/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include "amdgpu.h" #include "amdgpu_pm.h" #include "amdgpu_dm_debugfs.h" #include "amdgpu_ras.h" #include "amdgpu_rap.h" #include "amdgpu_securedisplay.h" #include "amdgpu_fw_attestation.h" #include "amdgpu_umr.h" #include "amdgpu_reset.h" #include "amdgpu_psp_ta.h" #if defined(CONFIG_DEBUG_FS) /** * amdgpu_debugfs_process_reg_op - Handle MMIO register reads/writes * * @read: True if reading * @f: open file handle * @buf: User buffer to write/read to * @size: Number of bytes to write/read * @pos: Offset to seek to * * This debugfs entry has special meaning on the offset being sought. * Various bits have different meanings: * * Bit 62: Indicates a GRBM bank switch is needed * Bit 61: Indicates a SRBM bank switch is needed (implies bit 62 is * zero) * Bits 24..33: The SE or ME selector if needed * Bits 34..43: The SH (or SA) or PIPE selector if needed * Bits 44..53: The INSTANCE (or CU/WGP) or QUEUE selector if needed * * Bit 23: Indicates that the PM power gating lock should be held * This is necessary to read registers that might be * unreliable during a power gating transistion. * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static int amdgpu_debugfs_process_reg_op(bool read, struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; bool pm_pg_lock, use_bank, use_ring; unsigned instance_bank, sh_bank, se_bank, me, pipe, queue, vmid; pm_pg_lock = use_bank = use_ring = false; instance_bank = sh_bank = se_bank = me = pipe = queue = vmid = 0; if (size & 0x3 || *pos & 0x3 || ((*pos & (1ULL << 62)) && (*pos & (1ULL << 61)))) return -EINVAL; /* are we reading registers for which a PG lock is necessary? */ pm_pg_lock = (*pos >> 23) & 1; if (*pos & (1ULL << 62)) { se_bank = (*pos & GENMASK_ULL(33, 24)) >> 24; sh_bank = (*pos & GENMASK_ULL(43, 34)) >> 34; instance_bank = (*pos & GENMASK_ULL(53, 44)) >> 44; if (se_bank == 0x3FF) se_bank = 0xFFFFFFFF; if (sh_bank == 0x3FF) sh_bank = 0xFFFFFFFF; if (instance_bank == 0x3FF) instance_bank = 0xFFFFFFFF; use_bank = true; } else if (*pos & (1ULL << 61)) { me = (*pos & GENMASK_ULL(33, 24)) >> 24; pipe = (*pos & GENMASK_ULL(43, 34)) >> 34; queue = (*pos & GENMASK_ULL(53, 44)) >> 44; vmid = (*pos & GENMASK_ULL(58, 54)) >> 54; use_ring = true; } else { use_bank = use_ring = false; } *pos &= (1UL << 22) - 1; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } if (use_bank) { if ((sh_bank != 0xFFFFFFFF && sh_bank >= adev->gfx.config.max_sh_per_se) || (se_bank != 0xFFFFFFFF && se_bank >= adev->gfx.config.max_shader_engines)) { pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return -EINVAL; } mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, se_bank, sh_bank, instance_bank); } else if (use_ring) { mutex_lock(&adev->srbm_mutex); amdgpu_gfx_select_me_pipe_q(adev, me, pipe, queue, vmid); } if (pm_pg_lock) mutex_lock(&adev->pm.mutex); while (size) { uint32_t value; if (read) { value = RREG32(*pos >> 2); r = put_user(value, (uint32_t *)buf); } else { r = get_user(value, (uint32_t *)buf); if (!r) amdgpu_mm_wreg_mmio_rlc(adev, *pos >> 2, value); } if (r) { result = r; goto end; } result += 4; buf += 4; *pos += 4; size -= 4; } end: if (use_bank) { amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); } else if (use_ring) { amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } if (pm_pg_lock) mutex_unlock(&adev->pm.mutex); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /* * amdgpu_debugfs_regs_read - Callback for reading MMIO registers */ static ssize_t amdgpu_debugfs_regs_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { return amdgpu_debugfs_process_reg_op(true, f, buf, size, pos); } /* * amdgpu_debugfs_regs_write - Callback for writing MMIO registers */ static ssize_t amdgpu_debugfs_regs_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { return amdgpu_debugfs_process_reg_op(false, f, (char __user *)buf, size, pos); } static int amdgpu_debugfs_regs2_open(struct inode *inode, struct file *file) { struct amdgpu_debugfs_regs2_data *rd; rd = kzalloc(sizeof *rd, GFP_KERNEL); if (!rd) return -ENOMEM; rd->adev = file_inode(file)->i_private; file->private_data = rd; mutex_init(&rd->lock); return 0; } static int amdgpu_debugfs_regs2_release(struct inode *inode, struct file *file) { struct amdgpu_debugfs_regs2_data *rd = file->private_data; mutex_destroy(&rd->lock); kfree(file->private_data); return 0; } static ssize_t amdgpu_debugfs_regs2_op(struct file *f, char __user *buf, u32 offset, size_t size, int write_en) { struct amdgpu_debugfs_regs2_data *rd = f->private_data; struct amdgpu_device *adev = rd->adev; ssize_t result = 0; int r; uint32_t value; if (size & 0x3 || offset & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } mutex_lock(&rd->lock); if (rd->id.use_grbm) { if ((rd->id.grbm.sh != 0xFFFFFFFF && rd->id.grbm.sh >= adev->gfx.config.max_sh_per_se) || (rd->id.grbm.se != 0xFFFFFFFF && rd->id.grbm.se >= adev->gfx.config.max_shader_engines)) { pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); mutex_unlock(&rd->lock); return -EINVAL; } mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, rd->id.grbm.se, rd->id.grbm.sh, rd->id.grbm.instance); } if (rd->id.use_srbm) { mutex_lock(&adev->srbm_mutex); amdgpu_gfx_select_me_pipe_q(adev, rd->id.srbm.me, rd->id.srbm.pipe, rd->id.srbm.queue, rd->id.srbm.vmid); } if (rd->id.pg_lock) mutex_lock(&adev->pm.mutex); while (size) { if (!write_en) { value = RREG32(offset >> 2); r = put_user(value, (uint32_t *)buf); } else { r = get_user(value, (uint32_t *)buf); if (!r) amdgpu_mm_wreg_mmio_rlc(adev, offset >> 2, value); } if (r) { result = r; goto end; } offset += 4; size -= 4; result += 4; buf += 4; } end: if (rd->id.use_grbm) { amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); } if (rd->id.use_srbm) { amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } if (rd->id.pg_lock) mutex_unlock(&adev->pm.mutex); mutex_unlock(&rd->lock); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } static long amdgpu_debugfs_regs2_ioctl(struct file *f, unsigned int cmd, unsigned long data) { struct amdgpu_debugfs_regs2_data *rd = f->private_data; int r; switch (cmd) { case AMDGPU_DEBUGFS_REGS2_IOC_SET_STATE: mutex_lock(&rd->lock); r = copy_from_user(&rd->id, (struct amdgpu_debugfs_regs2_iocdata *)data, sizeof rd->id); mutex_unlock(&rd->lock); return r ? -EINVAL : 0; default: return -EINVAL; } return 0; } static ssize_t amdgpu_debugfs_regs2_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { return amdgpu_debugfs_regs2_op(f, buf, *pos, size, 0); } static ssize_t amdgpu_debugfs_regs2_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { return amdgpu_debugfs_regs2_op(f, (char __user *)buf, *pos, size, 1); } /** * amdgpu_debugfs_regs_pcie_read - Read from a PCIE register * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_pcie_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; value = RREG32_PCIE(*pos); r = put_user(value, (uint32_t *)buf); if (r) goto out; result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } /** * amdgpu_debugfs_regs_pcie_write - Write to a PCIE register * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to write. This * allows writing multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_pcie_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) goto out; WREG32_PCIE(*pos, value); result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } /** * amdgpu_debugfs_regs_didt_read - Read from a DIDT register * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_didt_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; value = RREG32_DIDT(*pos >> 2); r = put_user(value, (uint32_t *)buf); if (r) goto out; result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } /** * amdgpu_debugfs_regs_didt_write - Write to a DIDT register * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to write. This * allows writing multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_didt_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) goto out; WREG32_DIDT(*pos >> 2, value); result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } /** * amdgpu_debugfs_regs_smc_read - Read from a SMC register * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_smc_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; value = RREG32_SMC(*pos); r = put_user(value, (uint32_t *)buf); if (r) goto out; result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } /** * amdgpu_debugfs_regs_smc_write - Write to a SMC register * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to write. This * allows writing multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_smc_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) goto out; WREG32_SMC(*pos, value); result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } /** * amdgpu_debugfs_gca_config_read - Read from gfx config data * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * This file is used to access configuration data in a somewhat * stable fashion. The format is a series of DWORDs with the first * indicating which revision it is. New content is appended to the * end so that older software can still read the data. */ static ssize_t amdgpu_debugfs_gca_config_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; uint32_t *config, no_regs = 0; if (size & 0x3 || *pos & 0x3) return -EINVAL; config = kmalloc_array(256, sizeof(*config), GFP_KERNEL); if (!config) return -ENOMEM; /* version, increment each time something is added */ config[no_regs++] = 5; config[no_regs++] = adev->gfx.config.max_shader_engines; config[no_regs++] = adev->gfx.config.max_tile_pipes; config[no_regs++] = adev->gfx.config.max_cu_per_sh; config[no_regs++] = adev->gfx.config.max_sh_per_se; config[no_regs++] = adev->gfx.config.max_backends_per_se; config[no_regs++] = adev->gfx.config.max_texture_channel_caches; config[no_regs++] = adev->gfx.config.max_gprs; config[no_regs++] = adev->gfx.config.max_gs_threads; config[no_regs++] = adev->gfx.config.max_hw_contexts; config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_frontend; config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_backend; config[no_regs++] = adev->gfx.config.sc_hiz_tile_fifo_size; config[no_regs++] = adev->gfx.config.sc_earlyz_tile_fifo_size; config[no_regs++] = adev->gfx.config.num_tile_pipes; config[no_regs++] = adev->gfx.config.backend_enable_mask; config[no_regs++] = adev->gfx.config.mem_max_burst_length_bytes; config[no_regs++] = adev->gfx.config.mem_row_size_in_kb; config[no_regs++] = adev->gfx.config.shader_engine_tile_size; config[no_regs++] = adev->gfx.config.num_gpus; config[no_regs++] = adev->gfx.config.multi_gpu_tile_size; config[no_regs++] = adev->gfx.config.mc_arb_ramcfg; config[no_regs++] = adev->gfx.config.gb_addr_config; config[no_regs++] = adev->gfx.config.num_rbs; /* rev==1 */ config[no_regs++] = adev->rev_id; config[no_regs++] = lower_32_bits(adev->pg_flags); config[no_regs++] = lower_32_bits(adev->cg_flags); /* rev==2 */ config[no_regs++] = adev->family; config[no_regs++] = adev->external_rev_id; /* rev==3 */ config[no_regs++] = adev->pdev->device; config[no_regs++] = adev->pdev->revision; config[no_regs++] = adev->pdev->subsystem_device; config[no_regs++] = adev->pdev->subsystem_vendor; /* rev==4 APU flag */ config[no_regs++] = adev->flags & AMD_IS_APU ? 1 : 0; /* rev==5 PG/CG flag upper 32bit */ config[no_regs++] = upper_32_bits(adev->pg_flags); config[no_regs++] = upper_32_bits(adev->cg_flags); while (size && (*pos < no_regs * 4)) { uint32_t value; value = config[*pos >> 2]; r = put_user(value, (uint32_t *)buf); if (r) { kfree(config); return r; } result += 4; buf += 4; *pos += 4; size -= 4; } kfree(config); return result; } /** * amdgpu_debugfs_sensor_read - Read from the powerplay sensors * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The offset is treated as the BYTE address of one of the sensors * enumerated in amd/include/kgd_pp_interface.h under the * 'amd_pp_sensors' enumeration. For instance to read the UVD VCLK * you would use the offset 3 * 4 = 12. */ static ssize_t amdgpu_debugfs_sensor_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; int idx, x, outsize, r, valuesize; uint32_t values[16]; if (size & 3 || *pos & 0x3) return -EINVAL; if (!adev->pm.dpm_enabled) return -EINVAL; /* convert offset to sensor number */ idx = *pos >> 2; valuesize = sizeof(values); r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_dpm_read_sensor(adev, idx, &values[0], &valuesize); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) { amdgpu_virt_disable_access_debugfs(adev); return