// SPDX-License-Identifier: GPL-2.0-or-later // Copyright (C) IBM Corporation 2018 // FSI master driver for AST2600 #include <linux/clk.h> #include <linux/delay.h> #include <linux/fsi.h> #include <linux/io.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/iopoll.h> #include <linux/gpio/consumer.h> #include "fsi-master.h" struct fsi_master_aspeed { struct fsi_master master; struct mutex lock; /* protect HW access */ struct device *dev; void __iomem *base; struct clk *clk; struct gpio_desc *cfam_reset_gpio; }; #define to_fsi_master_aspeed(m) \ container_of(m, struct fsi_master_aspeed, master) /* Control register (size 0x400) */ static const u32 ctrl_base = 0x80000000; static const u32 fsi_base = 0xa0000000; #define OPB_FSI_VER 0x00 #define OPB_TRIGGER 0x04 #define OPB_CTRL_BASE 0x08 #define OPB_FSI_BASE 0x0c #define OPB_CLK_SYNC 0x3c #define OPB_IRQ_CLEAR 0x40 #define OPB_IRQ_MASK 0x44 #define OPB_IRQ_STATUS 0x48 #define OPB0_SELECT 0x10 #define OPB0_RW 0x14 #define OPB0_XFER_SIZE 0x18 #define OPB0_FSI_ADDR 0x1c #define OPB0_FSI_DATA_W 0x20 #define OPB0_STATUS 0x80 #define OPB0_FSI_DATA_R 0x84 #define OPB0_WRITE_ORDER1 0x4c #define OPB0_WRITE_ORDER2 0x50 #define OPB1_WRITE_ORDER1 0x54 #define OPB1_WRITE_ORDER2 0x58 #define OPB0_READ_ORDER1 0x5c #define OPB1_READ_ORDER2 0x60 #define OPB_RETRY_COUNTER 0x64 /* OPBn_STATUS */ #define STATUS_HALFWORD_ACK BIT(0) #define STATUS_FULLWORD_ACK BIT(1) #define STATUS_ERR_ACK BIT(2) #define STATUS_RETRY BIT(3) #define STATUS_TIMEOUT BIT(4) /* OPB_IRQ_MASK */ #define OPB1_XFER_ACK_EN BIT(17) #define OPB0_XFER_ACK_EN BIT(16) /* OPB_RW */ #define CMD_READ BIT(0) #define CMD_WRITE 0 /* OPBx_XFER_SIZE */ #define XFER_FULLWORD (BIT(1) | BIT(0)) #define XFER_HALFWORD (BIT(0)) #define XFER_BYTE (0) #define CREATE_TRACE_POINTS #include <trace/events/fsi_master_aspeed.h> #define FSI_LINK_ENABLE_SETUP_TIME 10 /* in mS */ /* Run the bus at maximum speed by default */ #define FSI_DIVISOR_DEFAULT 1 #define FSI_DIVISOR_CABLED 2 static u16 aspeed_fsi_divisor = FSI_DIVISOR_DEFAULT; module_param_named(bus_div,aspeed_fsi_divisor, ushort, 0); #define OPB_POLL_TIMEOUT 500 static int __opb_write(struct fsi_master_aspeed *aspeed, u32 addr, u32 val, u32 transfer_size) { void __iomem *base = aspeed->base; u32 reg, status; int ret; /* * The ordering of these writes up until the trigger * write does not matter, so use writel_relaxed. */ writel_relaxed(CMD_WRITE, base + OPB0_RW); writel_relaxed(transfer_size, base + OPB0_XFER_SIZE); writel_relaxed(addr, base + OPB0_FSI_ADDR); writel_relaxed(val, base + OPB0_FSI_DATA_W); writel_relaxed(0x1, base + OPB_IRQ_CLEAR); writel(0x1, base + OPB_TRIGGER); ret = readl_poll_timeout(base + OPB_IRQ_STATUS, reg, (reg & OPB0_XFER_ACK_EN) != 0, 0, OPB_POLL_TIMEOUT); status = readl(base + OPB0_STATUS); trace_fsi_master_aspeed_opb_write(addr, val, transfer_size, status, reg); /* Return error when poll timed out */ if (ret) return ret; /* Command failed, master will reset */ if (status & STATUS_ERR_ACK) return -EIO; return 0; } static int opb_writeb(struct fsi_master_aspeed *aspeed, u32 addr, u8 