cntl |= 0x800000; } else rlc_pg_cntl &= ~0x800000; WREG32_SOC15(GC, 0, mmRLC_PG_CNTL, rlc_pg_cntl); } static void gfx_v10_0_rlc_start(struct amdgpu_device *adev) { /* TODO: enable rlc & smu handshake until smu * and gfxoff feature works as expected */ if (!(amdgpu_pp_feature_mask & PP_GFXOFF_MASK)) gfx_v10_0_rlc_smu_handshake_cntl(adev, false); WREG32_FIELD15(GC, 0, RLC_CNTL, RLC_ENABLE_F32, 1); udelay(50); } static void gfx_v10_0_rlc_enable_srm(struct amdgpu_device *adev) { uint32_t tmp; /* enable Save Restore Machine */ tmp = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL)); tmp |= RLC_SRM_CNTL__AUTO_INCR_ADDR_MASK; tmp |= RLC_SRM_CNTL__SRM_ENABLE_MASK; WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_SRM_CNTL), tmp); } static int gfx_v10_0_rlc_load_microcode(struct amdgpu_device *adev) { const struct rlc_firmware_header_v2_0 *hdr; const __le32 *fw_data; unsigned i, fw_size; if (!adev->gfx.rlc_fw) return -EINVAL; hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; amdgpu_ucode_print_rlc_hdr(&hdr->header); fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_ADDR, RLCG_UCODE_LOADING_START_ADDRESS); for (i = 0; i < fw_size; i++) WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SOC15(GC, 0, mmRLC_GPM_UCODE_ADDR, adev->gfx.rlc_fw_version); return 0; } static int gfx_v10_0_rlc_resume(struct amdgpu_device *adev) { int r; if (amdgpu_sriov_vf(adev)) return 0; if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { r = gfx_v10_0_wait_for_rlc_autoload_complete(adev); if (r) return r; gfx_v10_0_init_pg(adev); /* enable RLC SRM */ gfx_v10_0_rlc_enable_srm(adev); } else { adev->gfx.rlc.funcs->stop(adev); /* disable CG */ WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, 0); /* disable PG */ WREG32_SOC15(GC, 0, mmRLC_PG_CNTL, 0); if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { /* legacy rlc firmware loading */ r = gfx_v10_0_rlc_load_microcode(adev); if (r) return r; } else if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { /* rlc backdoor autoload firmware */ r = gfx_v10_0_rlc_backdoor_autoload_enable(adev); if (r) return r; } gfx_v10_0_init_pg(adev); adev->gfx.rlc.funcs->start(adev); if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { r = gfx_v10_0_wait_for_rlc_autoload_complete(adev); if (r) return r; } } return 0; } static struct { FIRMWARE_ID id; unsigned int offset; unsigned int size; } rlc_autoload_info[FIRMWARE_ID_MAX]; static int gfx_v10_0_parse_rlc_toc(struct amdgpu_device *adev) { int ret; RLC_TABLE_OF_CONTENT *rlc_toc; ret = amdgpu_bo_create_reserved(adev, adev->psp.toc_bin_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.rlc.rlc_toc_bo, &adev->gfx.rlc.rlc_toc_gpu_addr, (void **)&adev->gfx.rlc.rlc_toc_buf); if (ret) { dev_err(adev->dev, "(%d) failed to create rlc toc bo\n", ret); return ret; } /* Copy toc from psp sos fw to rlc toc buffer */ memcpy(adev->gfx.rlc.rlc_toc_buf, adev->psp.toc_start_addr, adev->psp.toc_bin_size); rlc_toc = (RLC_TABLE_OF_CONTENT *)adev->gfx.rlc.rlc_toc_buf; while (rlc_toc && (rlc_toc->id > FIRMWARE_ID_INVALID) && (rlc_toc->id < FIRMWARE_ID_MAX)) { if ((rlc_toc->id >= FIRMWARE_ID_CP_CE) && (rlc_toc->id <= FIRMWARE_ID_CP_MES)) { /* Offset needs 4KB alignment */ rlc_toc->offset = ALIGN(rlc_toc->offset * 4, PAGE_SIZE); } rlc_autoload_info[rlc_toc->id].id = rlc_toc->id; rlc_autoload_info[rlc_toc->id].offset = rlc_toc->offset * 4; rlc_autoload_info[rlc_toc->id].size = rlc_toc->size * 4; rlc_toc++; }; return 0; } static uint32_t gfx_v10_0_calc_toc_total_size(struct amdgpu_device *adev) { uint32_t total_size = 0; FIRMWARE_ID id; int ret; ret = gfx_v10_0_parse_rlc_toc(adev); if (ret) { dev_err(adev->dev, "failed to parse rlc toc\n"); return 0; } for (id = FIRMWARE_ID_RLC_G_UCODE; id < FIRMWARE_ID_MAX; id++) total_size += rlc_autoload_info[id].size; /* In case the offset in rlc toc ucode is aligned */ if (total_size < rlc_autoload_info[FIRMWARE_ID_MAX-1].offset) total_size = rlc_autoload_info[FIRMWARE_ID_MAX-1].offset + rlc_autoload_info[FIRMWARE_ID_MAX-1].size; return total_size; } static int gfx_v10_0_rlc_backdoor_autoload_buffer_init(struct amdgpu_device *adev) { int r; uint32_t total_size; total_size = gfx_v10_0_calc_toc_total_size(adev); r = amdgpu_bo_create_reserved(adev, total_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.rlc.rlc_autoload_bo, &adev->gfx.rlc.rlc_autoload_gpu_addr, (void **)&adev->gfx.rlc.rlc_autoload_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create fw autoload bo\n", r); return r; } return 0; } static void gfx_v10_0_rlc_backdoor_autoload_buffer_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_toc_bo, &adev->gfx.rlc.rlc_toc_gpu_addr, (void **)&adev->gfx.rlc.rlc_toc_buf); amdgpu_bo_free_kernel(&adev->gfx.rlc.rlc_autoload_bo, &adev->gfx.rlc.rlc_autoload_gpu_addr, (void **)&adev->gfx.rlc.rlc_autoload_ptr); } static void gfx_v10_0_rlc_backdoor_autoload_copy_ucode(struct amdgpu_device *adev, FIRMWARE_ID id, const void *fw_data, uint32_t fw_size) { uint32_t toc_offset; uint32_t toc_fw_size; char *ptr = adev->gfx.rlc.rlc_autoload_ptr; if (id <= FIRMWARE_ID_INVALID || id >= FIRMWARE_ID_MAX) return; toc_offset = rlc_autoload_info[id].offset; toc_fw_size = rlc_autoload_info[id].size; if (fw_size == 0) fw_size = toc_fw_size; if (fw_size > toc_fw_size) fw_size = toc_fw_size; memcpy(ptr + toc_offset, fw_data, fw_size); if (fw_size < toc_fw_size) memset(ptr + toc_offset + fw_size, 0, toc_fw_size - fw_size); } static void gfx_v10_0_rlc_backdoor_autoload_copy_toc_ucode(struct amdgpu_device *adev) { void *data; uint32_t size; data = adev->gfx.rlc.rlc_toc_buf; size = rlc_autoload_info[FIRMWARE_ID_RLC_TOC].size; gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_RLC_TOC, data, size); } static void gfx_v10_0_rlc_backdoor_autoload_copy_gfx_ucode(struct amdgpu_device *adev) { const __le32 *fw_data; uint32_t fw_size; const struct gfx_firmware_header_v1_0 *cp_hdr; const struct rlc_firmware_header_v2_0 *rlc_hdr; /* pfp ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_CP_PFP, fw_data, fw_size); /* ce ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.ce_fw->data; fw_data = (const __le32 *)(adev->gfx.ce_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_CP_CE, fw_data, fw_size); /* me ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_CP_ME, fw_data, fw_size); /* rlc ucode */ rlc_hdr = (const struct rlc_firmware_header_v2_0 *) adev->gfx.rlc_fw->data; fw_data = (const __le32 *)(adev->gfx.rlc_fw->data + le32_to_cpu(rlc_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(rlc_hdr->header.ucode_size_bytes); gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_RLC_G_UCODE, fw_data, fw_size); /* mec1 ucode */ cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec_fw->data; fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(cp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - cp_hdr->jt_size * 4; gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_CP_MEC, fw_data, fw_size); /* mec2 ucode is not necessary if mec2 ucode is same as mec1 */ } /* Temporarily put sdma part here */ static void gfx_v10_0_rlc_backdoor_autoload_copy_sdma_ucode(struct amdgpu_device *adev) { const __le32 *fw_data; uint32_t fw_size; const struct sdma_firmware_header_v1_0 *sdma_hdr; int i; for (i = 0; i < adev->sdma.num_instances; i++) { sdma_hdr = (const struct sdma_firmware_header_v1_0 *) adev->sdma.instance[i].fw->data; fw_data = (const __le32 *) (adev->sdma.instance[i].fw->data + le32_to_cpu(sdma_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(sdma_hdr->header.ucode_size_bytes); if (i == 0) { gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_SDMA0_UCODE, fw_data, fw_size); gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_SDMA0_JT, (uint32_t *)fw_data + sdma_hdr->jt_offset, sdma_hdr->jt_size * 4); } else if (i == 1) { gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_SDMA1_UCODE, fw_data, fw_size); gfx_v10_0_rlc_backdoor_autoload_copy_ucode(adev, FIRMWARE_ID_SDMA1_JT, (uint32_t *)fw_data + sdma_hdr->jt_offset, sdma_hdr->jt_size * 4); } } } static int gfx_v10_0_rlc_backdoor_autoload_enable(struct amdgpu_device *adev) { uint32_t rlc_g_offset, rlc_g_size, tmp; uint64_t gpu_addr; gfx_v10_0_rlc_backdoor_autoload_copy_toc_ucode(adev); gfx_v10_0_rlc_backdoor_autoload_copy_sdma_ucode(adev); gfx_v10_0_rlc_backdoor_autoload_copy_gfx_ucode(adev); rlc_g_offset = rlc_autoload_info[FIRMWARE_ID_RLC_G_UCODE].offset; rlc_g_size = rlc_autoload_info[FIRMWARE_ID_RLC_G_UCODE].size; gpu_addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_g_offset; WREG32_SOC15(GC, 0, mmRLC_HYP_BOOTLOAD_ADDR_HI, upper_32_bits(gpu_addr)); WREG32_SOC15(GC, 0, mmRLC_HYP_BOOTLOAD_ADDR_LO, lower_32_bits(gpu_addr)); WREG32_SOC15(GC, 0, mmRLC_HYP_BOOTLOAD_SIZE, rlc_g_size); tmp = RREG32_SOC15(GC, 0, mmRLC_HYP_RESET_VECTOR); if (!(tmp & (RLC_HYP_RESET_VECTOR__COLD_BOOT_EXIT_MASK | RLC_HYP_RESET_VECTOR__VDDGFX_EXIT_MASK))) { DRM_ERROR("Neither COLD_BOOT_EXIT nor VDDGFX_EXIT is set\n"); return -EINVAL; } tmp = RREG32_SOC15(GC, 0, mmRLC_CNTL); if (tmp & RLC_CNTL__RLC_ENABLE_F32_MASK) { DRM_ERROR("RLC ROM should halt itself\n"); return -EINVAL; } return 0; } static int gfx_v10_0_rlc_backdoor_autoload_config_me_cache(struct amdgpu_device *adev) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; uint64_t addr; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Program me ucode address into intruction cache address register */ addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[FIRMWARE_ID_CP_ME].offset; WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v10_0_rlc_backdoor_autoload_config_ce_cache(struct amdgpu_device *adev) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; uint64_t addr; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CE_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CE_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Program ce ucode address into intruction cache address register */ addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[FIRMWARE_ID_CP_CE].offset; WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v10_0_rlc_backdoor_autoload_config_pfp_cache(struct amdgpu_device *adev) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; uint64_t addr; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Program pfp ucode address into intruction cache address register */ addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[FIRMWARE_ID_CP_PFP].offset; WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v10_0_rlc_backdoor_autoload_config_mec_cache(struct amdgpu_device *adev) { uint32_t usec_timeout = 50000; /* wait for 50ms */ uint32_t tmp; int i; uint64_t addr; /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } /* Program mec1 ucode address into intruction cache address register */ addr = adev->gfx.rlc.rlc_autoload_gpu_addr + rlc_autoload_info[FIRMWARE_ID_CP_MEC].offset; WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_LO, lower_32_bits(addr) & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_HI, upper_32_bits(addr)); return 0; } static int gfx_v10_0_wait_for_rlc_autoload_complete(struct amdgpu_device *adev) { uint32_t cp_status; uint32_t bootload_status; int i, r; for (i = 0; i < adev->usec_timeout; i++) { cp_status = RREG32_SOC15(GC, 0, mmCP_STAT); bootload_status = RREG32_SOC15(GC, 0, mmRLC_RLCS_BOOTLOAD_STATUS); if ((cp_status == 0) && (REG_GET_FIELD(bootload_status, RLC_RLCS_BOOTLOAD_STATUS, BOOTLOAD_COMPLETE) == 1)) { break; } udelay(1); } if (i >= adev->usec_timeout) { dev_err(adev->dev, "rlc autoload: gc ucode autoload timeout\n"); return -ETIMEDOUT; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_RLC_BACKDOOR_AUTO) { r = gfx_v10_0_rlc_backdoor_autoload_config_me_cache(adev); if (r) return r; r = gfx_v10_0_rlc_backdoor_autoload_config_ce_cache(adev); if (r) return r; r = gfx_v10_0_rlc_backdoor_autoload_config_pfp_cache(adev); if (r) return r; r = gfx_v10_0_rlc_backdoor_autoload_config_mec_cache(adev); if (r) return r; } return 0; } static void gfx_v10_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable) { int i; u32 tmp = RREG32_SOC15(GC, 0, mmCP_ME_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, enable ? 0 : 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, enable ? 0 : 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, enable ? 0 : 1); if (!enable) { for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].sched.ready = false; } WREG32_SOC15(GC, 0, mmCP_ME_CNTL, tmp); udelay(50); } static int gfx_v10_0_cp_gfx_load_pfp_microcode(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v1_0 *pfp_hdr; const __le32 *fw_data; unsigned i, fw_size; uint32_t tmp; uint32_t usec_timeout = 50000; /* wait for 50ms */ pfp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; amdgpu_ucode_print_gfx_hdr(&pfp_hdr->header); fw_data = (const __le32 *)(adev->gfx.pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, pfp_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.pfp.pfp_fw_obj, &adev->gfx.pfp.pfp_fw_gpu_addr, (void **)&adev->gfx.pfp.pfp_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create pfp fw bo\n", r); gfx_v10_0_pfp_fini(adev); return r; } memcpy(adev->gfx.pfp.pfp_fw_ptr, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.pfp.pfp_fw_obj); amdgpu_bo_unreserve(adev->gfx.pfp.pfp_fw_obj); /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_PFP_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->nbio.funcs->hdp_flush(adev, NULL); tmp = RREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_PFP_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_CNTL, tmp); WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_LO, adev->gfx.pfp.pfp_fw_gpu_addr & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_PFP_IC_BASE_HI, upper_32_bits(adev->gfx.pfp.pfp_fw_gpu_addr)); return 0; } static int gfx_v10_0_cp_gfx_load_ce_microcode(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v1_0 *ce_hdr; const __le32 *fw_data; unsigned i, fw_size; uint32_t tmp; uint32_t usec_timeout = 50000; /* wait for 50ms */ ce_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.ce_fw->data; amdgpu_ucode_print_gfx_hdr(&ce_hdr->header); fw_data = (const __le32 *)(adev->gfx.ce_fw->data + le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, ce_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.ce.ce_fw_obj, &adev->gfx.ce.ce_fw_gpu_addr, (void **)&adev->gfx.ce.ce_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create ce fw bo\n", r); gfx_v10_0_ce_fini(adev); return r; } memcpy(adev->gfx.ce.ce_fw_ptr, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.ce.ce_fw_obj); amdgpu_bo_unreserve(adev->gfx.ce.ce_fw_obj); /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CE_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CE_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->nbio.funcs->hdp_flush(adev, NULL); tmp = RREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_CE_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_LO, adev->gfx.ce.ce_fw_gpu_addr & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_CE_IC_BASE_HI, upper_32_bits(adev->gfx.ce.ce_fw_gpu_addr)); return 0; } static int gfx_v10_0_cp_gfx_load_me_microcode(struct amdgpu_device *adev) { int r; const struct gfx_firmware_header_v1_0 *me_hdr; const __le32 *fw_data; unsigned i, fw_size; uint32_t tmp; uint32_t usec_timeout = 50000; /* wait for 50ms */ me_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; amdgpu_ucode_print_gfx_hdr(&me_hdr->header); fw_data = (const __le32 *)(adev->gfx.me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes); r = amdgpu_bo_create_reserved(adev, me_hdr->header.ucode_size_bytes, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.me.me_fw_obj, &adev->gfx.me.me_fw_gpu_addr, (void **)&adev->gfx.me.me_fw_ptr); if (r) { dev_err(adev->dev, "(%d) failed to create me fw bo\n", r); gfx_v10_0_me_fini(adev); return r; } memcpy(adev->gfx.me.me_fw_ptr, fw_data, fw_size); amdgpu_bo_kunmap(adev->gfx.me.me_fw_obj); amdgpu_bo_unreserve(adev->gfx.me.me_fw_obj); /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_ME_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->nbio.funcs->hdp_flush(adev, NULL); tmp = RREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_ME_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_LO, adev->gfx.me.me_fw_gpu_addr & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_ME_IC_BASE_HI, upper_32_bits(adev->gfx.me.me_fw_gpu_addr)); return 0; } static int gfx_v10_0_cp_gfx_load_microcode(struct amdgpu_device *adev) { int r; if (!adev->gfx.me_fw || !adev->gfx.pfp_fw || !adev->gfx.ce_fw) return -EINVAL; gfx_v10_0_cp_gfx_enable(adev, false); r = gfx_v10_0_cp_gfx_load_pfp_microcode(adev); if (r) { dev_err(adev->dev, "(%d) failed to load pfp fw\n", r); return r; } r = gfx_v10_0_cp_gfx_load_ce_microcode(adev); if (r) { dev_err(adev->dev, "(%d) failed to load ce fw\n", r); return r; } r = gfx_v10_0_cp_gfx_load_me_microcode(adev); if (r) { dev_err(adev->dev, "(%d) failed to load me fw\n", r); return r; } return 0; } static int gfx_v10_0_cp_gfx_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int r, i; int ctx_reg_offset; /* init the CP */ WREG32_SOC15(GC, 0, mmCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1); WREG32_SOC15(GC, 0, mmCP_DEVICE_ID, 1); gfx_v10_0_cp_gfx_enable(adev, true); ring = &adev->gfx.gfx_ring[0]; r = amdgpu_ring_alloc(ring, gfx_v10_0_get_csb_size(adev) + 4); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, 0x80000000); amdgpu_ring_write(ring, 0x80000000); for (sect = gfx10_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); amdgpu_ring_write(ring, ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) amdgpu_ring_write(ring, ext->extent[i]); } } } ctx_reg_offset = SOC15_REG_OFFSET(GC, 0, mmPA_SC_TILE_STEERING_OVERRIDE) - PACKET3_SET_CONTEXT_REG_START; amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 1)); amdgpu_ring_write(ring, ctx_reg_offset); amdgpu_ring_write(ring, adev->gfx.config.pa_sc_tile_steering_override); amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_commit(ring); /* submit cs packet to copy state 0 to next available state */ ring = &adev->gfx.gfx_ring[1]; r = amdgpu_ring_alloc(ring, 2); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_commit(ring); return 0; } static void gfx_v10_0_cp_gfx_switch_pipe(struct amdgpu_device *adev, CP_PIPE_ID pipe) { u32 tmp; tmp = RREG32_SOC15(GC, 0, mmGRBM_GFX_CNTL); tmp = REG_SET_FIELD(tmp, GRBM_GFX_CNTL, PIPEID, pipe); WREG32_SOC15(GC, 0, mmGRBM_GFX_CNTL, tmp); } static void gfx_v10_0_cp_gfx_set_doorbell(struct amdgpu_device *adev, struct amdgpu_ring *ring) { u32 tmp; tmp = RREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 1); } else { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0); } WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL, tmp); tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER, DOORBELL_RANGE_LOWER, ring->doorbell_index); WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_RANGE_LOWER, tmp); WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_RANGE_UPPER, CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK); } static int gfx_v10_0_cp_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 tmp; u32 rb_bufsz; u64 rb_addr, rptr_addr, wptr_gpu_addr; u32 i; /* Set the write pointer delay */ WREG32_SOC15(GC, 0, mmCP_RB_WPTR_DELAY, 0); /* set the RB to use vmid 0 */ WREG32_SOC15(GC, 0, mmCP_RB_VMID, 0); /* Init gfx ring 0 for pipe 0 */ mutex_lock(&adev->srbm_mutex); gfx_v10_0_cp_gfx_switch_pipe(adev, PIPE_ID0); mutex_unlock(&adev->srbm_mutex); /* Set ring buffer size */ ring = &adev->gfx.gfx_ring[0]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, BUF_SWAP, 1); #endif WREG32_SOC15(GC, 0, mmCP_RB0_CNTL, tmp); /* Initialize the ring buffer's write pointers */ ring->wptr = 0; WREG32_SOC15(GC, 0, mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI, upper_32_bits(ring->wptr)); /* set the wb address wether it's enabled or not */ rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); WREG32_SOC15(GC, 0, mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32_SOC15(GC, 0, mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & CP_RB_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK); wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); mdelay(1); WREG32_SOC15(GC, 0, mmCP_RB0_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32_SOC15(GC, 0, mmCP_RB0_BASE, rb_addr); WREG32_SOC15(GC, 0, mmCP_RB0_BASE_HI, upper_32_bits(rb_addr)); WREG32_SOC15(GC, 0, mmCP_RB_ACTIVE, 1); gfx_v10_0_cp_gfx_set_doorbell(adev, ring); /* Init gfx ring 1 for pipe 1 */ mutex_lock(&adev->srbm_mutex); gfx_v10_0_cp_gfx_switch_pipe(adev, PIPE_ID1); mutex_unlock(&adev->srbm_mutex); ring = &adev->gfx.gfx_ring[1]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = REG_SET_FIELD(0, CP_RB1_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_RB1_CNTL, RB_BLKSZ, rb_bufsz - 2); WREG32_SOC15(GC, 0, mmCP_RB1_CNTL, tmp); /* Initialize the ring buffer's write pointers */ ring->wptr = 0; WREG32_SOC15(GC, 0, mmCP_RB1_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, mmCP_RB1_WPTR_HI, upper_32_bits(ring->wptr)); /* Set