/* SPDX-License-Identifier: GPL-2.0-only * Copyright (C) 2020 Marvell. */ #ifndef __OTX2_CPTLF_H #define __OTX2_CPTLF_H #include #include #include #include "otx2_cpt_common.h" #include "otx2_cpt_reqmgr.h" /* * CPT instruction and pending queues user requested length in CPT_INST_S msgs */ #define OTX2_CPT_USER_REQUESTED_QLEN_MSGS 8200 /* * CPT instruction queue size passed to HW is in units of 40*CPT_INST_S * messages. */ #define OTX2_CPT_SIZE_DIV40 (OTX2_CPT_USER_REQUESTED_QLEN_MSGS/40) /* * CPT instruction and pending queues length in CPT_INST_S messages */ #define OTX2_CPT_INST_QLEN_MSGS ((OTX2_CPT_SIZE_DIV40 - 1) * 40) /* * LDWB is getting incorrectly used when IQB_LDWB = 1 and CPT instruction * queue has less than 320 free entries. So, increase HW instruction queue * size by 320 and give 320 entries less for SW/NIX RX as a workaround. */ #define OTX2_CPT_INST_QLEN_EXTRA_BYTES (320 * OTX2_CPT_INST_SIZE) #define OTX2_CPT_EXTRA_SIZE_DIV40 (320/40) /* CPT instruction queue length in bytes */ #define OTX2_CPT_INST_QLEN_BYTES \ ((OTX2_CPT_SIZE_DIV40 * 40 * OTX2_CPT_INST_SIZE) + \ OTX2_CPT_INST_QLEN_EXTRA_BYTES) /* CPT instruction group queue length in bytes */ #define OTX2_CPT_INST_GRP_QLEN_BYTES \ ((OTX2_CPT_SIZE_DIV40 + OTX2_CPT_EXTRA_SIZE_DIV40) * 16) /* CPT FC length in bytes */ #define OTX2_CPT_Q_FC_LEN 128 /* CPT instruction queue alignment */ #define OTX2_CPT_INST_Q_ALIGNMENT 128 /* Mask which selects all engine groups */ #define OTX2_CPT_ALL_ENG_GRPS_MASK 0xFF /* Maximum LFs supported in OcteonTX2 for CPT */ #define OTX2_CPT_MAX_LFS_NUM 64 /* Queue priority */ #define OTX2_CPT_QUEUE_HI_PRIO 0x1 #define OTX2_CPT_QUEUE_LOW_PRIO 0x0 enum otx2_cptlf_state { OTX2_CPTLF_IN_RESET, OTX2_CPTLF_STARTED, }; struct otx2_cpt_inst_queue { u8 *vaddr; u8 *real_vaddr; dma_addr_t dma_addr; dma_addr_t real_dma_addr; u32 size; }; struct otx2_cptlfs_info; struct otx2_cptlf_wqe { struct tasklet_struct work; struct otx2_cptlfs_info *lfs; u8 lf_num; }; struct otx2_cptlf_info { struct otx2_cptlfs_info *lfs; /* Ptr to cptlfs_info struct */ void __iomem *lmtline; /* Address of LMTLINE */ void __iomem *ioreg; /* LMTLINE send register */ int msix_offset; /* MSI-X interrupts offset */ cpumask_var_t affinity_mask; /* IRQs affinity mask */ u8 irq_name[OTX2_CPT_LF_MSIX_VECTORS][32];/* Interrupts name */ u8 is_irq_reg[OTX2_CPT_LF_MSIX_VECTORS]; /* Is interrupt registered */ u8 slot; /* Slot number of this LF */ struct otx2_cpt_inst_queue iqueue;/* Instruction queue */ struct otx2_cpt_pending_queue pqueue; /* Pending queue */ struct otx2_cptlf_wqe *wqe; /* Tasklet work info */ }; struct cpt_hw_ops { void (*send_cmd)(union otx2_cpt_inst_s *cptinst, u32 insts_num, struct otx2_cptlf_info *lf); u8 (*cpt_get_compcode)(union otx2_cpt_res_s *result); u8 (*cpt_get_uc_compcode)(union otx2_cpt_res_s *result); }; struct otx2_cptlfs_info { /* Registers start address of VF/PF LFs are attached to */ void __iomem *reg_base; #define LMTLINE_SIZE 128 void __iomem *lmt_base; struct pci_dev *pdev; /* Device LFs are attached to */ struct otx2_cptlf_info lf[OTX2_CPT_MAX_LFS_NUM]; struct otx2_mbox *mbox; struct cpt_hw_ops *ops; u8 are_lfs_attached; /* Whether CPT LFs are attached */ u8 lfs_num; /* Number of CPT LFs */ u8 kcrypto_eng_grp_num; /* Kernel crypto engine group number */ u8 kvf_limits; /* Kernel crypto limits */ atomic_t state; /* LF's state. started/reset */ int blkaddr; /* CPT blkaddr: BLKADDR_CPT0/BLKADDR_CPT1 */ }; static inline void