val) { return __opb_write(aspeed, addr, val, XFER_BYTE); } static int opb_writew(struct fsi_master_aspeed *aspeed, u32 addr, __be16 val) { return __opb_write(aspeed, addr, (__force u16)val, XFER_HALFWORD); } static int opb_writel(struct fsi_master_aspeed *aspeed, u32 addr, __be32 val) { return __opb_write(aspeed, addr, (__force u32)val, XFER_FULLWORD); } static int __opb_read(struct fsi_master_aspeed *aspeed, uint32_t addr, u32 transfer_size, void *out) { void __iomem *base = aspeed->base; u32 result, reg; int status, ret; /* * The ordering of these writes up until the trigger * write does not matter, so use writel_relaxed. */ writel_relaxed(CMD_READ, base + OPB0_RW); writel_relaxed(transfer_size, base + OPB0_XFER_SIZE); writel_relaxed(addr, base + OPB0_FSI_ADDR); writel_relaxed(0x1, base + OPB_IRQ_CLEAR); writel(0x1, base + OPB_TRIGGER); ret = readl_poll_timeout(base + OPB_IRQ_STATUS, reg, (reg & OPB0_XFER_ACK_EN) != 0, 0, OPB_POLL_TIMEOUT); status = readl(base + OPB0_STATUS); result = readl(base + OPB0_FSI_DATA_R); trace_fsi_master_aspeed_opb_read(addr, transfer_size, result, readl(base + OPB0_STATUS), reg); /* Return error when poll timed out */ if (ret) return ret; /* Command failed, master will reset */ if (status & STATUS_ERR_ACK) return -EIO; if (out) { switch (transfer_size) { case XFER_BYTE: *(u8 *)out = result; break; case XFER_HALFWORD: *(u16 *)out = result; break; case XFER_FULLWORD: *(u32 *)out = result; break; default: return -EINVAL; } } return 0; } static int opb_readl(struct fsi_master_aspeed *aspeed, uint32_t addr, __be32 *out) { return __opb_read(aspeed, addr, XFER_FULLWORD, out); } static int opb_readw(struct fsi_master_aspeed *aspeed, uint32_t addr, __be16 *out) { return __opb_read(aspeed, addr, XFER_HALFWORD, (void *)out); } static int opb_readb(struct fsi_master_aspeed *aspeed, uint32_t addr, u8 *out) { return __opb_read(aspeed, addr, XFER_BYTE, (void *)out); } static int check_errors(struct fsi_master_aspeed *aspeed, int err) { int ret; if (trace_fsi_master_aspeed_opb_error_enabled()) { __be32 mresp0, mstap0, mesrb0; opb_readl(aspeed, ctrl_base + FSI_MRESP0, &mresp0); opb_readl(aspeed, ctrl_base + FSI_MSTAP0, &mstap0); opb_readl(aspeed, ctrl_base + FSI_MESRB0, &mesrb0); trace_fsi_master_aspeed_opb_error( be32_to_cpu(mresp0), be32_to_cpu(mstap0), be32_to_cpu(mesrb0)); } if (err == -EIO) { /* Check MAEB (0x70) ? */ /* Then clear errors in master */ ret = opb_writel(aspeed, ctrl_base + FSI_MRESP0, cpu_to_be32(FSI_MRESP_RST_ALL_MASTER)); if (ret) { /* TODO: log? return different code? */ return ret; } /* TODO: confirm that 0x70 was okay */ } /* This will pass through timeout errors */ return err; } static int aspeed_master_read(struct fsi_master *master, int link, uint8_t id, uint32_t addr, void *val, size_t size) { struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(master); int ret; if (id > 0x3) return -EINVAL; addr |= id << 21; addr += link * FSI_HUB_LINK_SIZE; mutex_lock(&aspeed->lock); switch (size) { case 1: ret = opb_readb(aspeed, fsi_base + addr, val); break; case 2: ret = opb_readw(aspeed, fsi_base + addr, val); break; case 4: ret = opb_readl(aspeed, fsi_base + addr, val); break; default: ret = -EINVAL; goto done; } ret = check_errors(aspeed, ret); done: mutex_unlock(&aspeed->lock); return ret; } static int aspeed_master_write(struct fsi_master *master, int link, uint8_t id, uint32_t addr, const void *val, size_t size) { struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(master); int ret; if (id > 0x3) return -EINVAL; addr |= id << 21; addr += link * FSI_HUB_LINK_SIZE; mutex_lock(&aspeed->lock); switch (size) { case 1: ret = opb_writeb(aspeed, fsi_base + addr, *(u8 *)val); break; case 2: ret = opb_writew(aspeed, fsi_base + addr, *(__be16 *)val); break; case 4: ret = opb_writel(aspeed, fsi_base + addr, *(__be32 *)val); break; default: ret = -EINVAL; goto done; } ret = check_errors(aspeed, ret); done: mutex_unlock(&aspeed->lock); return ret; } static int aspeed_master_link_enable(struct fsi_master *master, int link, bool enable) { struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(master); int idx, bit, ret; __be32 reg; idx = link / 32; bit = link % 32; reg = cpu_to_be32(0x80000000 >> bit); mutex_lock(&aspeed->lock); if (!enable) { ret = opb_writel(aspeed, ctrl_base + FSI_MCENP0 + (4 * idx), reg); goto done; } ret = opb_writel(aspeed, ctrl_base + FSI_MSENP0 + (4 * idx), reg); if (ret) goto done; mdelay(FSI_LINK_ENABLE_SETUP_TIME); done: mutex_unlock(&aspeed->lock); return ret; } static int aspeed_master_term(struct fsi_master *master, int link, uint8_t id) { uint32_t addr; __be32 cmd; addr = 0x4; cmd = cpu_to_be32(0xecc00000); return aspeed_master_write(master, link, id, addr, &cmd, 4); } static int aspeed_master_break(struct fsi_master *master, int link) { uint32_t addr; __be32 cmd; addr = 0x0; cmd = cpu_to_be32(0xc0de0000); return aspeed_master_write(master, link, 0, addr, &cmd, 4); } static void aspeed_master_release(struct device *dev) { struct fsi_master_aspeed *aspeed = to_fsi_master_aspeed(dev_to_fsi_master(dev)); kfree(aspeed); } /* mmode encoders */ static inline u32 fsi_mmode_crs0(u32 x) { return (x & FSI_MMODE_CRS0MASK) << FSI_MMODE_CRS0SHFT; } static inline u32 fsi_mmode_crs1(u32 x) { return (x & FSI_MMODE_CRS1MASK) << FSI_MMODE_CRS1SHFT; } static int aspeed_master_init(struct fsi_master_aspeed *aspeed) { __be32 reg; reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK | FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE); opb_writel(aspeed, ctrl_base + FSI_MRESP0, reg); /* Initialize the MFSI (hub master) engine */ reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK | FSI_MRESP_RST_MCR | FSI_MRESP_RST_PYE); opb_writel(aspeed, ctrl_base + FSI_MRESP0, reg); reg = cpu_to_be32(FSI_MECTRL_EOAE | FSI_MECTRL_P8_AUTO_TERM); opb_writel(aspeed, ctrl_base + FSI_MECTRL, reg); reg = cpu_to_be32(FSI_MMODE_ECRC | FSI_MMODE_EPC | FSI_MMODE_RELA | fsi_mmode_crs0(aspeed_fsi_divisor) | fsi_mmode_crs1(aspeed_fsi_divisor) | FSI_MMODE_P8_TO_LSB); dev_info(aspeed->dev, "mmode set to %08x (divisor %d)\n", be32_to_cpu(reg), aspeed_fsi_divisor); opb_writel(aspeed, ctrl_base + FSI_MMODE, reg); reg = cpu_to_be32(0xffff0000); opb_writel(aspeed, ctrl_base + FSI_MDLYR, reg); reg = cpu_to_be32(~0); opb_writel(aspeed, ctrl_base + FSI_MSENP0, reg); /* Leave enabled long enough for master logic to set up */ mdelay(FSI_LINK_ENABLE_SETUP_TIME); opb_writel(aspeed, ctrl_base + FSI_MCENP0, reg); opb_readl(aspeed, ctrl_base + FSI_MAEB, NULL); reg = cpu_to_be32(FSI_MRESP_RST_ALL_MASTER | FSI_MRESP_RST_ALL_LINK); opb_writel(aspeed, ctrl_base + FSI_MRESP0, reg); opb_readl(aspeed, ctrl_base + FSI_MLEVP0, NULL); /* Reset the master bridge */ reg = cpu_to_be32(FSI_MRESB_RST_GEN); opb_writel(aspeed, ctrl_base + FSI_MRESB0, reg); reg = cpu_to_be32(FSI_MRESB_RST_ERR); opb_writel(aspeed, ctrl_base + FSI_MRESB0, reg); return 0; } static ssize_t cfam_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct fsi_master_aspeed *aspeed = dev_get_drvdata(dev); trace_fsi_master_aspeed_cfam_reset(true); mutex_lock(&aspeed->lock); gpiod_set_value(aspeed->cfam_reset_gpio, 1); usleep_range(900, 1000); gpiod_set_value(aspeed->cfam_reset_gpio, 0); mutex_unlock(&aspeed->lock); trace_fsi_master_aspeed_cfam_reset(false); return count; } static DEVICE_ATTR(cfam_reset, 0200, NULL, cfam_reset_store); static int setup_cfam_reset(struct fsi_master_aspeed *aspeed) { struct device *dev = aspeed->dev; struct gpio_desc *gpio; int rc; gpio = devm_gpiod_get_optional(dev, "cfam-reset", GPIOD_OUT_LOW); if (IS_ERR(gpio)) return PTR_ERR(gpio); if (!gpio) return 0; aspeed->cfam_reset_gpio = gpio; rc = device_create_file(dev, &dev_attr_cfam_reset); if (rc) { devm_gpiod_put(dev, gpio); return rc; } return 0; } static int tacoma_cabled_fsi_fixup(struct device *dev) { struct gpio_desc *routing_gpio, *mux_gpio; int gpio; /* * The routing GPIO is a jumper indicating we should mux for the * externally connected FSI cable. */ routing_gpio = devm_gpiod_get_optional(dev, "fsi-routing", GPIOD_IN | GPIOD_FLAGS_BIT_NONEXCLUSIVE); if (IS_ERR(routing_gpio)) return PTR_ERR(routing_gpio); if (!routing_gpio) return 0; mux_gpio = devm_gpiod_get_optional(dev, "fsi-mux", GPIOD_ASIS); if (IS_ERR(mux_gpio)) return PTR_ERR(mux_gpio); if (!mux_gpio) return 0; gpio = gpiod_get_value(routing_gpio); if (gpio < 0) return gpio; /* If the routing GPIO is high we should set the mux to low. */ if (gpio) { /* * Cable signal integrity means we should run the bus * slightly slower. Do not override if a kernel param * has already overridden. */ if (aspeed_fsi_divisor == FSI_DIVISOR_DEFAULT) aspeed_fsi_divisor = FSI_DIVISOR_CABLED; gpiod_direction_output(mux_gpio, 0); dev_info(dev, "FSI configured for external cable\n"); } else { gpiod_direction_output(mux_gpio, 1); } devm_gpiod_put(dev, routing_gpio); return 0; } static int fsi_master_aspeed_probe(struct platform_device *pdev) { struct fsi_master_aspeed *aspeed; int rc, links, reg; __be32 raw; rc = tacoma_cabled_fsi_fixup(&pdev->dev); if (rc) { dev_err(&pdev->dev, "Tacoma FSI cable fixup failed\n"); return rc; } aspeed = kzalloc(sizeof(*aspeed), GFP_KERNEL); if (!aspeed) return -ENOMEM; aspeed->dev = &pdev->dev; aspeed->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(aspeed->base)) { rc = PTR_ERR(aspeed->base); goto