the wb address wether it's enabled or not */ rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); WREG32_SOC15(GC, 0, mmCP_RB1_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32_SOC15(GC, 0, mmCP_RB1_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & CP_RB1_RPTR_ADDR_HI__RB_RPTR_ADDR_HI_MASK); wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); mdelay(1); WREG32_SOC15(GC, 0, mmCP_RB1_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32_SOC15(GC, 0, mmCP_RB1_BASE, rb_addr); WREG32_SOC15(GC, 0, mmCP_RB1_BASE_HI, upper_32_bits(rb_addr)); WREG32_SOC15(GC, 0, mmCP_RB1_ACTIVE, 1); gfx_v10_0_cp_gfx_set_doorbell(adev, ring); /* Switch to pipe 0 */ mutex_lock(&adev->srbm_mutex); gfx_v10_0_cp_gfx_switch_pipe(adev, PIPE_ID0); mutex_unlock(&adev->srbm_mutex); /* start the ring */ gfx_v10_0_cp_gfx_start(adev); for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; ring->sched.ready = true; } return 0; } static void gfx_v10_0_cp_compute_enable(struct amdgpu_device *adev, bool enable) { int i; if (enable) { WREG32_SOC15(GC, 0, mmCP_MEC_CNTL, 0); } else { WREG32_SOC15(GC, 0, mmCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK)); for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].sched.ready = false; adev->gfx.kiq.ring.sched.ready = false; } udelay(50); } static int gfx_v10_0_cp_compute_load_microcode(struct amdgpu_device *adev) { const struct gfx_firmware_header_v1_0 *mec_hdr; const __le32 *fw_data; unsigned i; u32 tmp; u32 usec_timeout = 50000; /* Wait for 50 ms */ if (!adev->gfx.mec_fw) return -EINVAL; gfx_v10_0_cp_compute_enable(adev, false); mec_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; amdgpu_ucode_print_gfx_hdr(&mec_hdr->header); fw_data = (const __le32 *) (adev->gfx.mec_fw->data + le32_to_cpu(mec_hdr->header.ucode_array_offset_bytes)); /* Trigger an invalidation of the L1 instruction caches */ tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE, 1); WREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL, tmp); /* Wait for invalidation complete */ for (i = 0; i < usec_timeout; i++) { tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_OP_CNTL); if (1 == REG_GET_FIELD(tmp, CP_CPC_IC_OP_CNTL, INVALIDATE_CACHE_COMPLETE)) break; udelay(1); } if (i >= usec_timeout) { dev_err(adev->dev, "failed to invalidate instruction cache\n"); return -EINVAL; } if (amdgpu_emu_mode == 1) adev->nbio.funcs->hdp_flush(adev, NULL); tmp = RREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_CNTL); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, CACHE_POLICY, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, EXE_DISABLE, 0); tmp = REG_SET_FIELD(tmp, CP_CPC_IC_BASE_CNTL, ADDRESS_CLAMP, 1); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_CNTL, tmp); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_LO, adev->gfx.mec.mec_fw_gpu_addr & 0xFFFFF000); WREG32_SOC15(GC, 0, mmCP_CPC_IC_BASE_HI, upper_32_bits(adev->gfx.mec.mec_fw_gpu_addr)); /* MEC1 */ WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_ADDR, 0); for (i = 0; i < mec_hdr->jt_size; i++) WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_DATA, le32_to_cpup(fw_data + mec_hdr->jt_offset + i)); WREG32_SOC15(GC, 0, mmCP_MEC_ME1_UCODE_ADDR, adev->gfx.mec_fw_version); /* * TODO: Loading MEC2 firmware is only necessary if MEC2 should run * different microcode than MEC1. */ return 0; } static void gfx_v10_0_kiq_setting(struct amdgpu_ring *ring) { uint32_t tmp; struct amdgpu_device *adev = ring->adev; /* tell RLC which is KIQ queue */ tmp = RREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS); tmp &= 0xffffff00; tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue); WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, tmp); tmp |= 0x80; WREG32_SOC15(GC, 0, mmRLC_CP_SCHEDULERS, tmp); } static int gfx_v10_0_gfx_mqd_init(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_gfx_mqd *mqd = ring->mqd_ptr; uint64_t hqd_gpu_addr, wb_gpu_addr; uint32_t tmp; uint32_t rb_bufsz; /* set up gfx hqd wptr */ mqd->cp_gfx_hqd_wptr = 0; mqd->cp_gfx_hqd_wptr_hi = 0; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr = ring->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr); /* set up mqd control */ tmp = RREG32_SOC15(GC, 0, mmCP_GFX_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, VMID, 0); tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_GFX_MQD_CONTROL, CACHE_POLICY, 0); mqd->cp_gfx_mqd_control = tmp; /* set up gfx_hqd_vimd with 0x0 to indicate the ring buffer's vmid */ tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_VMID); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_VMID, VMID, 0); mqd->cp_gfx_hqd_vmid = 0; /* set up default queue priority level * 0x0 = low priority, 0x1 = high priority */ tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUEUE_PRIORITY); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUEUE_PRIORITY, PRIORITY_LEVEL, 0); mqd->cp_gfx_hqd_queue_priority = tmp; /* set up time quantum */ tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUANTUM); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_QUANTUM, QUANTUM_EN, 1); mqd->cp_gfx_hqd_quantum = tmp; /* set up gfx hqd base. this is similar as CP_RB_BASE */ hqd_gpu_addr = ring->gpu_addr >> 8; mqd->cp_gfx_hqd_base = hqd_gpu_addr; mqd->cp_gfx_hqd_base_hi = upper_32_bits(hqd_gpu_addr); /* set up hqd_rptr_addr/_hi, similar as CP_RB_RPTR */ wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); mqd->cp_gfx_hqd_rptr_addr = wb_gpu_addr & 0xfffffffc; mqd->cp_gfx_hqd_rptr_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* set up rb_wptr_poll addr */ wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); mqd->cp_rb_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* set up the gfx_hqd_control, similar as CP_RB0_CNTL */ rb_bufsz = order_base_2(ring->ring_size / 4) - 1; tmp = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_CNTL); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, RB_BLKSZ, rb_bufsz - 2); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_GFX_HQD_CNTL, BUF_SWAP, 1); #endif mqd->cp_gfx_hqd_cntl = tmp; /* set up cp_doorbell_control */ tmp = RREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 1); } else tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0); mqd->cp_rb_doorbell_control = tmp; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ ring->wptr = 0; mqd->cp_gfx_hqd_rptr = RREG32_SOC15(GC, 0, mmCP_GFX_HQD_RPTR); /* active the queue */ mqd->cp_gfx_hqd_active = 1; return 0; } #ifdef BRING_UP_DEBUG static int gfx_v10_0_gfx_queue_init_register(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_gfx_mqd *mqd = ring->mqd_ptr; /* set mmCP_GFX_HQD_WPTR/_HI to 0 */ WREG32_SOC15(GC, 0, mmCP_GFX_HQD_WPTR, mqd->cp_gfx_hqd_wptr); WREG32_SOC15(GC, 0, mmCP_GFX_HQD_WPTR_HI, mqd->cp_gfx_hqd_wptr_hi); /* set GFX_MQD_BASE */ WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr); WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi); /* set GFX_MQD_CONTROL */ WREG32_SOC15(GC, 0, mmCP_GFX_MQD_CONTROL, mqd->cp_gfx_mqd_control); /* set GFX_HQD_VMID to 0 */ WREG32_SOC15(GC, 0, mmCP_GFX_HQD_VMID, mqd->cp_gfx_hqd_vmid); WREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUEUE_PRIORITY, mqd->cp_gfx_hqd_queue_priority); WREG32_SOC15(GC, 0, mmCP_GFX_HQD_QUANTUM, mqd->cp_gfx_hqd_quantum); /* set GFX_HQD_BASE, similar as CP_RB_BASE */ WREG32_SOC15(GC, 0, mmCP_GFX_HQD_BASE, mqd->cp_gfx_hqd_base); WREG32_SOC15(GC, 0, mmCP_GFX_HQD_BASE_HI, mqd->cp_gfx_hqd_base_hi); /* set GFX_HQD_RPTR_ADDR, similar as CP_RB_RPTR */ WREG32_SOC15(GC, 0, mmCP_GFX_HQD_RPTR_ADDR, mqd->cp_gfx_hqd_rptr_addr); WREG32_SOC15(GC, 0, mmCP_GFX_HQD_RPTR_ADDR_HI, mqd->cp_gfx_hqd_rptr_addr_hi); /* set GFX_HQD_CNTL, similar as CP_RB_CNTL */ WREG32_SOC15(GC, 0, mmCP_GFX_HQD_CNTL, mqd->cp_gfx_hqd_cntl); /* set RB_WPTR_POLL_ADDR */ WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_LO, mqd->cp_rb_wptr_poll_addr_lo); WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_ADDR_HI, mqd->cp_rb_wptr_poll_addr_hi); /* set RB_DOORBELL_CONTROL */ WREG32_SOC15(GC, 0, mmCP_RB_DOORBELL_CONTROL, mqd->cp_rb_doorbell_control); /* active the queue */ WREG32_SOC15(GC, 0, mmCP_GFX_HQD_ACTIVE, mqd->cp_gfx_hqd_active); return 0; } #endif static int gfx_v10_0_gfx_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_gfx_mqd *mqd = ring->mqd_ptr; if (!adev->in_gpu_reset && !adev->in_suspend) { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v10_0_gfx_mqd_init(ring); #ifdef BRING_UP_DEBUG gfx_v10_0_gfx_queue_init_register(ring); #endif nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS]) memcpy(adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS], mqd, sizeof(*mqd)); } else if (adev->in_gpu_reset) { /* reset mqd with the backup copy */ if (adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS]) memcpy(mqd, adev->gfx.me.mqd_backup[AMDGPU_MAX_GFX_RINGS], sizeof(*mqd)); /* reset the ring */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); #ifdef BRING_UP_DEBUG mutex_lock(&adev->srbm_mutex); nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v10_0_gfx_queue_init_register(ring); nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); #endif } else { amdgpu_ring_clear_ring(ring); } return 0; } #ifndef BRING_UP_DEBUG static int gfx_v10_0_kiq_enable_kgq(struct amdgpu_device *adev) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring; int r, i; if (!kiq->pmf || !kiq->pmf->kiq_map_queues) return -EINVAL; r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * adev->gfx.num_gfx_rings); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); return r; } for (i = 0; i < adev->gfx.num_gfx_rings; i++) kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.gfx_ring[i]); r = amdgpu_ring_test_ring(kiq_ring); if (r) { DRM_ERROR("kfq enable failed\n"); kiq_ring->sched.ready = false; } return r; } #endif static int gfx_v10_0_cp_async_gfx_ring_resume(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *ring; for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v10_0_gfx_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; } #ifndef BRING_UP_DEBUG r = gfx_v10_0_kiq_enable_kgq(adev); if (r) goto done; #endif r = gfx_v10_0_cp_gfx_start(adev); if (r) goto done; for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; ring->sched.ready = true; } done: return r; } static int gfx_v10_0_compute_mqd_init(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_compute_mqd *mqd = ring->mqd_ptr; uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr; uint32_t tmp; mqd->header = 