/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #ifdef CONFIG_X86 #include #endif #include #include #include "amdgpu.h" #include "amdgpu_ras.h" #include "vi.h" #include "soc15.h" #include "nv.h" #define POPULATE_UCODE_INFO(vf2pf_info, ucode, ver) \ do { \ vf2pf_info->ucode_info[ucode].id = ucode; \ vf2pf_info->ucode_info[ucode].version = ver; \ } while (0) bool amdgpu_virt_mmio_blocked(struct amdgpu_device *adev) { /* By now all MMIO pages except mailbox are blocked */ /* if blocking is enabled in hypervisor. Choose the */ /* SCRATCH_REG0 to test. */ return RREG32_NO_KIQ(0xc040) == 0xffffffff; } void amdgpu_virt_init_setting(struct amdgpu_device *adev) { struct drm_device *ddev = adev_to_drm(adev); /* enable virtual display */ if (adev->asic_type != CHIP_ALDEBARAN && adev->asic_type != CHIP_ARCTURUS && ((adev->pdev->class >> 8) != PCI_CLASS_ACCELERATOR_PROCESSING)) { if (adev->mode_info.num_crtc == 0) adev->mode_info.num_crtc = 1; adev->enable_virtual_display = true; } ddev->driver_features &= ~DRIVER_ATOMIC; adev->cg_flags = 0; adev->pg_flags = 0; /* Reduce kcq number to 2 to reduce latency */ if (amdgpu_num_kcq == -1) amdgpu_num_kcq = 2; } void amdgpu_virt_kiq_reg_write_reg_wait(struct amdgpu_device *adev, uint32_t reg0, uint32_t reg1, uint32_t ref, uint32_t mask) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; struct amdgpu_ring *ring = &kiq->ring; signed long r, cnt = 0; unsigned long flags; uint32_t seq; if (adev->mes.ring.sched.ready) { amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1, ref, mask); return; } spin_lock_irqsave(&kiq->ring_lock, flags); amdgpu_ring_alloc(ring, 32); amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1, ref, mask); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) goto failed_undo; amdgpu_ring_commit(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); /* don't wait anymore for IRQ context */ if (r < 1 && in_interrupt()) goto failed_kiq; might_sleep(); while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); } if (cnt > MAX_KIQ_REG_TRY) goto failed_kiq; return; failed_undo: amdgpu_ring_undo(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); failed_kiq: dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1); } /** * amdgpu_virt_request_full_gpu() - request full gpu access * @adev: amdgpu device. * @init: is driver init time. * When start to init/fini driver, first need to request full gpu access. * Return: Zero if request success, otherwise will return error. */ int amdgpu_virt_request_full_gpu(struct amdgpu_device *adev, bool init) { struct amdgpu_virt *virt = &adev->virt; int r; if (virt->ops && virt->ops->req_full_gpu) { r = virt->ops->req_full_gpu(adev, init); if (r) return r; adev->virt.caps &= ~AMDGPU_SRIOV_CAPS_RUNTIME; } return 0; } /** * amdgpu_virt_release_full_gpu() - release full gpu access * @adev: amdgpu device. * @init: is driver init time. * When finishing driver init/fini, need to release full gpu access. * Return: Zero if release success, otherwise will returen error. */ int amdgpu_virt_release_full_gpu(struct amdgpu_device *adev, bool init) { struct amdgpu_virt *virt = &adev->virt; int r; if (virt->ops && virt->ops->rel_full_gpu) { r = virt->ops->rel_full_gpu(adev, init); if (r) return r; adev->virt.caps |= AMDGPU_SRIOV_CAPS_RUNTIME; } return 0; } /** * amdgpu_virt_reset_gpu() - reset gpu * @adev: amdgpu device. * Send reset command to GPU hypervisor to reset GPU that VM is using * Return: Zero if reset success, otherwise will return error. */ int amdgpu_virt_reset_gpu(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; int r; if (virt->ops && virt->ops->reset_gpu) { r = virt->ops->reset_gpu(adev); if (r) return r; adev->virt.caps &= ~AMDGPU_SRIOV_CAPS_RUNTIME; } return 0; } void amdgpu_virt_request_init_data(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; if (virt->ops && virt->ops->req_init_data) virt->ops->req_init_data(adev); if (adev->virt.req_init_data_ver > 0) DRM_INFO("host supports REQ_INIT_DATA handshake\n"); else DRM_WARN("host doesn't support REQ_INIT_DATA handshake\n"); } /** * amdgpu_virt_wait_reset() - wait for reset gpu completed * @adev: amdgpu device. * Wait for GPU reset completed. * Return: Zero if reset success, otherwise will return error. */ int amdgpu_virt_wait_reset(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; if (!virt->ops || !virt->ops->wait_reset) return -EINVAL; return virt->ops->wait_reset(adev); } /** * amdgpu_virt_alloc_mm_table() - alloc memory for mm table * @adev: amdgpu device. * MM table is used by UVD and VCE for its initialization * Return: Zero if allocate success. */ int amdgpu_virt_alloc_mm_table(struct amdgpu_device *adev) { int r; if (!amdgpu_sriov_vf(adev) || adev->virt.mm_table.gpu_addr) return 0; r = amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->virt.mm_table.bo, &adev->virt.mm_table.gpu_addr, (void *)&adev->virt.mm_table.cpu_addr); if (r) { DRM_ERROR("failed to alloc mm table and error = %d.\n", r); return r; } memset((void *)adev->virt.mm_table.cpu_addr, 0, PAGE_SIZE); DRM_INFO("MM table gpu addr = 0x%llx, cpu addr = %p.\n", adev->virt.mm_table.gpu_addr, adev->virt.mm_table.cpu_addr); return 0; } /** * amdgpu_virt_free_mm_table() - free mm table memory * @adev: amdgpu device. * Free MM table memory */ void amdgpu_virt_free_mm_table(struct amdgpu_device *adev) { if (!amdgpu_sriov_vf(adev) || !adev->virt.mm_table.gpu_addr) return; amdgpu_bo_free_kernel(&adev->virt.mm_table.bo, &adev->virt.mm_table.gpu_addr, (void *)&adev->virt.mm_table.cpu_addr); adev->virt.mm_table.gpu_addr = 0; } unsigned int amd_sriov_msg_checksum(void *obj, unsigned long obj_size, unsigned int key, unsigned int checksum) { unsigned int ret = key; unsigned long i = 0; unsigned char *pos; pos = (char *)obj; /* calculate checksum */ for (i = 0; i < obj_size; ++i) ret += *(pos + i); /* minus the checksum itself */ pos = (char *)&checksum; for (i = 0; i < sizeof(checksum); ++i) ret -= *(pos + i); return ret; } static int amdgpu_virt_init_ras_err_handler_data(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; struct amdgpu_virt_ras_err_handler_data **data = &virt->virt_eh_data; /* GPU will be marked bad on host if bp count more then 10, * so alloc 512 is enough. */ unsigned int align_space = 512; void *bps = NULL; struct amdgpu_bo **bps_bo = NULL; *data = kmalloc(sizeof(struct amdgpu_virt_ras_err_handler_data), GFP_KERNEL); if (!*data) goto data_failure; bps = kmalloc_array(align_space, sizeof((*data)->bps), GFP_KERNEL); if (!bps) goto bps_failure; bps_bo = kmalloc_array(align_space, sizeof((*data)->bps_bo), GFP_KERNEL); if (!bps_bo) goto bps_bo_failure; (*data)->bps = bps; (*data)->bps_bo = bps_bo; (*data)->count = 0; (*data)->last_reserved = 0; virt->ras_init_done = true; return 0; bps_bo_failure: kfree(bps); bps_failure: kfree(*data); data_failure: return -ENOMEM; } static void amdgpu_virt_ras_release_bp(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; struct amdgpu_virt_ras_err_handler_data *data = virt->virt_eh_data; struct amdgpu_bo *bo; int i; if (!data) return; for (i = data->last_reserved - 1; i >= 0; i--) { bo = data->bps_bo[i]; amdgpu_bo_free_kernel(&bo, NULL, NULL); data->bps_bo[i] = bo; data->last_reserved = i; } } void amdgpu_virt_release_ras_err_handler_data(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; struct