err_free_aspeed; } aspeed->clk = devm_clk_get(aspeed->dev, NULL); if (IS_ERR(aspeed->clk)) { dev_err(aspeed->dev, "couldn't get clock\n"); rc = PTR_ERR(aspeed->clk); goto err_free_aspeed; } rc = clk_prepare_enable(aspeed->clk); if (rc) { dev_err(aspeed->dev, "couldn't enable clock\n"); goto err_free_aspeed; } rc = setup_cfam_reset(aspeed); if (rc) { dev_err(&pdev->dev, "CFAM reset GPIO setup failed\n"); } writel(0x1, aspeed->base + OPB_CLK_SYNC); writel(OPB1_XFER_ACK_EN | OPB0_XFER_ACK_EN, aspeed->base + OPB_IRQ_MASK); /* TODO: determine an appropriate value */ writel(0x10, aspeed->base + OPB_RETRY_COUNTER); writel(ctrl_base, aspeed->base + OPB_CTRL_BASE); writel(fsi_base, aspeed->base + OPB_FSI_BASE); /* Set read data order */ writel(0x00030b1b, aspeed->base + OPB0_READ_ORDER1); /* Set write data order */ writel(0x0011101b, aspeed->base + OPB0_WRITE_ORDER1); writel(0x0c330f3f, aspeed->base + OPB0_WRITE_ORDER2); /* * Select OPB0 for all operations. * Will need to be reworked when enabling DMA or anything that uses * OPB1. */ writel(0x1, aspeed->base + OPB0_SELECT); rc = opb_readl(aspeed, ctrl_base + FSI_MVER, &raw); if (rc) { dev_err(&pdev->dev, "failed to read hub version\n"); goto err_release; } reg = be32_to_cpu(raw); links = (reg >> 8) & 0xff; dev_info(&pdev->dev, "hub version %08x (%d links)\n", reg, links); aspeed->master.dev.parent = &pdev->dev; aspeed->master.dev.release = aspeed_master_release; aspeed->master.dev.of_node = of_node_get(dev_of_node(&pdev->dev)); aspeed->master.n_links = links; aspeed->master.read = aspeed_master_read; aspeed->master.write = aspeed_master_write; aspeed->master.send_break = aspeed_master_break; aspeed->master.term = aspeed_master_term; aspeed->master.link_enable = aspeed_master_link_enable; dev_set_drvdata(&pdev->dev, aspeed); mutex_init(&aspeed->lock); aspeed_master_init(aspeed); rc = fsi_master_register(&aspeed->master); if (rc) goto err_release; /* At this point, fsi_master_register performs the device_initialize(), * and holds the sole reference on master.dev. This means the device * will be freed (via ->release) during any subsequent call to * fsi_master_unregister. We add our own reference to it here, so we * can perform cleanup (in _remove()) without it being freed before * we're ready. */ get_device(&aspeed->master.dev); return 0; err_release: clk_disable_unprepare(aspeed->clk); err_free_aspeed: kfree(aspeed); return rc; } static int fsi_master_aspeed_remove(struct platform_device *pdev) { struct fsi_master_aspeed *aspeed = platform_get_drvdata(pdev); fsi_master_unregister(&aspeed->master); clk_disable_unprepare(aspeed->clk); return 0; } static const struct of_device_id fsi_master_aspeed_match[] = { { .compatible = "aspeed,ast2600-fsi-master" }, { }, }; MODULE_DEVICE_TABLE(of, fsi_master_aspeed_match); static struct platform_driver fsi_master_aspeed_driver = { .driver = { .name = "fsi-master-aspeed", .of_match_table = fsi_master_aspeed_match, }, .probe = fsi_master_aspeed_probe, .remove = fsi_master_aspeed_remove, }; module_platform_driver(fsi_master_aspeed_driver); MODULE_LICENSE("GPL");