0xC0310800; mqd->compute_pipelinestat_enable = 0x00000001; mqd->compute_static_thread_mgmt_se0 = 0xffffffff; mqd->compute_static_thread_mgmt_se1 = 0xffffffff; mqd->compute_static_thread_mgmt_se2 = 0xffffffff; mqd->compute_static_thread_mgmt_se3 = 0xffffffff; mqd->compute_misc_reserved = 0x00000003; eop_base_addr = ring->eop_gpu_addr >> 8; mqd->cp_hqd_eop_base_addr_lo = eop_base_addr; mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_EOP_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE, (order_base_2(GFX10_MEC_HPD_SIZE / 4) - 1)); mqd->cp_hqd_eop_control = tmp; /* enable doorbell? */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } else { tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* disable the queue if it's active */ ring->wptr = 0; mqd->cp_hqd_dequeue_request = 0; mqd->cp_hqd_pq_rptr = 0; mqd->cp_hqd_pq_wptr_lo = 0; mqd->cp_hqd_pq_wptr_hi = 0; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr_lo = ring->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr); /* set MQD vmid to 0 */ tmp = RREG32_SOC15(GC, 0, mmCP_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0); mqd->cp_mqd_control = tmp; /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = ring->gpu_addr >> 8; mqd->cp_hqd_pq_base_lo = hqd_gpu_addr; mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); /* set up the HQD, this is similar to CP_RB0_CNTL */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE, (order_base_2(ring->ring_size / 4) - 1)); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE, ((order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1) << 8)); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1); #endif tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, TUNNEL_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1); mqd->cp_hqd_pq_control = tmp; /* set the wb address whether it's enabled or not */ wb_gpu_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ wb_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; tmp = 0; /* enable the doorbell if requested */ if (ring->use_doorbell) { tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ ring->wptr = 0; mqd->cp_hqd_pq_rptr = RREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR); /* set the vmid for the queue */ mqd->cp_hqd_vmid = 0; tmp = RREG32_SOC15(GC, 0, mmCP_HQD_PERSISTENT_STATE); tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53); mqd->cp_hqd_persistent_state = tmp; /* set MIN_IB_AVAIL_SIZE */ tmp = RREG32_SOC15(GC, 0, mmCP_HQD_IB_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3); mqd->cp_hqd_ib_control = tmp; /* activate the queue */ mqd->cp_hqd_active = 1; return 0; } static int gfx_v10_0_kiq_init_register(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_compute_mqd *mqd = ring->mqd_ptr; int j; /* disable wptr polling */ WREG32_FIELD15(GC, 0, CP_PQ_WPTR_POLL_CNTL, EN, 0); /* write the EOP addr */ WREG32_SOC15(GC, 0, mmCP_HQD_EOP_BASE_ADDR, mqd->cp_hqd_eop_base_addr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_EOP_BASE_ADDR_HI, mqd->cp_hqd_eop_base_addr_hi); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ WREG32_SOC15(GC, 0, mmCP_HQD_EOP_CONTROL, mqd->cp_hqd_eop_control); /* enable doorbell? */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* disable the queue if it's active */ if (RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE) & 1) { WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, 1); for (j = 0; j < adev->usec_timeout; j++) { if (!(RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE) & 1)) break; udelay(1); } WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, mqd->cp_hqd_dequeue_request); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR, mqd->cp_hqd_pq_rptr); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); } /* set the pointer to the MQD */ WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR, mqd->cp_mqd_base_addr_lo); WREG32_SOC15(GC, 0, mmCP_MQD_BASE_ADDR_HI, mqd->cp_mqd_base_addr_hi); /* set MQD vmid to 0 */ WREG32_SOC15(GC, 0, mmCP_MQD_CONTROL, mqd->cp_mqd_control); /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE, mqd->cp_hqd_pq_base_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI, mqd->cp_hqd_pq_base_hi); /* set up the HQD, this is similar to CP_RB0_CNTL */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_CONTROL, mqd->cp_hqd_pq_control); /* set the wb address whether it's enabled or not */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR_REPORT_ADDR, mqd->cp_hqd_pq_rptr_report_addr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI, mqd->cp_hqd_pq_rptr_report_addr_hi); /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR, mqd->cp_hqd_pq_wptr_poll_addr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, mqd->cp_hqd_pq_wptr_poll_addr_hi); /* enable the doorbell if requested */ if (ring->use_doorbell) { WREG32_SOC15(GC, 0, mmCP_MEC_DOORBELL_RANGE_LOWER, (adev->doorbell_index.kiq * 2) << 2); WREG32_SOC15(GC, 0, mmCP_MEC_DOORBELL_RANGE_UPPER, (adev->doorbell_index.userqueue_end * 2) << 2); } WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, mqd->cp_hqd_pq_doorbell_control); /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO, mqd->cp_hqd_pq_wptr_lo); WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI, mqd->cp_hqd_pq_wptr_hi); /* set the vmid for the queue */ WREG32_SOC15(GC, 0, mmCP_HQD_VMID, mqd->cp_hqd_vmid); WREG32_SOC15(GC, 0, mmCP_HQD_PERSISTENT_STATE, mqd->cp_hqd_persistent_state); /* activate the queue */ WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, mqd->cp_hqd_active); if (ring->use_doorbell) WREG32_FIELD15(GC, 0, CP_PQ_STATUS, DOORBELL_ENABLE, 1); return 0; } static int gfx_v10_0_kiq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_compute_mqd *mqd = ring->mqd_ptr; int mqd_idx = AMDGPU_MAX_COMPUTE_RINGS; gfx_v10_0_kiq_setting(ring); if (adev->in_gpu_reset) { /* for GPU_RESET case */ /* reset MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v10_0_kiq_init_register(ring); nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } else { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v10_0_compute_mqd_init(ring); gfx_v10_0_kiq_init_register(ring); nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd)); } return 0; } static int gfx_v10_0_kcq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct v10_compute_mqd *mqd = ring->mqd_ptr; int mqd_idx = ring - &adev->gfx.compute_ring[0]; if (!adev->in_gpu_reset && !adev->in_suspend) { memset((void *)mqd, 0, sizeof(*mqd)); mutex_lock(&adev->srbm_mutex); nv_grbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v10_0_compute_mqd_init(ring); nv_grbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(*mqd)); } else if (adev->in_gpu_reset) { /* for GPU_RESET case */ /* reset MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(*mqd)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); } else { amdgpu_ring_clear_ring(ring); } return 0; } static int gfx_v10_0_kiq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int r; ring = &adev->gfx.kiq.ring; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) return r; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (unlikely(r != 0)) return r; gfx_v10_0_kiq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; amdgpu_bo_unreserve(ring->mqd_obj); ring->sched.ready = true; return 0; } static int gfx_v10_0_kcq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int r = 0, i; gfx_v10_0_cp_compute_enable(adev, true); for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, (void **)&ring->mqd_ptr); if (!r) { r = gfx_v10_0_kcq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; } r = amdgpu_gfx_enable_kcq(adev); done: return r; } static int gfx_v10_0_cp_resume(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *ring; if (!(adev->flags & AMD_IS_APU)) gfx_v10_0_enable_gui_idle_interrupt(adev, false); if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { /* legacy firmware loading */ r = gfx_v10_0_cp_gfx_load_microcode(adev); if (r) return r; r = gfx_v10_0_cp_compute_load_microcode(adev); if (r) return r; } r = gfx_v10_0_kiq_resume(adev); if (r) return r; r = gfx_v10_0_kcq_resume(adev); if (r) return r; if (!amdgpu_async_gfx_ring) { r = gfx_v10_0_cp_gfx_resume(adev); if (r) return r; } else { r = gfx_v10_0_cp_async_gfx_ring_resume(adev); if (r) return r; } for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; DRM_INFO("gfx %d ring me %d pipe %d q %d\n", i, ring->me, ring->pipe, ring->queue); r = amdgpu_ring_test_ring(ring); if (r) { ring->sched.ready = false; return r; } } for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; ring->sched.ready = true; DRM_INFO("compute ring %d mec %d pipe %d q %d\n", i, ring->me, ring->pipe, ring->queue); r = amdgpu_ring_test_ring(ring); if (r) ring->sched.ready = false; } return 0; } static void gfx_v10_0_cp_enable(struct amdgpu_device *adev, bool enable) { gfx_v10_0_cp_gfx_enable(adev, enable); gfx_v10_0_cp_compute_enable(adev, enable); } static bool gfx_v10_0_check_grbm_cam_remapping(struct amdgpu_device *adev) { uint32_t data, pattern = 0xDEADBEEF; /* check if mmVGT_ESGS_RING_SIZE_UMD * has been remapped to mmVGT_ESGS_RING_SIZE */ data = RREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE); WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE, 0); WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE_UMD, pattern); if (RREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE) == pattern) { WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE_UMD, data); return true; } else { WREG32_SOC15(GC, 0, mmVGT_ESGS_RING_SIZE, data); return false; } } static void gfx_v10_0_setup_grbm_cam_remapping(struct amdgpu_device *adev) { uint32_t data; /* initialize cam_index to 0 * index will auto-inc after each data writting */ WREG32_SOC15(GC, 0, mmGRBM_CAM_INDEX, 0); /* mmVGT_TF_RING_SIZE_UMD -> mmVGT_TF_RING_SIZE */ data = (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_RING_SIZE_UMD) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_RING_SIZE) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); /* mmVGT_TF_MEMORY_BASE_UMD -> mmVGT_TF_MEMORY_BASE */ data = (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE_UMD) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); /* mmVGT_TF_MEMORY_BASE_HI_UMD -> mmVGT_TF_MEMORY_BASE_HI */ data = (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE_HI_UMD) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmVGT_TF_MEMORY_BASE_HI) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); /* mmVGT_HS_OFFCHIP_PARAM_UMD -> mmVGT_HS_OFFCHIP_PARAM */ data = (SOC15_REG_OFFSET(GC, 0, mmVGT_HS_OFFCHIP_PARAM_UMD) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmVGT_HS_OFFCHIP_PARAM) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); /* mmVGT_ESGS_RING_SIZE_UMD -> mmVGT_ESGS_RING_SIZE */ data = (SOC15_REG_OFFSET(GC, 0, mmVGT_ESGS_RING_SIZE_UMD) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmVGT_ESGS_RING_SIZE) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); /* mmVGT_GSVS_RING_SIZE_UMD -> mmVGT_GSVS_RING_SIZE */ data = (SOC15_REG_OFFSET(GC, 0, mmVGT_GSVS_RING_SIZE_UMD) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmVGT_GSVS_RING_SIZE) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); /* mmSPI_CONFIG_CNTL_REMAP -> mmSPI_CONFIG_CNTL */ data = (SOC15_REG_OFFSET(GC, 0, mmSPI_CONFIG_CNTL_REMAP) << GRBM_CAM_DATA__CAM_ADDR__SHIFT) | (SOC15_REG_OFFSET(GC, 0, mmSPI_CONFIG_CNTL) << GRBM_CAM_DATA__CAM_REMAPADDR__SHIFT); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA_UPPER, 0); WREG32_SOC15(GC, 0, mmGRBM_CAM_DATA, data); } static int gfx_v10_0_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = gfx_v10_0_csb_vram_pin(adev); if (r) return r; if (!amdgpu_emu_mode) gfx_v10_0_init_golden_registers(adev); if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { /** * For gfx 10, rlc firmware loading relies on smu firmware is * loaded firstly, so in direct type, it has to load smc ucode * here before rlc. */ r = smu_load_microcode(&adev->smu); if (r) return r; r = smu_check_fw_status(&adev->smu); if (r) { pr_err("SMC firmware status is not correct\n"); return r; } } /* if GRBM CAM not remapped, set up the remapping */ if (!gfx_v10_0_check_grbm_cam_remapping(adev)) gfx_v10_0_setup_grbm_cam_remapping(adev); gfx_v10_0_constants_init(adev); r = gfx_v10_0_rlc_resume(adev); if (r) return r; /* * init golden registers and rlc resume may override some registers, * reconfig them here */ gfx_v10_0_tcp_harvest(adev); r = gfx_v10_0_cp_resume(adev); if (r) return r; return r; } #ifndef BRING_UP_DEBUG static int gfx_v10_0_kiq_disable_kgq(struct amdgpu_device *adev) { struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *kiq_ring = &kiq->ring; int i; if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * adev->gfx.num_gfx_rings)) return -ENOMEM; for (i = 0; i < adev->gfx.num_gfx_rings; i++) kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.gfx_ring[i], PREEMPT_QUEUES, 0, 0); return amdgpu_ring_test_ring(kiq_ring); } #endif static int gfx_v10_0_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0); amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0); #ifndef BRING_UP_DEBUG if (amdgpu_async_gfx_ring) { r = gfx_v10_0_kiq_disable_kgq(adev); if (r) DRM_ERROR("KGQ disable failed\n"); } #endif if (amdgpu_gfx_disable_kcq(adev)) DRM_ERROR("KCQ disable failed\n"); if (amdgpu_sriov_vf(adev)) { pr_debug("For SRIOV client, shouldn't do anything.\n"); return 0; } gfx_v10_0_cp_enable(adev, false); gfx_v10_0_enable_gui_idle_interrupt(adev, false); gfx_v10_0_csb_vram_unpin(adev); return 0; } static int gfx_v10_0_suspend(void *handle) { return gfx_v10_0_hw_fini(handle); } static int gfx_v10_0_resume(void *handle) { return gfx_v10_0_hw_init(handle); } static bool gfx_v10_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (REG_GET_FIELD(RREG32_SOC15(GC, 0, mmGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE)) return false; else return true; } static int gfx_v10_0_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS) & GRBM_STATUS__GUI_ACTIVE_MASK; if (!REG_GET_FIELD(tmp, GRBM_STATUS, GUI_ACTIVE)) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v10_0_soft_reset(void *handle) { u32 grbm_soft_reset = 0; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* GRBM_STATUS */ tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS); if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK | GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK | GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK | GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK | GRBM_STATUS__GE_BUSY_NO_DMA_MASK | GRBM_STATUS__BCI_BUSY_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX, 1); } if (tmp & (GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); } /* GRBM_STATUS2 */ tmp = RREG32_SOC15(GC, 0, mmGRBM_STATUS2); if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY)) grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); if (grbm_soft_reset) { /* stop the rlc */ gfx_v10_0_rlc_stop(adev); /* Disable GFX parsing/prefetching */ gfx_v10_0_cp_gfx_enable(adev, false); /* Disable MEC parsing/prefetching */ gfx_v10_0_cp_compute_enable(adev, false); if (grbm_soft_reset) { tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); } return 0; } static uint64_t gfx_v10_0_get_gpu_clock_counter(struct amdgpu_device *adev) { uint64_t clock; mutex_lock(&adev->gfx.gpu_clock_mutex); WREG32_SOC15(GC, 0, mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32_SOC15(GC, 0, mmRLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32_SOC15(GC, 0, mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&adev->gfx.gpu_clock_mutex); return clock; } static void gfx_v10_0_ring_emit_gds_switch(struct amdgpu_ring *ring, uint32_t vmid, uint32_t gds_base, uint32_t gds_size, uint32_t gws_base, uint32_t gws_size, uint32_t oa_base, uint32_t oa_size) { struct amdgpu_device *adev = ring->adev; /* GDS Base */ gfx_v10_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, mmGDS_VMID0_BASE) + 2 * vmid, gds_base); /* GDS Size */ gfx_v10_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, mmGDS_VMID0_SIZE) + 2 * vmid, gds_size); /* GWS */ gfx_v10_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, mmGDS_GWS_VMID0) + vmid, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base); /* OA */ gfx_v10_0_write_data_to_reg(ring, 0, false, SOC15_REG_OFFSET(GC, 0, mmGDS_OA_VMID0) + vmid, (1 << (oa_size + oa_base)) - (1 << oa_base)); } static int gfx_v10_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->gfx.num_gfx_rings = GFX10_NUM_GFX_RINGS; adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS; gfx_v10_0_set_kiq_pm4_funcs(adev); gfx_v10_0_set_ring_funcs(adev); gfx_v10_0_set_irq_funcs(adev); gfx_v10_0_set_gds_init(adev); gfx_v10_0_set_rlc_funcs(adev); return 0; } static int gfx_v10_0_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0); if (r) return r; return 0; } static bool gfx_v10_0_is_rlc_enabled(struct amdgpu_device *adev) { uint32_t rlc_cntl; /* if RLC is not enabled, do nothing */ rlc_cntl = RREG32_SOC15(GC, 0, mmRLC_CNTL); return (REG_GET_FIELD(rlc_cntl, RLC_CNTL, RLC_ENABLE_F32)) ? true : false; } static void gfx_v10_0_set_safe_mode(struct amdgpu_device *adev) { uint32_t data; unsigned i; data = RLC_SAFE_MODE__CMD_MASK; data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT); WREG32_SOC15(GC, 0, mmRLC_SAFE_MODE, data); /* wait for RLC_SAFE_MODE */ for (i = 0; i < adev->usec_timeout; i++) { if (!REG_GET_FIELD(RREG32_SOC15(GC, 0, mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD)) break; udelay(1); } } static void gfx_v10_0_unset_safe_mode(struct amdgpu_device *adev) { uint32_t data; data = RLC_SAFE_MODE__CMD_MASK; WREG32_SOC15(GC, 0, mmRLC_SAFE_MODE, data); } static void gfx_v10_0_update_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, def; /* It is disabled by HW by default */ if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) { /* 1 - RLC_CGTT_MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); data &= ~(RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK); /* only for Vega10 & Raven1 */ data |= RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* MGLS is a global flag to control all MGLS in GFX */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { /* 2 - RLC memory Light sleep */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) { def = data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL); data |= RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL, data); } /* 3 - CP memory Light sleep */ if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) { def = data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL); data |= CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL, data); } } } else { /* 1 - MGCG_OVERRIDE */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); data |= (RLC_CGTT_MGCG_OVERRIDE__RLC_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_CGTT_SCLK_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK | RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGLS_OVERRIDE_MASK); if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* 2 - disable MGLS in RLC */ data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) { data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; WREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL, data); } /* 3 - disable MGLS in CP */ data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) { data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; WREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL, data); } } } static void gfx_v10_0_update_3d_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, def; /* Enable 3D CGCG/CGLS */ if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG)) { /* write cmd to clear cgcg/cgls ov */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); /* unset CGCG override */ data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_GFX3D_CG_OVERRIDE_MASK; /* update CGCG and CGLS override bits */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* enable 3Dcgcg FSM(0x0000363f) */ def = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D); data = (0x36 << RLC_CGCG_CGLS_CTRL_3D__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) data |= (0x000F << RLC_CGCG_CGLS_CTRL_3D__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D, data); /* set IDLE_POLL_COUNT(0x00900100) */ def = RREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL); data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) | (0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); if (def != data) WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL, data); } else { /* Disable CGCG/CGLS */ def = data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D); /* disable cgcg, cgls should be disabled */ data &= ~(RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK); /* disable cgcg and cgls in FSM */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D, data); } } static void gfx_v10_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t def, data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) { def = data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); /* unset CGCG override */ data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGCG_OVERRIDE_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data &= ~RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; else data |= RLC_CGTT_MGCG_OVERRIDE__GFXIP_CGLS_OVERRIDE_MASK; /* update CGCG and CGLS override bits */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE, data); /* enable cgcg FSM(0x0000363F) */ def = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL); data = (0x36 << RLC_CGCG_CGLS_CTRL__CGCG_GFX_IDLE_THRESHOLD__SHIFT) | RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) data |= (0x000F << RLC_CGCG_CGLS_CTRL__CGLS_REP_COMPANSAT_DELAY__SHIFT) | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, data); /* set IDLE_POLL_COUNT(0x00900100) */ def = RREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL); data = (0x0100 << CP_RB_WPTR_POLL_CNTL__POLL_FREQUENCY__SHIFT) | (0x0090 << CP_RB_WPTR_POLL_CNTL__IDLE_POLL_COUNT__SHIFT); if (def != data) WREG32_SOC15(GC, 0, mmCP_RB_WPTR_POLL_CNTL, data); } else { def = data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL); /* reset CGCG/CGLS bits */ data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK); /* disable cgcg and cgls in FSM */ if (def != data) WREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL, data); } } static int gfx_v10_0_update_gfx_clock_gating(struct amdgpu_device *adev, bool enable) { amdgpu_gfx_rlc_enter_safe_mode(adev); if (enable) { /* CGCG/CGLS should be enabled after MGCG/MGLS * === MGCG + MGLS === */ gfx_v10_0_update_medium_grain_clock_gating(adev, enable); /* === CGCG /CGLS for GFX 3D Only === */ gfx_v10_0_update_3d_clock_gating(adev, enable); /* === CGCG + CGLS === */ gfx_v10_0_update_coarse_grain_clock_gating(adev, enable); } else { /* CGCG/CGLS should be disabled before MGCG/MGLS * === CGCG + CGLS === */ gfx_v10_0_update_coarse_grain_clock_gating(adev, enable); /* === CGCG /CGLS for GFX 3D Only === */ gfx_v10_0_update_3d_clock_gating(adev, enable); /* === MGCG + MGLS === */ gfx_v10_0_update_medium_grain_clock_gating(adev, enable); } if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_CGLS | AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_CGLS | AMD_CG_SUPPORT_GFX_3D_CGCG | AMD_CG_SUPPORT_GFX_3D_CGLS)) gfx_v10_0_enable_gui_idle_interrupt(adev, enable); amdgpu_gfx_rlc_exit_safe_mode(adev); return 0; } static const struct amdgpu_rlc_funcs gfx_v10_0_rlc_funcs = { .is_rlc_enabled = gfx_v10_0_is_rlc_enabled, .set_safe_mode = gfx_v10_0_set_safe_mode, .unset_safe_mode = gfx_v10_0_unset_safe_mode, .init = gfx_v10_0_rlc_init, .get_csb_size = gfx_v10_0_get_csb_size, .get_csb_buffer = gfx_v10_0_get_csb_buffer, .resume = gfx_v10_0_rlc_resume, .stop = gfx_v10_0_rlc_stop, .reset = gfx_v10_0_rlc_reset, .start = gfx_v10_0_rlc_start }; static int gfx_v10_0_set_powergating_state(void *handle, enum amd_powergating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; bool enable = (state == AMD_PG_STATE_GATE) ? true : false; switch (adev->asic_type) { case CHIP_NAVI10: case CHIP_NAVI14: if (!enable) { amdgpu_gfx_off_ctrl(adev, false); cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); } else amdgpu_gfx_off_ctrl(adev, true); break; default: break; } return 0; } static int gfx_v10_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; switch (adev->asic_type) { case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: gfx_v10_0_update_gfx_clock_gating(adev, state == AMD_CG_STATE_GATE ? true : false); break; default: break; } return 0; } static void gfx_v10_0_get_clockgating_state(void *handle, u32 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; /* AMD_CG_SUPPORT_GFX_MGCG */ data = RREG32_SOC15(GC, 0, mmRLC_CGTT_MGCG_OVERRIDE); if (!(data & RLC_CGTT_MGCG_OVERRIDE__GFXIP_MGCG_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_MGCG; /* AMD_CG_SUPPORT_GFX_CGCG */ data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL); if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGCG; /* AMD_CG_SUPPORT_GFX_CGLS */ if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGLS; /* AMD_CG_SUPPORT_GFX_RLC_LS */ data = RREG32_SOC15(GC, 0, mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_RLC_LS | AMD_CG_SUPPORT_GFX_MGLS; /* AMD_CG_SUPPORT_GFX_CP_LS */ data = RREG32_SOC15(GC, 0, mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CP_LS | AMD_CG_SUPPORT_GFX_MGLS; /* AMD_CG_SUPPORT_GFX_3D_CGCG */ data = RREG32_SOC15(GC, 0, mmRLC_CGCG_CGLS_CTRL_3D); if (data & RLC_CGCG_CGLS_CTRL_3D__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_3D_CGCG; /* AMD_CG_SUPPORT_GFX_3D_CGLS */ if (data & RLC_CGCG_CGLS_CTRL_3D__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_3D_CGLS; } static u64 gfx_v10_0_ring_get_rptr_gfx(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs]; /* gfx10 is 32bit rptr*/ } static u64 gfx_v10_0_ring_get_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { wptr = atomic64_read((atomic64_t *)&adev->wb.wb[ring->wptr_offs]); } else { wptr = RREG32_SOC15(GC, 0, mmCP_RB0_WPTR); wptr += (u64)RREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI) << 32; } return wptr; } static void gfx_v10_0_ring_set_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ atomic64_set((atomic64_t *)&adev->wb.wb[ring->wptr_offs], ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else { WREG32_SOC15(GC, 0, mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); WREG32_SOC15(GC, 0, mmCP_RB0_WPTR_HI, upper_32_bits(ring->wptr)); } } static u64 gfx_v10_0_ring_get_rptr_compute(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs]; /* gfx10 hardware is 32bit rptr */ } static u64 gfx_v10_0_ring_get_wptr_compute(struct amdgpu_ring *ring) { u64 wptr; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) wptr = atomic64_read((atomic64_t *)&ring->adev->wb.wb[ring->wptr_offs]); else BUG(); return wptr; } static void gfx_v10_0_ring_set_wptr_compute(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* XXX check if swapping is necessary on BE */ if (ring->use_doorbell) { atomic64_set((atomic64_t *)&adev->wb.wb[ring->wptr_offs], ring->wptr); WDOORBELL64(ring->doorbell_index, ring->wptr); } else { BUG(); /* only DOORBELL method supported on gfx10 now */ } } static void gfx_v10_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 ref_and_mask, reg_mem_engine; const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { switch (ring->me) { case 1: ref_and_mask = nbio_hf_reg->ref_and_mask_cp2 << ring->pipe; break; case 2: ref_and_mask = nbio_hf_reg->ref_and_mask_cp6 << ring->pipe; break; default: return; } reg_mem_engine = 0; } else { ref_and_mask = nbio_hf_reg->ref_and_mask_cp0; reg_mem_engine = 1; /* pfp */ } gfx_v10_0_wait_reg_mem(ring, reg_mem_engine, 0, 1, adev->nbio.funcs->get_hdp_flush_req_offset(adev), adev->nbio.funcs->get_hdp_flush_done_offset(adev), ref_and_mask, ref_and_mask, 0x20); } static void gfx_v10_0_ring_emit_ib_gfx(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 header, control = 0; if (ib->flags & AMDGPU_IB_FLAG_CE) header = PACKET3(PACKET3_INDIRECT_BUFFER_CNST, 2); else header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); control |= ib->length_dw | (vmid << 24); if (amdgpu_mcbp && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) { control |= INDIRECT_BUFFER_PRE_ENB(1); if (flags & AMDGPU_IB_PREEMPTED) control |= INDIRECT_BUFFER_PRE_RESUME(1); if (!(ib->flags & AMDGPU_IB_FLAG_CE)) gfx_v10_0_ring_emit_de_meta(ring, flags & AMDGPU_IB_PREEMPTED ? true : false); } amdgpu_ring_write(ring, header); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v10_0_ring_emit_ib_compute(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24); /* Currently, there is a high possibility to get wave ID mismatch * between ME and GDS, leading to a hw deadlock, because ME generates * different wave IDs than the GDS expects. This situation happens * randomly when at least 5 compute pipes use GDS ordered append. * The wave IDs generated by ME are also wrong after suspend/resume. * Those are probably bugs somewhere else in the kernel driver. * * Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and * GDS to 0 for this ring (me/pipe). */ if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); amdgpu_ring_write(ring, mmGDS_COMPUTE_MAX_WAVE_ID); amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id); } amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); BUG_ON(ib->gpu_addr & 0x3); /* Dword align */ amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif lower_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, control); } static void gfx_v10_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { struct amdgpu_device *adev = ring->adev; bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; /* Interrupt not work fine on GFX10.1 model yet. Use fallback instead */ if (adev->pdev->device == 0x50) int_sel = false; /* RELEASE_MEM - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 6)); amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_GCR_SEQ | PACKET3_RELEASE_MEM_GCR_GL2_WB | PACKET3_RELEASE_MEM_GCR_GLM_INV | /* must be set with GLM_WB */ PACKET3_RELEASE_MEM_GCR_GLM_WB | PACKET3_RELEASE_MEM_CACHE_POLICY(3) | PACKET3_RELEASE_MEM_EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | PACKET3_RELEASE_MEM_EVENT_INDEX(5))); amdgpu_ring_write(ring, (PACKET3_RELEASE_MEM_DATA_SEL(write64bit ? 2 : 1) | PACKET3_RELEASE_MEM_INT_SEL(int_sel ? 