amdgpu_virt_ras_err_handler_data *data = virt->virt_eh_data; virt->ras_init_done = false; if (!data) return; amdgpu_virt_ras_release_bp(adev); kfree(data->bps); kfree(data->bps_bo); kfree(data); virt->virt_eh_data = NULL; } static void amdgpu_virt_ras_add_bps(struct amdgpu_device *adev, struct eeprom_table_record *bps, int pages) { struct amdgpu_virt *virt = &adev->virt; struct amdgpu_virt_ras_err_handler_data *data = virt->virt_eh_data; if (!data) return; memcpy(&data->bps[data->count], bps, pages * sizeof(*data->bps)); data->count += pages; } static void amdgpu_virt_ras_reserve_bps(struct amdgpu_device *adev) { struct amdgpu_virt *virt = &adev->virt; struct amdgpu_virt_ras_err_handler_data *data = virt->virt_eh_data; struct amdgpu_bo *bo = NULL; uint64_t bp; int i; if (!data) return; for (i = data->last_reserved; i < data->count; i++) { bp = data->bps[i].retired_page; /* There are two cases of reserve error should be ignored: * 1) a ras bad page has been allocated (used by someone); * 2) a ras bad page has been reserved (duplicate error injection * for one page); */ if (amdgpu_bo_create_kernel_at(adev, bp << AMDGPU_GPU_PAGE_SHIFT, AMDGPU_GPU_PAGE_SIZE, &bo, NULL)) DRM_DEBUG("RAS WARN: reserve vram for retired page %llx fail\n", bp); data->bps_bo[i] = bo; data->last_reserved = i + 1; bo = NULL; } } static bool amdgpu_virt_ras_check_bad_page(struct amdgpu_device *adev, uint64_t retired_page) { struct amdgpu_virt *virt = &adev->virt; struct amdgpu_virt_ras_err_handler_data *data = virt->virt_eh_data; int i; if (!data) return true; for (i = 0; i < data->count; i++) if (retired_page == data->bps[i].retired_page) return true; return false; } static void amdgpu_virt_add_bad_page(struct amdgpu_device *adev, uint64_t bp_block_offset, uint32_t bp_block_size) { struct eeprom_table_record bp; uint64_t retired_page; uint32_t bp_idx, bp_cnt; void *vram_usage_va = NULL; if (adev->mman.fw_vram_usage_va) vram_usage_va = adev->mman.fw_vram_usage_va; else vram_usage_va = adev->mman.drv_vram_usage_va; if (bp_block_size) { bp_cnt = bp_block_size / sizeof(uint64_t); for (bp_idx = 0; bp_idx < bp_cnt; bp_idx++) { retired_page = *(uint64_t *)(vram_usage_va + bp_block_offset + bp_idx * sizeof(uint64_t)); bp.retired_page = retired_page; if (amdgpu_virt_ras_check_bad_page(adev, retired_page)) continue; amdgpu_virt_ras_add_bps(adev, &bp, 1); amdgpu_virt_ras_reserve_bps(adev); } } } static int amdgpu_virt_read_pf2vf_data(struct amdgpu_device *adev) { struct amd_sriov_msg_pf2vf_info_header *pf2vf_info = adev->virt.fw_reserve.p_pf2vf; uint32_t checksum; uint32_t checkval; uint32_t i; uint32_t tmp; if (adev->virt.fw_reserve.p_pf2vf == NULL) return -EINVAL; if (pf2vf_info->size > 1024) { DRM_ERROR("invalid pf2vf message size\n"); return -EINVAL; } switch (pf2vf_info->version) { case 1: checksum = ((struct amdgim_pf2vf_info_v1 *)pf2vf_info)->checksum; checkval = amd_sriov_msg_checksum( adev->virt.fw_reserve.p_pf2vf, pf2vf_info->size, adev->virt.fw_reserve.checksum_key, checksum); if (checksum != checkval) { DRM_ERROR("invalid pf2vf message\n"); return -EINVAL; } adev->virt.gim_feature = ((struct amdgim_pf2vf_info_v1 *)pf2vf_info)->feature_flags; break; case 2: /* TODO: missing key, need to add it later */ checksum = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->checksum; checkval = amd_sriov_msg_checksum( adev->virt.fw_reserve.p_pf2vf, pf2vf_info->size, 0, checksum); if (checksum != checkval) { DRM_ERROR("invalid pf2vf message\n"); return -EINVAL; } adev->virt.vf2pf_update_interval_ms = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->vf2pf_update_interval_ms; adev->virt.gim_feature = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->feature_flags.all; adev->virt.reg_access = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->reg_access_flags.all; adev->virt.decode_max_dimension_pixels = 0; adev->virt.decode_max_frame_pixels = 0; adev->virt.encode_max_dimension_pixels = 0; adev->virt.encode_max_frame_pixels = 0; adev->virt.is_mm_bw_enabled = false; for (i = 0; i < AMD_SRIOV_MSG_RESERVE_VCN_INST; i++) { tmp = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->mm_bw_management[i].decode_max_dimension_pixels; adev->virt.decode_max_dimension_pixels = max(tmp, adev->virt.decode_max_dimension_pixels); tmp = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->mm_bw_management[i].decode_max_frame_pixels; adev->virt.decode_max_frame_pixels = max(tmp, adev->virt.decode_max_frame_pixels); tmp = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->mm_bw_management[i].encode_max_dimension_pixels; adev->virt.encode_max_dimension_pixels = max(tmp, adev->virt.encode_max_dimension_pixels); tmp = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->mm_bw_management[i].encode_max_frame_pixels; adev->virt.encode_max_frame_pixels = max(tmp, adev->virt.encode_max_frame_pixels); } if ((adev->virt.decode_max_dimension_pixels > 0) || (adev->virt.encode_max_dimension_pixels > 0)) adev->virt.is_mm_bw_enabled = true; adev->unique_id = ((struct amd_sriov_msg_pf2vf_info *)pf2vf_info)->uuid; break; default: DRM_ERROR("invalid pf2vf version\n"); return -EINVAL; } /* correct too large or too little interval value */ if (adev->virt.vf2pf_update_interval_ms < 200 || adev->virt.vf2pf_update_interval_ms > 10000) adev->virt.vf2pf_update_interval_ms = 2000; return 0; } static void amdgpu_virt_populate_vf2pf_ucode_info(struct amdgpu_device *adev) { struct amd_sriov_msg_vf2pf_info *vf2pf_info; vf2pf_info = (struct amd_sriov_msg_vf2pf_info *) adev->virt.fw_reserve.p_vf2pf; if (adev->virt.fw_reserve.p_vf2pf == NULL) return; POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_VCE, adev->vce.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_UVD, adev->uvd.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_MC, adev->gmc.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_ME, adev->gfx.me_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_PFP, adev->gfx.pfp_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_CE, adev->gfx.ce_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_RLC, adev->gfx.rlc_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_RLC_SRLC, adev->gfx.rlc_srlc_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_RLC_SRLG, adev->gfx.rlc_srlg_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_RLC_SRLS, adev->gfx.rlc_srls_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_MEC, adev->gfx.mec_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_MEC2, adev->gfx.mec2_fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_SOS, adev->psp.sos.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_ASD, adev->psp.asd_context.bin_desc.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_TA_RAS, adev->psp.ras_context.context.bin_desc.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_TA_XGMI, adev->psp.xgmi_context.context.bin_desc.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_SMC, adev->pm.