otx2_cpt_free_instruction_queues( struct otx2_cptlfs_info *lfs) { struct otx2_cpt_inst_queue *iq; int i; for (i = 0; i < lfs->lfs_num; i++) { iq = &lfs->lf[i].iqueue; if (iq->real_vaddr) dma_free_coherent(&lfs->pdev->dev, iq->size, iq->real_vaddr, iq->real_dma_addr); iq->real_vaddr = NULL; iq->vaddr = NULL; } } static inline int otx2_cpt_alloc_instruction_queues( struct otx2_cptlfs_info *lfs) { struct otx2_cpt_inst_queue *iq; int ret = 0, i; if (!lfs->lfs_num) return -EINVAL; for (i = 0; i < lfs->lfs_num; i++) { iq = &lfs->lf[i].iqueue; iq->size = OTX2_CPT_INST_QLEN_BYTES + OTX2_CPT_Q_FC_LEN + OTX2_CPT_INST_GRP_QLEN_BYTES + OTX2_CPT_INST_Q_ALIGNMENT; iq->real_vaddr = dma_alloc_coherent(&lfs->pdev->dev, iq->size, &iq->real_dma_addr, GFP_KERNEL); if (!iq->real_vaddr) { ret = -ENOMEM; goto error; } iq->vaddr = iq->real_vaddr + OTX2_CPT_INST_GRP_QLEN_BYTES; iq->dma_addr = iq->real_dma_addr + OTX2_CPT_INST_GRP_QLEN_BYTES; /* Align pointers */ iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_CPT_INST_Q_ALIGNMENT); iq->dma_addr = PTR_ALIGN(iq->dma_addr, OTX2_CPT_INST_Q_ALIGNMENT); } return 0; error: otx2_cpt_free_instruction_queues(lfs); return ret; } static inline void otx2_cptlf_set_iqueues_base_addr( struct otx2_cptlfs_info *lfs) { union otx2_cptx_lf_q_base lf_q_base; int slot; for (slot = 0; slot < lfs->lfs_num; slot++) { lf_q_base.u = lfs->lf[slot].iqueue.dma_addr; otx2_cpt_write64(lfs->reg_base, lfs->blkaddr, slot, OTX2_CPT_LF_Q_BASE, lf_q_base.u); } } static inline void otx2_cptlf_do_set_iqueue_size(struct otx2_cptlf_info *lf) { union otx2_cptx_lf_q_size lf_q_size = { .u = 0x0 }; lf_q_size.s.size_div40 = OTX2_CPT_SIZE_DIV40 + OTX2_CPT_EXTRA_SIZE_DIV40; otx2_cpt_write64(lf->lfs->reg_base, lf->lfs->blkaddr, lf->slot, OTX2_CPT_LF_Q_SIZE, lf_q_size.u); } static inline void otx2_cptlf_set_iqueues_size(struct otx2_cptlfs_info *lfs) { int slot; for (slot = 0; slot < lfs->lfs_num; slot++) otx2_cptlf_do_set_iqueue_size(&lfs->lf[slot]); } static inline void otx2_cptlf_do_disable_iqueue(struct otx2_cptlf_info *lf) { union otx2_cptx_lf_ctl lf_ctl = { .u = 0x0 }; union otx2_cptx_lf_inprog lf_inprog; u8 blkaddr = lf->lfs->blkaddr; int timeout = 20; /* Disable instructions enqueuing */ otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_CTL, lf_ctl.u); /* Wait for instruction queue to become empty */ do { lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_INPROG); if (!lf_inprog.s.inflight) break; usleep_range(10000, 20000); if (timeout-- < 0) { dev_err(&lf->lfs->pdev->dev, "Error LF %d is still busy.\n", lf->slot); break; } } while (1); /* * Disable executions in the LF's queue, * the queue should be empty at this point */ lf_inprog.s.eena = 0x0; otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_INPROG, lf_inprog.u); } static inline void otx2_cptlf_disable_iqueues(struct otx2_cptlfs_info *lfs) { int slot; for (slot = 0; slot < lfs->lfs_num; slot++) otx2_cptlf_do_disable_iqueue(&lfs->lf[slot]); } static inline void otx2_cptlf_set_iqueue_enq(struct otx2_cptlf_info *lf, bool enable) { u8 blkaddr = lf->lfs->blkaddr; union otx2_cptx_lf_ctl lf_ctl; lf_ctl.u = otx2_cpt_read64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_CTL); /* Set iqueue's enqueuing */ lf_ctl.s.ena = enable ? 