2 : 0))); /* * the address should be Qword aligned if 64bit write, Dword * aligned if only send 32bit data low (discard data high) */ if (write64bit) BUG_ON(addr & 0x7); else BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); amdgpu_ring_write(ring, 0); } static void gfx_v10_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; gfx_v10_0_wait_reg_mem(ring, usepfp, 1, 0, lower_32_bits(addr), upper_32_bits(addr), seq, 0xffffffff, 4); } static void gfx_v10_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); /* compute doesn't have PFP */ if (ring->funcs->type == AMDGPU_RING_TYPE_GFX) { /* sync PFP to ME, otherwise we might get invalid PFP reads */ amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); amdgpu_ring_write(ring, 0x0); } } static void gfx_v10_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned int flags) { struct amdgpu_device *adev = ring->adev; /* we only allocate 32bit for each seq wb address */ BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT); /* write fence seq to the "addr" */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(5) | WR_CONFIRM)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); if (flags & AMDGPU_FENCE_FLAG_INT) { /* set register to trigger INT */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0) | WR_CONFIRM)); amdgpu_ring_write(ring, SOC15_REG_OFFSET(GC, 0, mmCPC_INT_STATUS)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */ } } static void gfx_v10_0_ring_emit_sb(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); } static void gfx_v10_0_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags) { uint32_t dw2 = 0; if (amdgpu_mcbp) gfx_v10_0_ring_emit_ce_meta(ring, flags & AMDGPU_IB_PREEMPTED ? true : false); gfx_v10_0_ring_emit_tmz(ring, true); dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */ if (flags & AMDGPU_HAVE_CTX_SWITCH) { /* set load_global_config & load_global_uconfig */ dw2 |= 0x8001; /* set load_cs_sh_regs */ dw2 |= 0x01000000; /* set load_per_context_state & load_gfx_sh_regs for GFX */ dw2 |= 0x10002; /* set load_ce_ram if preamble presented */ if (AMDGPU_PREAMBLE_IB_PRESENT & flags) dw2 |= 0x10000000; } else { /* still load_ce_ram if this is the first time preamble presented * although there is no context switch happens. */ if (AMDGPU_PREAMBLE_IB_PRESENT_FIRST & flags) dw2 |= 0x10000000; } amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, dw2); amdgpu_ring_write(ring, 0); } static unsigned gfx_v10_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring) { unsigned ret; amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3)); amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); amdgpu_ring_write(ring, 0); /* discard following DWs if *cond_exec_gpu_addr==0 */ ret = ring->wptr & ring->buf_mask; amdgpu_ring_write(ring, 0x55aa55aa); /* patch dummy value later */ return ret; } static void gfx_v10_0_ring_emit_patch_cond_exec(struct amdgpu_ring *ring, unsigned offset) { unsigned cur; BUG_ON(offset > ring->buf_mask); BUG_ON(ring->ring[offset] != 0x55aa55aa); cur = (ring->wptr - 1) & ring->buf_mask; if (likely(cur > offset)) ring->ring[offset] = cur - offset; else ring->ring[offset] = (ring->buf_mask + 1) - offset + cur; } static int gfx_v10_0_ring_preempt_ib(struct amdgpu_ring *ring) { int i, r = 0; struct amdgpu_device *adev = ring->adev; struct amdgpu_kiq *kiq = &adev->gfx.kiq; struct amdgpu_ring *kiq_ring = &kiq->ring; if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size)) return -ENOMEM; /* assert preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, false); /* assert IB preemption, emit the trailing fence */ kiq->pmf->kiq_unmap_queues(kiq_ring, ring, PREEMPT_QUEUES_NO_UNMAP, ring->trail_fence_gpu_addr, ++ring->trail_seq); amdgpu_ring_commit(kiq_ring); /* poll the trailing fence */ for (i = 0; i < adev->usec_timeout; i++) { if (ring->trail_seq == le32_to_cpu(*(ring->trail_fence_cpu_addr))) break; udelay(1); } if (i >= adev->usec_timeout) { r = -EINVAL; DRM_ERROR("ring %d failed to preempt ib\n", ring->idx); } /* deassert preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, true); return r; } static void gfx_v10_0_ring_emit_ce_meta(struct amdgpu_ring *ring, bool resume) { struct amdgpu_device *adev = ring->adev; struct v10_ce_ib_state ce_payload = {0}; uint64_t csa_addr; int cnt; cnt = (sizeof(ce_payload) >> 2) + 4 - 2; csa_addr = amdgpu_csa_vaddr(ring->adev); amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(2) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(csa_addr + offsetof(struct v10_gfx_meta_data, ce_payload))); amdgpu_ring_write(ring, upper_32_bits(csa_addr + offsetof(struct v10_gfx_meta_data, ce_payload))); if (resume) amdgpu_ring_write_multiple(ring, adev->virt.csa_cpu_addr + offsetof(struct v10_gfx_meta_data, ce_payload), sizeof(ce_payload) >> 2); else amdgpu_ring_write_multiple(ring, (void *)&ce_payload, sizeof(ce_payload) >> 2); } static void gfx_v10_0_ring_emit_de_meta(struct amdgpu_ring *ring, bool resume) { struct amdgpu_device *adev = ring->adev; struct v10_de_ib_state de_payload = {0}; uint64_t csa_addr, gds_addr; int cnt; csa_addr = amdgpu_csa_vaddr(ring->adev); gds_addr = ALIGN(csa_addr + AMDGPU_CSA_SIZE - adev->gds.gds_size, PAGE_SIZE); de_payload.gds_backup_addrlo = lower_32_bits(gds_addr); de_payload.gds_backup_addrhi = upper_32_bits(gds_addr); cnt = (sizeof(de_payload) >> 2) + 4 - 2; amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(csa_addr + offsetof(struct v10_gfx_meta_data, de_payload))); amdgpu_ring_write(ring, upper_32_bits(csa_addr + offsetof(struct v10_gfx_meta_data, de_payload))); if (resume) amdgpu_ring_write_multiple(ring, adev->virt.csa_cpu_addr + offsetof(struct v10_gfx_meta_data, de_payload), sizeof(de_payload) >> 2); else amdgpu_ring_write_multiple(ring, (void *)&de_payload, sizeof(de_payload) >> 2); } static void gfx_v10_0_ring_emit_tmz(struct amdgpu_ring *ring, bool start) { amdgpu_ring_write(ring, PACKET3(PACKET3_FRAME_CONTROL, 0)); amdgpu_ring_write(ring, FRAME_CMD(start ? 0 : 1)); /* frame_end */ } static void gfx_v10_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg) { struct amdgpu_device *adev = ring->adev; amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4)); amdgpu_ring_write(ring, 0 | /* src: register*/ (5 << 8) | /* dst: memory */ (1 << 20)); /* write confirm */ amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr + adev->virt.reg_val_offs * 4)); amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr + adev->virt.reg_val_offs * 4)); } static void gfx_v10_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { uint32_t cmd = 0; switch (ring->funcs->type) { case AMDGPU_RING_TYPE_GFX: cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM; break; case AMDGPU_RING_TYPE_KIQ: cmd = (1 << 16); /* no inc addr */ break; default: cmd = WR_CONFIRM; break; } amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, cmd); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v10_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { gfx_v10_0_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20); } static void gfx_v10_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev, uint32_t me, uint32_t pipe, enum amdgpu_interrupt_state state) { uint32_t cp_int_cntl, cp_int_cntl_reg; if (!me) { switch (pipe) { case 0: cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_INT_CNTL_RING0); break; case 1: cp_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_INT_CNTL_RING1); break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } } else { DRM_DEBUG("invalid me %d\n", me); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: cp_int_cntl = RREG32(cp_int_cntl_reg); cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE, 0); WREG32(cp_int_cntl_reg, cp_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: cp_int_cntl = RREG32(cp_int_cntl_reg); cp_int_cntl = REG_SET_FIELD(cp_int_cntl, CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE, 1); WREG32(cp_int_cntl_reg, cp_int_cntl); break; default: break; } } static void gfx_v10_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev, int me, int pipe, enum amdgpu_interrupt_state state) { u32 mec_int_cntl, mec_int_cntl_reg; /* * amdgpu controls only the first MEC. That's why this function only * handles the setting of interrupts for this specific MEC. All other * pipes' interrupts are set by amdkfd. */ if (me == 1) { switch (pipe) { case 0: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE0_INT_CNTL); break; case 1: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE1_INT_CNTL); break; case 2: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE2_INT_CNTL); break; case 3: mec_int_cntl_reg = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE3_INT_CNTL); break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } } else { DRM_DEBUG("invalid me %d\n", me); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: mec_int_cntl = RREG32(mec_int_cntl_reg); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, TIME_STAMP_INT_ENABLE, 0); WREG32(mec_int_cntl_reg, mec_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: mec_int_cntl = RREG32(mec_int_cntl_reg); mec_int_cntl = REG_SET_FIELD(mec_int_cntl, CP_ME1_PIPE0_INT_CNTL, TIME_STAMP_INT_ENABLE, 1); WREG32(mec_int_cntl_reg, mec_int_cntl); break; default: break; } } static int gfx_v10_0_set_eop_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { switch (type) { case AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP: gfx_v10_0_set_gfx_eop_interrupt_state(adev, 0, 0, state); break; case AMDGPU_CP_IRQ_GFX_ME0_PIPE1_EOP: gfx_v10_0_set_gfx_eop_interrupt_state(adev, 0, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 1, 3, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP: gfx_v10_0_set_compute_eop_interrupt_state(adev, 2, 3, state); break; default: break; } return 0; } static int gfx_v10_0_eop_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int i; u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; DRM_DEBUG("IH: CP EOP\n"); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: if (pipe_id == 0) amdgpu_fence_process(&adev->gfx.gfx_ring[0]); else amdgpu_fence_process(&adev->gfx.gfx_ring[1]); break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; /* Per-queue interrupt is supported for MEC starting from VI. * The interrupt can only be enabled/disabled per pipe instead of per queue. */ if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id)) amdgpu_fence_process(ring); } break; } return 0; } static int gfx_v10_0_set_priv_reg_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0, PRIV_REG_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); break; default: break; } return 0; } static int gfx_v10_0_set_priv_inst_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { switch (state) { case AMDGPU_IRQ_STATE_DISABLE: case AMDGPU_IRQ_STATE_ENABLE: WREG32_FIELD15(GC, 0, CP_INT_CNTL_RING0, PRIV_INSTR_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); default: break; } return 0; } static void gfx_v10_0_handle_priv_fault(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; int i; me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; /* we only enabled 1 gfx queue per pipe for now */ if (ring->me == me_id && ring->pipe == pipe_id) drm_sched_fault(&ring->sched); } break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if (ring->me == me_id && ring->pipe == pipe_id && ring->queue == queue_id) drm_sched_fault(&ring->sched); } break; default: BUG(); } } static int gfx_v10_0_priv_reg_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal register access in command stream\n"); gfx_v10_0_handle_priv_fault(adev, entry); return 0; } static int