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_SDMA, adev->sdma.instance[0].fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_SDMA2, adev->sdma.instance[1].fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_VCN, adev->vcn.fw_version); POPULATE_UCODE_INFO(vf2pf_info, AMD_SRIOV_UCODE_ID_DMCU, adev->dm.dmcu_fw_version); } static int amdgpu_virt_write_vf2pf_data(struct amdgpu_device *adev) { struct amd_sriov_msg_vf2pf_info *vf2pf_info; vf2pf_info = (struct amd_sriov_msg_vf2pf_info *) adev->virt.fw_reserve.p_vf2pf; if (adev->virt.fw_reserve.p_vf2pf == NULL) return -EINVAL; memset(vf2pf_info, 0, sizeof(struct amd_sriov_msg_vf2pf_info)); vf2pf_info->header.size = sizeof(struct amd_sriov_msg_vf2pf_info); vf2pf_info->header.version = AMD_SRIOV_MSG_FW_VRAM_VF2PF_VER; #ifdef MODULE if (THIS_MODULE->version != NULL) strcpy(vf2pf_info->driver_version, THIS_MODULE->version); else #endif strcpy(vf2pf_info->driver_version, "N/A"); vf2pf_info->pf2vf_version_required = 0; // no requirement, guest understands all vf2pf_info->driver_cert = 0; vf2pf_info->os_info.all = 0; vf2pf_info->fb_usage = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager) >> 20; vf2pf_info->fb_vis_usage = amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr) >> 20; vf2pf_info->fb_size = adev->gmc.real_vram_size >> 20; vf2pf_info->fb_vis_size = adev->gmc.visible_vram_size >> 20; amdgpu_virt_populate_vf2pf_ucode_info(adev); /* TODO: read dynamic info */ vf2pf_info->gfx_usage = 0; vf2pf_info->compute_usage = 0; vf2pf_info->encode_usage = 0; vf2pf_info->decode_usage = 0; vf2pf_info->dummy_page_addr = (uint64_t)adev->dummy_page_addr; vf2pf_info->checksum = amd_sriov_msg_checksum( vf2pf_info, vf2pf_info->header.size, 0, 0); return 0; } static void amdgpu_virt_update_vf2pf_work_item(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, virt.vf2pf_work.work); int ret; ret = amdgpu_virt_read_pf2vf_data(adev); if (ret) goto out; amdgpu_virt_write_vf2pf_data(adev); out: schedule_delayed_work(&(adev->virt.vf2pf_work), adev->virt.vf2pf_update_interval_ms); } void amdgpu_virt_fini_data_exchange(struct amdgpu_device *adev) { if (adev->virt.vf2pf_update_interval_ms != 0) { DRM_INFO("clean up the vf2pf work item\n"); cancel_delayed_work_sync(&adev->virt.vf2pf_work); adev->virt.vf2pf_update_interval_ms = 0; } } void amdgpu_virt_init_data_exchange(struct amdgpu_device *adev) { adev->virt.fw_reserve.p_pf2vf = NULL; adev->virt.fw_reserve.p_vf2pf = NULL; adev->virt.vf2pf_update_interval_ms = 0; if (adev->mman.fw_vram_usage_va && adev->mman.drv_vram_usage_va) { DRM_WARN("Currently fw_vram and drv_vram should not have values at the same time!"); } else if (adev->mman.fw_vram_usage_va || adev->mman.drv_vram_usage_va) { /* go through this logic in ip_init and reset to init workqueue*/ amdgpu_virt_exchange_data(adev); INIT_DELAYED_WORK(&adev->virt.vf2pf_work, amdgpu_virt_update_vf2pf_work_item); schedule_delayed_work(&(adev->virt.vf2pf_work), msecs_to_jiffies(adev->virt.vf2pf_update_interval_ms)); } else if (adev->bios != NULL) { /* got through this logic in early init stage to get necessary flags, e.g. rlcg_acc related*/ adev->virt.fw_reserve.p_pf2vf = (struct amd_sriov_msg_pf2vf_info_header *) (adev->bios + (AMD_SRIOV_MSG_PF2VF_OFFSET_KB << 10)); amdgpu_virt_read_pf2vf_data(adev); } } void amdgpu_virt_exchange_data(struct amdgpu_device *adev) { uint64_t bp_block_offset = 0; uint32_t bp_block_size = 0; struct amd_sriov_msg_pf2vf_info *pf2vf_v2 = NULL; if (adev->mman.fw_vram_usage_va || adev->mman.drv_vram_usage_va) { if (adev->mman.fw_vram_usage_va) { adev->virt.fw_reserve.p_pf2vf = (struct amd_sriov_msg_pf2vf_info_header *) (adev->mman.fw_vram_usage_va + (AMD_SRIOV_MSG_PF2VF_OFFSET_KB << 10)); adev->virt.fw_reserve.p_vf2pf = (struct amd_sriov_msg_vf2pf_info_header *) (adev->mman.fw_vram_usage_va + (AMD_SRIOV_MSG_VF2PF_OFFSET_KB << 10)); } else if (adev->mman.drv_vram_usage_va) { adev->virt.fw_reserve.p_pf2vf = (struct amd_sriov_msg_pf2vf_info_header *) (adev->mman.drv_vram_usage_va + (AMD_SRIOV_MSG_PF2VF_OFFSET_KB << 10)); adev->virt.fw_reserve.p_vf2pf = (struct amd_sriov_msg_vf2pf_info_header *) (adev->mman.drv_vram_usage_va + (AMD_SRIOV_MSG_VF2PF_OFFSET_KB << 10)); } amdgpu_virt_read_pf2vf_data(adev); amdgpu_virt_write_vf2pf_data(adev); /* bad page handling for version 2 */ if (adev->virt.fw_reserve.p_pf2vf->version == 2) { pf2vf_v2 = (struct amd_sriov_msg_pf2vf_info *)adev->virt.fw_reserve.p_pf2vf; bp_block_offset = ((uint64_t)pf2vf_v2->bp_block_offset_low & 0xFFFFFFFF) | ((((uint64_t)pf2vf_v2->bp_block_offset_high) << 32) & 0xFFFFFFFF00000000); bp_block_size = pf2vf_v2->bp_block_size; if (bp_block_size && !adev->virt.ras_init_done) amdgpu_virt_init_ras_err_handler_data(adev); if (adev->virt.ras_init_done) amdgpu_virt_add_bad_page(adev, bp_block_offset, bp_block_size); } } } void amdgpu_detect_virtualization(struct amdgpu_device *adev) { uint32_t reg; switch (adev->asic_type) { case CHIP_TONGA: case CHIP_FIJI: reg = RREG32(mmBIF_IOV_FUNC_IDENTIFIER); break; case CHIP_VEGA10: case CHIP_VEGA20: case CHIP_NAVI10: case CHIP_NAVI12: case CHIP_SIENNA_CICHLID: case CHIP_ARCTURUS: case CHIP_ALDEBARAN: case CHIP_IP_DISCOVERY: reg = RREG32(mmRCC_IOV_FUNC_IDENTIFIER); break; default: /* other chip doesn't support SRIOV */ reg = 0; break; } if (reg & 1) adev->virt.caps |= AMDGPU_SRIOV_CAPS_IS_VF; if (reg & 0x80000000) adev->virt.caps |= AMDGPU_SRIOV_CAPS_ENABLE_IOV; if (!reg) { /* passthrough mode exclus sriov mod */ if (is_virtual_machine() && !xen_initial_domain()) adev->virt.caps |= AMDGPU_PASSTHROUGH_MODE; } if (amdgpu_sriov_vf(adev) && adev->asic_type == CHIP_SIENNA_CICHLID) /* VF MMIO access (except mailbox range) from CPU * will be blocked during sriov runtime */ adev->virt.caps |= AMDGPU_VF_MMIO_ACCESS_PROTECT; /* we have the ability to check now */ if (amdgpu_sriov_vf(adev)) { switch (adev->asic_type) { case CHIP_TONGA: case CHIP_FIJI: vi_set_virt_ops(adev); break; case CHIP_VEGA10: soc15_set_virt_ops(adev); #ifdef CONFIG_X86 /* not send GPU_INIT_DATA with MS_HYPERV*/ if (!hypervisor_is_type(X86_HYPER_MS_HYPERV)) #endif /* send a dummy GPU_INIT_DATA request to host on vega10 */ amdgpu_virt_request_init_data(adev); break; case CHIP_VEGA20: case CHIP_ARCTURUS: case CHIP_ALDEBARAN: soc15_set_virt_ops(adev); break; case CHIP_NAVI10: case CHIP_NAVI12: case CHIP_SIENNA_CICHLID: case CHIP_IP_DISCOVERY: nv_set_virt_ops(adev); /* try send GPU_INIT_DATA request to host */ amdgpu_virt_request_init_data(adev); break; default: /* other chip doesn't support SRIOV */ DRM_ERROR("Unknown asic type: %d!\n", adev->asic_type); break; } } } static bool amdgpu_virt_access_debugfs_is_mmio(struct amdgpu_device *adev) { return amdgpu_sriov_is_debug(adev) ? true : false; } static bool amdgpu_virt_access_debugfs_is_kiq(struct amdgpu_device *adev) { return amdgpu_sriov_is_normal(adev) ? true : false; } int amdgpu_virt_enable_access_debugfs(struct amdgpu_device *adev) { if (!amdgpu_sriov_vf(adev) || amdgpu_virt_access_debugfs_is_kiq(adev)) return 0; if (amdgpu_virt_access_debugfs_is_mmio(adev)) adev->virt.caps &= ~AMDGPU_SRIOV_CAPS_RUNTIME; else return -EPERM; return 0; } void amdgpu_virt_disable_access_debugfs(struct amdgpu_device *adev) { if (amdgpu_sriov_vf(adev)) adev->virt.caps |= AMDGPU_SRIOV_CAPS_RUNTIME; } enum amdgpu_sriov_vf_mode amdgpu_virt_get_sriov_vf_mode(struct amdgpu_device *adev) { enum amdgpu_sriov_vf_mode mode; if (amdgpu_sriov_vf(adev)) { if (amdgpu_sriov_is_pp_one_vf(adev)) mode = SRIOV_VF_MODE_ONE_VF; else mode = SRIOV_VF_MODE_MULTI_VF; } else { mode = SRIOV_VF_MODE_BARE_METAL; } return mode; } void amdgpu_virt_post_reset(struct amdgpu_device *adev) { if (adev->ip_versions[GC_HWIP][0] == IP_VERSION(11, 0, 3)) { /* force set to GFXOFF state after reset, * to avoid some invalid operation before GC enable */ adev->gfx.is_poweron = false; } } bool amdgpu_virt_fw_load_skip_check(struct amdgpu_device *adev, uint32_t ucode_id) { switch (adev->ip_versions[MP0_HWIP][0]) { case IP_VERSION(13, 0, 0): /* no vf autoload, white list */ if (ucode_id == AMDGPU_UCODE_ID_VCN1 || ucode_id == AMDGPU_UCODE_ID_VCN) return false; else return true; case IP_VERSION(11, 0, 9): case IP_VERSION(11, 0, 7): /* black list for CHIP_NAVI12 and CHIP_SIENNA_CICHLID */ if (ucode_id == AMDGPU_UCODE_ID_RLC_G || ucode_id == AMDGPU_UCODE_ID_RLC_RESTORE_LIST_CNTL || ucode_id == AMDGPU_UCODE_ID_RLC_RESTORE_LIST_GPM_MEM || ucode_id == AMDGPU_UCODE_ID_RLC_RESTORE_LIST_SRM_MEM || ucode_id == AMDGPU_UCODE_ID_SMC) return true; else return false; case IP_VERSION(13, 0, 10): /* white list */ if (ucode_id == AMDGPU_UCODE_ID_CAP || ucode_id == AMDGPU_UCODE_ID_CP_RS64_PFP || ucode_id == AMDGPU_UCODE_ID_CP_RS64_ME || ucode_id == AMDGPU_UCODE_ID_CP_RS64_MEC || ucode_id == AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK || ucode_id == AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK || ucode_id == AMDGPU_UCODE_ID_CP_MES || ucode_id == AMDGPU_UCODE_ID_CP_MES_DATA || ucode_id == AMDGPU_UCODE_ID_CP_MES1 || ucode_id == AMDGPU_UCODE_ID_CP_MES1_DATA || ucode_id == AMDGPU_UCODE_ID_VCN1 || ucode_id == AMDGPU_UCODE_ID_VCN) return false; else return true; default: /* lagacy black list */ if (ucode_id == AMDGPU_UCODE_ID_SDMA0 || ucode_id == AMDGPU_UCODE_ID_SDMA1 || ucode_id == AMDGPU_UCODE_ID_SDMA2 || ucode_id == AMDGPU_UCODE_ID_SDMA3 || ucode_id == AMDGPU_UCODE_ID_SDMA4 || ucode_id == AMDGPU_UCODE_ID_SDMA5 || ucode_id == AMDGPU_UCODE_ID_SDMA6 || ucode_id == AMDGPU_UCODE_ID_SDMA7 || ucode_id == AMDGPU_UCODE_ID_RLC_G || ucode_id == AMDGPU_UCODE_ID_RLC_RESTORE_LIST_CNTL || ucode_id == AMDGPU_UCODE_ID_RLC_RESTORE_LIST_GPM_MEM || ucode_id == AMDGPU_UCODE_ID_RLC_RESTORE_LIST_SRM_MEM || ucode_id == AMDGPU_UCODE_ID_SMC) return true; else return false; } } void amdgpu_virt_update_sriov_video_codec(struct amdgpu_device *adev, struct amdgpu_video_codec_info *encode, uint32_t encode_array_size, struct amdgpu_video_codec_info *decode, uint32_t decode_array_size) { uint32_t i; if (!adev->virt.is_mm_bw_enabled) return; if (encode) { for (i = 0; i < encode_array_size; i++) { encode[i].max_width = adev->virt.encode_max_dimension_pixels; encode[i].max_pixels_per_frame = adev->virt.encode_max_frame_pixels; if (encode[i].max_width > 0) encode[i].max_height = encode[i].max_pixels_per_frame / encode[i].max_width; else encode[i].max_height = 0; } } if (decode) { for (i = 0; i < decode_array_size; i++) { decode[i].max_width = adev->virt.decode_max_dimension_pixels; decode[i].max_pixels_per_frame = adev->virt.decode_max_frame_pixels; if (decode[i].max_width > 0) decode[i].max_height = decode[i].max_pixels_per_frame / decode[i].max_width; else decode[i].max_height = 0; } } } static bool amdgpu_virt_get_rlcg_reg_access_flag(struct amdgpu_device *adev, u32 acc_flags, u32 hwip, bool write, u32 *rlcg_flag) { bool ret = false; switch (hwip) { case GC_HWIP: if (amdgpu_sriov_reg_indirect_gc(adev)) { *rlcg_flag = write ? AMDGPU_RLCG_GC_WRITE : AMDGPU_RLCG_GC_READ; ret = true; /* only in new version, AMDGPU_REGS_NO_KIQ and * AMDGPU_REGS_RLC are enabled simultaneously */ } else if ((acc_flags & AMDGPU_REGS_RLC) && !