0x1 : 0x0; otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_CTL, lf_ctl.u); } static inline void otx2_cptlf_enable_iqueue_enq(struct otx2_cptlf_info *lf) { otx2_cptlf_set_iqueue_enq(lf, true); } static inline void otx2_cptlf_set_iqueue_exec(struct otx2_cptlf_info *lf, bool enable) { union otx2_cptx_lf_inprog lf_inprog; u8 blkaddr = lf->lfs->blkaddr; lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_INPROG); /* Set iqueue's execution */ lf_inprog.s.eena = enable ? 0x1 : 0x0; otx2_cpt_write64(lf->lfs->reg_base, blkaddr, lf->slot, OTX2_CPT_LF_INPROG, lf_inprog.u); } static inline void otx2_cptlf_enable_iqueue_exec(struct otx2_cptlf_info *lf) { otx2_cptlf_set_iqueue_exec(lf, true); } static inline void otx2_cptlf_disable_iqueue_exec(struct otx2_cptlf_info *lf) { otx2_cptlf_set_iqueue_exec(lf, false); } static inline void otx2_cptlf_enable_iqueues(struct otx2_cptlfs_info *lfs) { int slot; for (slot = 0; slot < lfs->lfs_num; slot++) { otx2_cptlf_enable_iqueue_exec(&lfs->lf[slot]); otx2_cptlf_enable_iqueue_enq(&lfs->lf[slot]); } } static inline void otx2_cpt_fill_inst(union otx2_cpt_inst_s *cptinst, struct otx2_cpt_iq_command *iq_cmd, u64 comp_baddr) { cptinst->u[0] = 0x0; cptinst->s.doneint = true; cptinst->s.res_addr = comp_baddr; cptinst->u[2] = 0x0; cptinst->u[3] = 0x0; cptinst->s.ei0 = iq_cmd->cmd.u; cptinst->s.ei1 = iq_cmd->dptr; cptinst->s.ei2 = iq_cmd->rptr; cptinst->s.ei3 = iq_cmd->cptr.u; } /* * On OcteonTX2 platform the parameter insts_num is used as a count of * instructions to be enqueued. The valid values for insts_num are: * 1 - 1 CPT instruction will be enqueued during LMTST operation * 2 - 2 CPT instructions will be enqueued during LMTST operation */ static inline void otx2_cpt_send_cmd(union otx2_cpt_inst_s *cptinst, u32 insts_num, struct otx2_cptlf_info *lf) { void __iomem *lmtline = lf->lmtline; long ret; /* * Make sure memory areas pointed in CPT_INST_S * are flushed before the instruction is sent to CPT */ dma_wmb(); do { /* Copy CPT command to LMTLINE */ memcpy_toio(lmtline, cptinst, insts_num * OTX2_CPT_INST_SIZE); /* * LDEOR initiates atomic transfer to I/O device * The following will cause the LMTST to fail (the LDEOR * returns zero): * - No stores have been performed to the LMTLINE since it was * last invalidated. * - The bytes which have been stored to LMTLINE since it was * last invalidated form a pattern that is non-contiguous, does * not start at byte 0, or does not end on a 8-byte boundary. * (i.e.comprises a formation of other than 1–16 8-byte * words.) * * These rules are designed such that an operating system * context switch or hypervisor guest switch need have no * knowledge of the LMTST operations; the switch code does not * need to store to LMTCANCEL. Also note as LMTLINE data cannot * be read, there is no information leakage between processes. */ ret = otx2_lmt_flush(lf->ioreg); } while (!ret); } static inline bool otx2_cptlf_started(struct otx2_cptlfs_info *lfs) { return atomic_read(&lfs->state) == OTX2_CPTLF_STARTED; } static inline void otx2_cptlf_set_dev_info(struct otx2_cptlfs_info *lfs, struct pci_dev *pdev, void __iomem *reg_base, struct otx2_mbox *mbox, int blkaddr) { lfs->pdev = pdev; lfs->reg_base = reg_base; lfs->mbox = mbox; lfs->blkaddr = blkaddr; } int otx2_cptlf_init(struct otx2_cptlfs_info *lfs, u8 eng_grp_msk, int pri, int lfs_num); void otx2_cptlf_shutdown(struct otx2_cptlfs_info *lfs); int otx2_cptlf_register_interrupts(struct otx2_cptlfs_info *lfs); void otx2_cptlf_unregister_interrupts(struct otx2_cptlfs_info *lfs); void otx2_cptlf_free_irqs_affinity(struct otx2_cptlfs_info *lfs); int otx2_cptlf_set_irqs_affinity(struct otx2_cptlfs_info *lfs); #endif /* __OTX2_CPTLF_H */