gfx_v10_0_priv_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal instruction in command stream\n"); gfx_v10_0_handle_priv_fault(adev, entry); return 0; } static int gfx_v10_0_kiq_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned int type, enum amdgpu_interrupt_state state) { uint32_t tmp, target; struct amdgpu_ring *ring = &(adev->gfx.kiq.ring); if (ring->me == 1) target = SOC15_REG_OFFSET(GC, 0, mmCP_ME1_PIPE0_INT_CNTL); else target = SOC15_REG_OFFSET(GC, 0, mmCP_ME2_PIPE0_INT_CNTL); target += ring->pipe; switch (type) { case AMDGPU_CP_KIQ_IRQ_DRIVER0: if (state == AMDGPU_IRQ_STATE_DISABLE) { tmp = RREG32_SOC15(GC, 0, mmCPC_INT_CNTL); tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL, GENERIC2_INT_ENABLE, 0); WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, tmp); tmp = RREG32(target); tmp = REG_SET_FIELD(tmp, CP_ME2_PIPE0_INT_CNTL, GENERIC2_INT_ENABLE, 0); WREG32(target, tmp); } else { tmp = RREG32_SOC15(GC, 0, mmCPC_INT_CNTL); tmp = REG_SET_FIELD(tmp, CPC_INT_CNTL, GENERIC2_INT_ENABLE, 1); WREG32_SOC15(GC, 0, mmCPC_INT_CNTL, tmp); tmp = RREG32(target); tmp = REG_SET_FIELD(tmp, CP_ME2_PIPE0_INT_CNTL, GENERIC2_INT_ENABLE, 1); WREG32(target, tmp); } break; default: BUG(); /* kiq only support GENERIC2_INT now */ break; } return 0; } static int gfx_v10_0_kiq_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring = &(adev->gfx.kiq.ring); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; DRM_DEBUG("IH: CPC GENERIC2_INT, me:%d, pipe:%d, queue:%d\n", me_id, pipe_id, queue_id); amdgpu_fence_process(ring); return 0; } static const struct amd_ip_funcs gfx_v10_0_ip_funcs = { .name = "gfx_v10_0", .early_init = gfx_v10_0_early_init, .late_init = gfx_v10_0_late_init, .sw_init = gfx_v10_0_sw_init, .sw_fini = gfx_v10_0_sw_fini, .hw_init = gfx_v10_0_hw_init, .hw_fini = gfx_v10_0_hw_fini, .suspend = gfx_v10_0_suspend, .resume = gfx_v10_0_resume, .is_idle = gfx_v10_0_is_idle, .wait_for_idle = gfx_v10_0_wait_for_idle, .soft_reset = gfx_v10_0_soft_reset, .set_clockgating_state = gfx_v10_0_set_clockgating_state, .set_powergating_state = gfx_v10_0_set_powergating_state, .get_clockgating_state = gfx_v10_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs gfx_v10_0_ring_funcs_gfx = { .type = AMDGPU_RING_TYPE_GFX, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .vmhub = AMDGPU_GFXHUB_0, .get_rptr = gfx_v10_0_ring_get_rptr_gfx, .get_wptr = gfx_v10_0_ring_get_wptr_gfx, .set_wptr = gfx_v10_0_ring_set_wptr_gfx, .emit_frame_size = /* totally 242 maximum if 16 IBs */ 5 + /* COND_EXEC */ 7 + /* PIPELINE_SYNC */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* VM_FLUSH */ 8 + /* FENCE for VM_FLUSH */ 20 + /* GDS switch */ 4 + /* double SWITCH_BUFFER, * the first COND_EXEC jump to the place * just prior to this double SWITCH_BUFFER */ 5 + /* COND_EXEC */ 7 + /* HDP_flush */ 4 + /* VGT_flush */ 14 + /* CE_META */ 31 + /* DE_META */ 3 + /* CNTX_CTRL */ 5 + /* HDP_INVL */ 8 + 8 + /* FENCE x2 */ 2, /* SWITCH_BUFFER */ .emit_ib_size = 4, /* gfx_v10_0_ring_emit_ib_gfx */ .emit_ib = gfx_v10_0_ring_emit_ib_gfx, .emit_fence = gfx_v10_0_ring_emit_fence, .emit_pipeline_sync = gfx_v10_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v10_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v10_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v10_0_ring_emit_hdp_flush, .test_ring = gfx_v10_0_ring_test_ring, .test_ib = gfx_v10_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_switch_buffer = gfx_v10_0_ring_emit_sb, .emit_cntxcntl = gfx_v10_0_ring_emit_cntxcntl, .init_cond_exec = gfx_v10_0_ring_emit_init_cond_exec, .patch_cond_exec = gfx_v10_0_ring_emit_patch_cond_exec, .preempt_ib = gfx_v10_0_ring_preempt_ib, .emit_tmz = gfx_v10_0_ring_emit_tmz, .emit_wreg = gfx_v10_0_ring_emit_wreg, .emit_reg_wait = gfx_v10_0_ring_emit_reg_wait, }; static const struct amdgpu_ring_funcs gfx_v10_0_ring_funcs_compute = { .type = AMDGPU_RING_TYPE_COMPUTE, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .vmhub = AMDGPU_GFXHUB_0, .get_rptr = gfx_v10_0_ring_get_rptr_compute, .get_wptr = gfx_v10_0_ring_get_wptr_compute, .set_wptr = gfx_v10_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v10_0_ring_emit_gds_switch */ 7 + /* gfx_v10_0_ring_emit_hdp_flush */ 5 + /* hdp invalidate */ 7 + /* gfx_v10_0_ring_emit_pipeline_sync */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* gfx_v10_0_ring_emit_vm_flush */ 8 + 8 + 8, /* gfx_v10_0_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7, /* gfx_v10_0_ring_emit_ib_compute */ .emit_ib = gfx_v10_0_ring_emit_ib_compute, .emit_fence = gfx_v10_0_ring_emit_fence, .emit_pipeline_sync = gfx_v10_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v10_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v10_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v10_0_ring_emit_hdp_flush, .test_ring = gfx_v10_0_ring_test_ring, .test_ib = gfx_v10_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_wreg = gfx_v10_0_ring_emit_wreg, .emit_reg_wait = gfx_v10_0_ring_emit_reg_wait, }; static const struct amdgpu_ring_funcs gfx_v10_0_ring_funcs_kiq = { .type = AMDGPU_RING_TYPE_KIQ, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = true, .vmhub = AMDGPU_GFXHUB_0, .get_rptr = gfx_v10_0_ring_get_rptr_compute, .get_wptr = gfx_v10_0_ring_get_wptr_compute, .set_wptr = gfx_v10_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v10_0_ring_emit_gds_switch */ 7 + /* gfx_v10_0_ring_emit_hdp_flush */ 5 + /*hdp invalidate */ 7 + /* gfx_v10_0_ring_emit_pipeline_sync */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 5 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 7 + 2 + /* gfx_v10_0_ring_emit_vm_flush */ 8 + 8 + 8, /* gfx_v10_0_ring_emit_fence_kiq x3 for user fence, vm fence */ .emit_ib_size = 7, /* gfx_v10_0_ring_emit_ib_compute */ .emit_ib = gfx_v10_0_ring_emit_ib_compute, .emit_fence = gfx_v10_0_ring_emit_fence_kiq, .test_ring = gfx_v10_0_ring_test_ring, .test_ib = gfx_v10_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_rreg = gfx_v10_0_ring_emit_rreg, .emit_wreg = gfx_v10_0_ring_emit_wreg, .emit_reg_wait = gfx_v10_0_ring_emit_reg_wait, }; static void gfx_v10_0_set_ring_funcs(struct amdgpu_device *adev) { int i; adev->gfx.kiq.ring.funcs = &gfx_v10_0_ring_funcs_kiq; for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].funcs = &gfx_v10_0_ring_funcs_gfx; for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].funcs = &gfx_v10_0_ring_funcs_compute; } static const struct amdgpu_irq_src_funcs gfx_v10_0_eop_irq_funcs = { .set = gfx_v10_0_set_eop_interrupt_state, .process = gfx_v10_0_eop_irq, }; static const struct amdgpu_irq_src_funcs gfx_v10_0_priv_reg_irq_funcs = { .set = gfx_v10_0_set_priv_reg_fault_state, .process = gfx_v10_0_priv_reg_irq, }; static const struct amdgpu_irq_src_funcs gfx_v10_0_priv_inst_irq_funcs = { .set = gfx_v10_0_set_priv_inst_fault_state, .process = gfx_v10_0_priv_inst_irq, }; static const struct amdgpu_irq_src_funcs gfx_v10_0_kiq_irq_funcs = { .set = gfx_v10_0_kiq_set_interrupt_state, .process = gfx_v10_0_kiq_irq, }; static void gfx_v10_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST; adev->gfx.eop_irq.funcs = &gfx_v10_0_eop_irq_funcs; adev->gfx.kiq.irq.num_types = AMDGPU_CP_KIQ_IRQ_LAST; adev->gfx.kiq.irq.funcs = &gfx_v10_0_kiq_irq_funcs; adev->gfx.priv_reg_irq.num_types = 1; adev->gfx.priv_reg_irq.funcs = &gfx_v10_0_priv_reg_irq_funcs; adev->gfx.priv_inst_irq.num_types = 1; adev->gfx.priv_inst_irq.funcs = &gfx_v10_0_priv_inst_irq_funcs; } static void gfx_v10_0_set_rlc_funcs(struct amdgpu_device *adev) { switch (adev->asic_type) { case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: adev->gfx.rlc.funcs = &gfx_v10_0_rlc_funcs; break; default: break; } } static void gfx_v10_0_set_gds_init(struct amdgpu_device *adev) { /* init asic gds info */ switch (adev->asic_type) { case CHIP_NAVI10: default: adev->gds.gds_size = 0x10000; adev->gds.gds_compute_max_wave_id = 0x4ff; break; } adev->gds.gws_size = 64; adev->gds.oa_size = 16; } static void gfx_v10_0_set_user_wgp_inactive_bitmap_per_sh(struct amdgpu_device *adev, u32 bitmap) { u32 data; if (!bitmap) return; data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT; data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK; WREG32_SOC15(GC, 0, mmGC_USER_SHADER_ARRAY_CONFIG, data); } static u32 gfx_v10_0_get_wgp_active_bitmap_per_sh(struct amdgpu_device *adev) { u32 data, wgp_bitmask; data = RREG32_SOC15(GC, 0, mmCC_GC_SHADER_ARRAY_CONFIG); data |= RREG32_SOC15(GC, 0, mmGC_USER_SHADER_ARRAY_CONFIG); data &= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS_MASK; data >>= CC_GC_SHADER_ARRAY_CONFIG__INACTIVE_WGPS__SHIFT; wgp_bitmask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh >> 1); return (~data) & wgp_bitmask; } static u32 gfx_v10_0_get_cu_active_bitmap_per_sh(struct amdgpu_device *adev) { u32 wgp_idx, wgp_active_bitmap; u32 cu_bitmap_per_wgp, cu_active_bitmap; wgp_active_bitmap = gfx_v10_0_get_wgp_active_bitmap_per_sh(adev); cu_active_bitmap = 0; for (wgp_idx = 0; wgp_idx < 16; wgp_idx++) { /* if there is one WGP enabled, it means 2 CUs will be enabled */ cu_bitmap_per_wgp = 3 << (2 * wgp_idx); if (wgp_active_bitmap & (1 << wgp_idx)) cu_active_bitmap |= cu_bitmap_per_wgp; } return cu_active_bitmap; } static int gfx_v10_0_get_cu_info(struct amdgpu_device *adev, struct amdgpu_cu_info *cu_info) { int i, j, k, counter, active_cu_number = 0; u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0; unsigned disable_masks[4 * 2]; if (!adev || !cu_info) return -EINVAL; amdgpu_gfx_parse_disable_cu(disable_masks, 4, 2); mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { mask = 1; ao_bitmap = 0; counter = 0; gfx_v10_0_select_se_sh(adev, i, j, 0xffffffff); if (i < 4 && j < 2) gfx_v10_0_set_user_wgp_inactive_bitmap_per_sh( adev, disable_masks[i * 2 + j]); bitmap = gfx_v10_0_get_cu_active_bitmap_per_sh(adev); cu_info->bitmap[i][j] = bitmap; for (k = 0; k < adev->gfx.config.max_cu_per_sh; k++) { if (bitmap & mask) { if (counter < adev->gfx.config.max_cu_per_sh) ao_bitmap |= mask; counter++; } mask <<= 1; } active_cu_number += counter; if (i < 2 && j < 2) ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8)); cu_info->ao_cu_bitmap[i][j] = ao_bitmap; } } gfx_v10_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); cu_info->number = active_cu_number; cu_info->ao_cu_mask = ao_cu_mask; cu_info->simd_per_cu = NUM_SIMD_PER_CU; return 0; } const struct amdgpu_ip_block_version gfx_v10_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 10, .minor = 0, .rev = 0, .funcs = &gfx_v10_0_ip_funcs, };