r; } if (size > valuesize) { amdgpu_virt_disable_access_debugfs(adev); return -EINVAL; } outsize = 0; x = 0; if (!r) { while (size) { r = put_user(values[x++], (int32_t *)buf); buf += 4; size -= 4; outsize += 4; } } amdgpu_virt_disable_access_debugfs(adev); return !r ? outsize : r; } /** amdgpu_debugfs_wave_read - Read WAVE STATUS data * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The offset being sought changes which wave that the status data * will be returned for. The bits are used as follows: * * Bits 0..6: Byte offset into data * Bits 7..14: SE selector * Bits 15..22: SH/SA selector * Bits 23..30: CU/{WGP+SIMD} selector * Bits 31..36: WAVE ID selector * Bits 37..44: SIMD ID selector * * The returned data begins with one DWORD of version information * Followed by WAVE STATUS registers relevant to the GFX IP version * being used. See gfx_v8_0_read_wave_data() for an example output. */ static ssize_t amdgpu_debugfs_wave_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = f->f_inode->i_private; int r, x; ssize_t result = 0; uint32_t offset, se, sh, cu, wave, simd, data[32]; if (size & 3 || *pos & 3) return -EINVAL; /* decode offset */ offset = (*pos & GENMASK_ULL(6, 0)); se = (*pos & GENMASK_ULL(14, 7)) >> 7; sh = (*pos & GENMASK_ULL(22, 15)) >> 15; cu = (*pos & GENMASK_ULL(30, 23)) >> 23; wave = (*pos & GENMASK_ULL(36, 31)) >> 31; simd = (*pos & GENMASK_ULL(44, 37)) >> 37; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* switch to the specific se/sh/cu */ mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, se, sh, cu); x = 0; if (adev->gfx.funcs->read_wave_data) adev->gfx.funcs->read_wave_data(adev, simd, wave, data, &x); amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); mutex_unlock(&adev->grbm_idx_mutex); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (!x) { amdgpu_virt_disable_access_debugfs(adev); return -EINVAL; } while (size && (offset < x * 4)) { uint32_t value; value = data[offset >> 2]; r = put_user(value, (uint32_t *)buf); if (r) { amdgpu_virt_disable_access_debugfs(adev); return r; } result += 4; buf += 4; offset += 4; size -= 4; } amdgpu_virt_disable_access_debugfs(adev); return result; } /** amdgpu_debugfs_gpr_read - Read wave gprs * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The offset being sought changes which wave that the status data * will be returned for. The bits are used as follows: * * Bits 0..11: Byte offset into data * Bits 12..19: SE selector * Bits 20..27: SH/SA selector * Bits 28..35: CU/{WGP+SIMD} selector * Bits 36..43: WAVE ID selector * Bits 37..44: SIMD ID selector * Bits 52..59: Thread selector * Bits 60..61: Bank selector (VGPR=0,SGPR=1) * * The return data comes from the SGPR or VGPR register bank for * the selected operational unit. */ static ssize_t amdgpu_debugfs_gpr_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = f->f_inode->i_private; int r; ssize_t result = 0; uint32_t offset, se, sh, cu, wave, simd, thread, bank, *data; if (size > 4096 || size & 3 || *pos & 3) return -EINVAL; /* decode offset */ offset = (*pos & GENMASK_ULL(11, 0)) >> 2; se = (*pos & GENMASK_ULL(19, 12)) >> 12; sh = (*pos & GENMASK_ULL(27, 20)) >> 20; cu = (*pos & GENMASK_ULL(35, 28)) >> 28; wave = (*pos & GENMASK_ULL(43, 36)) >> 36; simd = (*pos & GENMASK_ULL(51, 44)) >> 44; thread = (*pos & GENMASK_ULL(59, 52)) >> 52; bank = (*pos & GENMASK_ULL(61, 60)) >> 60; data = kcalloc(1024, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) goto err; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) goto err; /* switch to the specific se/sh/cu */ mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, se, sh, cu); if (bank == 0) { if (adev->gfx.funcs->read_wave_vgprs) adev->gfx.funcs->read_wave_vgprs(adev, simd, wave, thread, offset, size>>2, data); } else { if (adev->gfx.funcs->read_wave_sgprs) adev->gfx.funcs->read_wave_sgprs(adev, simd, wave, offset, size>>2, data); } amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); mutex_unlock(&adev->grbm_idx_mutex); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); while (size) { uint32_t value; value = data[result >> 2]; r = put_user(value, (uint32_t *)buf); if (r) { amdgpu_virt_disable_access_debugfs(adev); goto err; } result += 4; buf += 4; size -= 4; } kfree(data); amdgpu_virt_disable_access_debugfs(adev); return result; err: pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); kfree(data); return r; } /** * amdgpu_debugfs_gfxoff_write - Enable/disable GFXOFF * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * Write a 32-bit zero to disable or a 32-bit non-zero to enable */ static ssize_t amdgpu_debugfs_gfxoff_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) goto out; amdgpu_gfx_off_ctrl(adev, value ? true : false); result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /** * amdgpu_debugfs_gfxoff_read - read gfxoff status * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to */ static ssize_t amdgpu_debugfs_gfxoff_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { u32 value = adev->gfx.gfx_off_state; r = put_user(value, (u32 *)buf); if (r) goto out; result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } static ssize_t amdgpu_debugfs_gfxoff_status_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } while (size) { u32 value; r = amdgpu_get_gfx_off_status(adev, &value); if (r) goto out; r = put_user(value, (u32 *)buf); if (r) goto out; result += 4; buf += 4; *pos += 4; size -= 4; } r = result; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } static const struct file_operations amdgpu_debugfs_regs2_fops = { .owner = THIS_MODULE, .unlocked_ioctl = amdgpu_debugfs_regs2_ioctl, .read = amdgpu_debugfs_regs2_read, .write = amdgpu_debugfs_regs2_write, .open = amdgpu_debugfs_regs2_open, .release = amdgpu_debugfs_regs2_release, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_read, .write = amdgpu_debugfs_regs_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_didt_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_didt_read, .write = amdgpu_debugfs_regs_didt_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_pcie_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_pcie_read, .write = amdgpu_debugfs_regs_pcie_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_smc_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_smc_read, .write = amdgpu_debugfs_regs_smc_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gca_config_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_gca_config_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_sensors_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_sensor_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_wave_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_wave_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gpr_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_gpr_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gfxoff_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_gfxoff_read, .write = amdgpu_debugfs_gfxoff_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gfxoff_status_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_gfxoff_status_read, .llseek = default_llseek }; static const struct file_operations *debugfs_regs[] = { &amdgpu_debugfs_regs_fops, &amdgpu_debugfs_regs2_fops, &amdgpu_debugfs_regs_didt_fops, &amdgpu_debugfs_regs_pcie_fops, &amdgpu_debugfs_regs_smc_fops, &amdgpu_debugfs_gca_config_fops, &amdgpu_debugfs_sensors_fops, &amdgpu_debugfs_wave_fops, &amdgpu_debugfs_gpr_fops, &amdgpu_debugfs_gfxoff_fops, &amdgpu_debugfs_gfxoff_status_fops, }; static const char *debugfs_regs_names[] = { "amdgpu_regs", "amdgpu_regs2", "amdgpu_regs_didt", "amdgpu_regs_pcie", "amdgpu_regs_smc", "amdgpu_gca_config", "amdgpu_sensors", "amdgpu_wave", "amdgpu_gpr", "amdgpu_gfxoff", "amdgpu_gfxoff_status", }; /** * amdgpu_debugfs_regs_init - Initialize debugfs entries that provide * register access. * * @adev: The device to attach the debugfs entries to */ int amdgpu_debugfs_regs_init(struct amdgpu_device *adev) { struct drm_minor *minor = adev_to_drm(adev)->primary; struct dentry *ent, *root = minor->debugfs_root; unsigned int i; for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) { ent = debugfs_create_file(debugfs_regs_names[i], S_IFREG | S_IRUGO, root, adev, debugfs_regs[i]); if (!i && !IS_ERR_OR_NULL(ent)) i_size_write(ent->d_inode, adev->rmmio_size); } return 0; } static int amdgpu_debugfs_test_ib_show(struct seq_file *m, void *unused) { struct amdgpu_device *adev = (struct amdgpu_device *)m->private; struct drm_device *dev = adev_to_drm(adev); int r = 0, i; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } /* Avoid accidently unparking the sched thread during GPU reset */ r = down_write_killable(&adev->reset_domain->sem); if (r) return r; /* hold on the scheduler */ for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; kthread_park(ring->sched.thread); } seq_printf(m, "run ib test:\n"); r = amdgpu_ib_ring_tests(adev); if (r) seq_printf(m, "ib ring tests failed (%d).\n", r); else seq_printf(m, "ib ring tests passed.\n"); /* go on the scheduler */ for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; kthread_unpark(ring->sched.thread); } up_write(&adev->reset_domain->sem); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } static int amdgpu_debugfs_evict_vram(void *data, u64 *val) { struct amdgpu_device *adev = (struct amdgpu_device *)data; struct drm_device *dev = adev_to_drm(adev); int r; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } *val = amdgpu_ttm_evict_resources(adev, TTM_PL_VRAM); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } static int amdgpu_debugfs_evict_gtt(void *data, u64 *val) { struct amdgpu_device *adev = (struct amdgpu_device *)data; struct drm_device *dev = adev_to_drm(adev); int r; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } *val = amdgpu_ttm_evict_resources(adev, TTM_PL_TT); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } static int amdgpu_debugfs_benchmark(void *data, u64 val) { struct amdgpu_device *adev = (struct amdgpu_device *)data; struct drm_device *dev = adev_to_drm(adev); int r; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } r = amdgpu_benchmark(adev, val); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return r; } static int amdgpu_debugfs_vm_info_show(struct seq_file *m, void *unused) { struct amdgpu_device *adev = (struct amdgpu_device *)m->private; struct drm_device *dev = adev_to_drm(adev); struct drm_file *file; int r; r = mutex_lock_interruptible(&dev->filelist_mutex); if (r) return r; list_for_each_entry(file, &dev->filelist, lhead) { struct amdgpu_fpriv *fpriv = file->driver_priv; struct amdgpu_vm *vm = &fpriv->vm; seq_printf(m, "pid:%d\tProcess:%s ----------\n", vm->task_info.pid, vm->task_info.process_name); r = amdgpu_bo_reserve(vm->root.bo, true); if (r) break; amdgpu_debugfs_vm_bo_info(vm, m); amdgpu_bo_unreserve(vm->root.bo); } mutex_unlock(&dev->filelist_mutex); return r; } DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_test_ib); DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_vm_info); DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_evict_vram_fops, amdgpu_debugfs_evict_vram, NULL, "%lld\n"); DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_evict_gtt_fops, amdgpu_debugfs_evict_gtt, NULL, "%lld\n"); DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_benchmark_fops, NULL, amdgpu_debugfs_benchmark, "%lld\n"); static void amdgpu_ib_preempt_fences_swap(struct amdgpu_ring *ring, struct dma_fence **fences) { struct amdgpu_fence_driver *drv = &ring->fence_drv; uint32_t sync_seq, last_seq; last_seq = atomic_read(&ring->fence_drv.last_seq); sync_seq = ring->fence_drv.sync_seq; last_seq &= drv->num_fences_mask; sync_seq &= drv->num_fences_mask; do { struct dma_fence *fence, **ptr; ++last_seq; last_seq &= drv->num_fences_mask; ptr = &drv->fences[last_seq]; fence = rcu_dereference_protected(*ptr, 1); RCU_INIT_POINTER(*ptr, NULL); if (!fence) continue; fences[last_seq] = fence; } while (last_seq != sync_seq); } static void amdgpu_ib_preempt_signal_fences(struct dma_fence **fences, int length) { int i; struct dma_fence *fence; for (i = 0; i < length; i++) { fence = fences[i]; if (!fence) continue; dma_fence_signal(fence); dma_fence_put(fence); } } static void amdgpu_ib_preempt_job_recovery(struct drm_gpu_scheduler *sched) { struct drm_sched_job *s_job; struct dma_fence *fence; spin_lock(&sched->job_list_lock); list_for_each_entry(s_job, &sched->pending_list, list) { fence = sched->ops->run_job(s_job); dma_fence_put(fence); } spin_unlock(&sched->job_list_lock); } static void amdgpu_ib_preempt_mark_partial_job(struct amdgpu_ring *ring) { struct amdgpu_job *job; struct drm_sched_job *s_job, *tmp; uint32_t preempt_seq; struct dma_fence *fence, **ptr; struct amdgpu_fence_driver *drv = &ring->fence_drv; struct drm_gpu_scheduler *sched = &ring->sched; bool preempted = true; if (ring->funcs->type != AMDGPU_RING_TYPE_GFX) return; preempt_seq = le32_to_cpu(*(drv->cpu_addr + 2)); if (preempt_seq <= atomic_read(&drv->last_seq)) { preempted = false; goto no_preempt; } preempt_seq &= drv->num_fences_mask; ptr = &drv->fences[preempt_seq]; fence = rcu_dereference_protected(*ptr, 1); no_preempt: spin_lock(&sched->job_list_lock); list_for_each_entry_safe(s_job, tmp, &sched->pending_list, list) { if (dma_fence_is_signaled(&s_job->s_fence->finished)) { /* remove job from ring_mirror_list */ list_del_init(&s_job->list); sched->ops->free_job(s_job); continue; } job = to_amdgpu_job(s_job); if (preempted && (&job->hw_fence) == fence) /* mark the job as preempted */ job->preemption_status |= AMDGPU_IB_PREEMPTED; } spin_unlock(&sched->job_list_lock); } static int amdgpu_debugfs_ib_preempt(void *data, u64 val) { int r, resched, length; struct amdgpu_ring *ring; struct dma_fence **fences = NULL; struct amdgpu_device *adev = (struct amdgpu_device *)data; if (val >= AMDGPU_MAX_RINGS) return -EINVAL; ring = adev->rings[val]; if (!ring || !ring->funcs->preempt_ib || !ring->sched.thread) return -EINVAL; /* the last preemption failed */ if (ring->trail_seq != le32_to_cpu(*ring->trail_fence_cpu_addr)) return -EBUSY; length = ring->fence_drv.num_fences_mask + 1; fences = kcalloc(length, sizeof(void *), GFP_KERNEL); if (!fences) return -ENOMEM; /* Avoid accidently unparking the sched thread during GPU reset */ r = down_read_killable(&adev->reset_domain->sem); if (r) goto pro_end; /* stop the scheduler */ kthread_park(ring->sched.thread); resched = ttm_bo_lock_delayed_workqueue(&adev->mman.bdev); /* preempt the IB */ r = amdgpu_ring_preempt_ib(ring); if (r) { DRM_WARN("failed to preempt ring %d\n", ring->idx); goto failure; } amdgpu_fence_process(ring); if (atomic_read(&ring->fence_drv.last_seq) != ring->fence_drv.sync_seq) { DRM_INFO("ring %d was preempted\n", ring->idx); amdgpu_ib_preempt_mark_partial_job(ring); /* swap out the old fences */ amdgpu_ib_preempt_fences_swap(ring, fences); amdgpu_fence_driver_force_completion(ring); /* resubmit unfinished jobs */ amdgpu_ib_preempt_job_recovery(&ring->sched); /* wait for jobs finished */ amdgpu_fence_wait_empty(ring); /* signal the old fences */ amdgpu_ib_preempt_signal_fences(fences, length); } failure: /* restart the scheduler */ kthread_unpark(ring->sched.thread); up_read(&adev->reset_domain->sem); ttm_bo_unlock_delayed_workqueue(&adev->mman.bdev, resched); pro_end: kfree(fences); return r; } static int amdgpu_debugfs_sclk_set(void *data, u64 val) { int ret = 0; uint32_t max_freq, min_freq; struct amdgpu_device *adev = (struct amdgpu_device *)data; if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return -EINVAL; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_dpm_freq_range(adev, PP_SCLK, &min_freq, &max_freq); if (ret == -EOPNOTSUPP) { ret = 0; goto out; } if (ret || val > max_freq || val < min_freq) { ret = -EINVAL; goto out; } ret = amdgpu_dpm_set_soft_freq_range(adev, PP_SCLK, (uint32_t)val, (uint32_t)val); if (ret) ret = -EINVAL; out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(fops_ib_preempt, NULL, amdgpu_debugfs_ib_preempt, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_sclk_set, NULL, amdgpu_debugfs_sclk_set, "%llu\n"); static ssize_t amdgpu_reset_dump_register_list_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; char reg_offset[12]; int i, ret, len = 0; if (*pos) return 0; memset(reg_offset, 0, 12); ret = down_read_killable(&adev->reset_domain->sem); if (ret) return ret; for (i = 0; i < adev->num_regs; i++) { sprintf(reg_offset, "0x%x\n", adev->reset_dump_reg_list[i]); up_read(&adev->reset_domain->sem); if (copy_to_user(buf + len, reg_offset, strlen(reg_offset))) return -EFAULT; len += strlen(reg_offset); ret = down_read_killable(&adev->reset_domain->sem); if (ret) return ret; } up_read(&adev->reset_domain->sem); *pos += len; return len; } static ssize_t amdgpu_reset_dump_register_list_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private; char reg_offset[11]; uint32_t *new, *tmp = NULL; int ret, i = 0, len = 0; do { memset(reg_offset, 0, 11); if (copy_from_user(reg_offset, buf + len, min(10, ((int)size-len)))) { ret = -EFAULT; goto error_free; } new = krealloc_array(tmp, i + 1, sizeof(uint32_t), GFP_KERNEL); if (!new) { ret = -ENOMEM; goto error_free; } tmp = new; if (sscanf(reg_offset, "%X %n", &tmp[i], &ret) != 1) { ret = -EINVAL; goto error_free; } len += ret; i++; } while (len < size); new = kmalloc_array(i, sizeof(uint32_t), GFP_KERNEL); if (!new) { ret = -ENOMEM; goto error_free; } ret = down_write_killable(&adev->reset_domain->sem); if (ret) goto error_free; swap(adev->reset_dump_reg_list, tmp); swap(adev->reset_dump_reg_value, new); adev->num_regs = i; up_write(&adev->reset_domain->sem); ret = size; error_free: kfree(tmp); kfree(new); return ret; } static const struct file_operations amdgpu_reset_dump_register_list = { .owner = THIS_MODULE, .read = amdgpu_reset_dump_register_list_read, .write = amdgpu_reset_dump_register_list_write, .llseek = default_llseek }; int amdgpu_debugfs_init(struct amdgpu_device *adev) { struct dentry *root = adev_to_drm(adev)->primary->debugfs_root; struct dentry *ent; int r, i; if (!debugfs_initialized()) return 0; debugfs_create_x32("amdgpu_smu_debug", 0600, root, &adev->pm.smu_debug_mask); ent = debugfs_create_file("amdgpu_preempt_ib", 0600, root, adev, &fops_ib_preempt); if (IS_ERR(ent)) { DRM_ERROR("unable to create amdgpu_preempt_ib debugsfs file\n"); return PTR_ERR(ent); } ent = debugfs_create_file("amdgpu_force_sclk", 0200, root, adev, &fops_sclk_set); if (IS_ERR(ent)) { DRM_ERROR("unable to create amdgpu_set_sclk debugsfs file\n"); return PTR_ERR(ent); } /* Register debugfs entries for amdgpu_ttm */ amdgpu_ttm_debugfs_init(adev); amdgpu_debugfs_pm_init(adev); amdgpu_debugfs_sa_init(adev); amdgpu_debugfs_fence_init(adev); amdgpu_debugfs_gem_init(adev); r = amdgpu_debugfs_regs_init(adev); if (r) DRM_ERROR("registering register debugfs failed (%d).\n", r); amdgpu_debugfs_firmware_init(adev); amdgpu_ta_if_debugfs_init(adev); #if defined(CONFIG_DRM_AMD_DC) if (amdgpu_device_has_dc_support(adev)) dtn_debugfs_init(adev); #endif for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring) continue; amdgpu_debugfs_ring_init(adev, ring); } for ( i = 0; i < adev->vcn.num_vcn_inst; i++) { if (!amdgpu_vcnfw_log) break; if (adev->vcn.harvest_config & (1 << i)) continue; amdgpu_debugfs_vcn_fwlog_init(adev, i, &adev->vcn.inst[i]); } amdgpu_ras_debugfs_create_all(adev); amdgpu_rap_debugfs_init(adev); amdgpu_securedisplay_debugfs_init(adev); amdgpu_fw_attestation_debugfs_init(adev); debugfs_create_file("amdgpu_evict_vram", 0444, root, adev, &amdgpu_evict_vram_fops); debugfs_create_file("amdgpu_evict_gtt", 0444, root, adev, &amdgpu_evict_gtt_fops); debugfs_create_file("amdgpu_test_ib", 0444, root, adev, &amdgpu_debugfs_test_ib_fops); debugfs_create_file("amdgpu_vm_info", 0444, root, adev, &amdgpu_debugfs_vm_info_fops); debugfs_create_file("amdgpu_benchmark", 0200, root, adev, &amdgpu_benchmark_fops); debugfs_create_file("amdgpu_reset_dump_register_list", 0644, root, adev, &amdgpu_reset_dump_register_list); adev->debugfs_vbios_blob.data = adev->bios; adev->debugfs_vbios_blob.size = adev->bios_size; debugfs_create_blob("amdgpu_vbios", 0444, root, &adev->debugfs_vbios_blob); adev->debugfs_discovery_blob.data = adev->mman.discovery_bin; adev->debugfs_discovery_blob.size = adev->mman.discovery_tmr_size; debugfs_create_blob("amdgpu_discovery", 0444, root, &adev->debugfs_discovery_blob); return 0; } #else int amdgpu_debugfs_init(struct amdgpu_device *adev) { return 0; } int amdgpu_debugfs_regs_init(struct amdgpu_device *adev) { return 0; } #endif