(acc_flags & AMDGPU_REGS_NO_KIQ) && write) { *rlcg_flag = AMDGPU_RLCG_GC_WRITE_LEGACY; ret = true; } break; case MMHUB_HWIP: if (amdgpu_sriov_reg_indirect_mmhub(adev) && (acc_flags & AMDGPU_REGS_RLC) && write) { *rlcg_flag = AMDGPU_RLCG_MMHUB_WRITE; ret = true; } break; default: break; } return ret; } static u32 amdgpu_virt_rlcg_reg_rw(struct amdgpu_device *adev, u32 offset, u32 v, u32 flag, u32 xcc_id) { struct amdgpu_rlcg_reg_access_ctrl *reg_access_ctrl; uint32_t timeout = 50000; uint32_t i, tmp; uint32_t ret = 0; void *scratch_reg0; void *scratch_reg1; void *scratch_reg2; void *scratch_reg3; void *spare_int; if (!adev->gfx.rlc.rlcg_reg_access_supported) { dev_err(adev->dev, "indirect registers access through rlcg is not available\n"); return 0; } if (adev->gfx.xcc_mask && (((1 << xcc_id) & adev->gfx.xcc_mask) == 0)) { dev_err(adev->dev, "invalid xcc\n"); return 0; } reg_access_ctrl = &adev->gfx.rlc.reg_access_ctrl[xcc_id]; scratch_reg0 = (void __iomem *)adev->rmmio + 4 * reg_access_ctrl->scratch_reg0; scratch_reg1 = (void __iomem *)adev->rmmio + 4 * reg_access_ctrl->scratch_reg1; scratch_reg2 = (void __iomem *)adev->rmmio + 4 * reg_access_ctrl->scratch_reg2; scratch_reg3 = (void __iomem *)adev->rmmio + 4 * reg_access_ctrl->scratch_reg3; mutex_lock(&adev->virt.rlcg_reg_lock); if (reg_access_ctrl->spare_int) spare_int = (void __iomem *)adev->rmmio + 4 * reg_access_ctrl->spare_int; if (offset == reg_access_ctrl->grbm_cntl) { /* if the target reg offset is grbm_cntl, write to scratch_reg2 */ writel(v, scratch_reg2); if (flag == AMDGPU_RLCG_GC_WRITE_LEGACY) writel(v, ((void __iomem *)adev->rmmio) + (offset * 4)); } else if (offset == reg_access_ctrl->grbm_idx) { /* if the target reg offset is grbm_idx, write to scratch_reg3 */ writel(v, scratch_reg3); if (flag == AMDGPU_RLCG_GC_WRITE_LEGACY) writel(v, ((void __iomem *)adev->rmmio) + (offset * 4)); } else { /* * SCRATCH_REG0 = read/write value * SCRATCH_REG1[30:28] = command * SCRATCH_REG1[19:0] = address in dword * SCRATCH_REG1[26:24] = Error reporting */ writel(v, scratch_reg0); writel((offset | flag), scratch_reg1); if (reg_access_ctrl->spare_int) writel(1, spare_int); for (i = 0; i < timeout; i++) { tmp = readl(scratch_reg1); if (!(tmp & AMDGPU_RLCG_SCRATCH1_ADDRESS_MASK)) break; udelay(10); } if (i >= timeout) { if (amdgpu_sriov_rlcg_error_report_enabled(adev)) { if (tmp & AMDGPU_RLCG_VFGATE_DISABLED) { dev_err(adev->dev, "vfgate is disabled, rlcg failed to program reg: 0x%05x\n", offset); } else if (tmp & AMDGPU_RLCG_WRONG_OPERATION_TYPE) { dev_err(adev->dev, "wrong operation type, rlcg failed to program reg: 0x%05x\n", offset); } else if (tmp & AMDGPU_RLCG_REG_NOT_IN_RANGE) { dev_err(adev->dev, "register is not in range, rlcg failed to program reg: 0x%05x\n", offset); } else { dev_err(adev->dev, "unknown error type, rlcg failed to program reg: 0x%05x\n", offset); } } else { dev_err(adev->dev, "timeout: rlcg faled to program reg: 0x%05x\n", offset); } } } ret = readl(scratch_reg0); mutex_unlock(&adev->virt.rlcg_reg_lock); return ret; } void amdgpu_sriov_wreg(struct amdgpu_device *adev, u32 offset, u32 value, u32 acc_flags, u32 hwip, u32 xcc_id) { u32 rlcg_flag; if (!amdgpu_sriov_runtime(adev) && amdgpu_virt_get_rlcg_reg_access_flag(adev, acc_flags, hwip, true, &rlcg_flag)) { amdgpu_virt_rlcg_reg_rw(adev, offset, value, rlcg_flag, xcc_id); return; } if (acc_flags & AMDGPU_REGS_NO_KIQ) WREG32_NO_KIQ(offset, value); else WREG32(offset, value); } u32 amdgpu_sriov_rreg(struct amdgpu_device *adev, u32 offset, u32 acc_flags, u32 hwip, u32 xcc_id) { u32 rlcg_flag; if (!amdgpu_sriov_runtime(adev) && amdgpu_virt_get_rlcg_reg_access_flag(adev, acc_flags, hwip, false, &rlcg_flag)) return amdgpu_virt_rlcg_reg_rw(adev, offset, 0, rlcg_flag, xcc_id); if (acc_flags & AMDGPU_REGS_NO_KIQ) return RREG32_NO_KIQ(offset); else return RREG32(offset); }