// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) /* Copyright(c) 2020 - 2021 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include "adf_4xxx_hw_data.h" #include "icp_qat_hw.h" #define ADF_AE_GROUP_0 GENMASK(3, 0) #define ADF_AE_GROUP_1 GENMASK(7, 4) #define ADF_AE_GROUP_2 BIT(8) enum adf_fw_objs { ADF_FW_SYM_OBJ, ADF_FW_ASYM_OBJ, ADF_FW_DC_OBJ, ADF_FW_ADMIN_OBJ, }; static const char * const adf_4xxx_fw_objs[] = { [ADF_FW_SYM_OBJ] = ADF_4XXX_SYM_OBJ, [ADF_FW_ASYM_OBJ] = ADF_4XXX_ASYM_OBJ, [ADF_FW_DC_OBJ] = ADF_4XXX_DC_OBJ, [ADF_FW_ADMIN_OBJ] = ADF_4XXX_ADMIN_OBJ, }; static const char * const adf_402xx_fw_objs[] = { [ADF_FW_SYM_OBJ] = ADF_402XX_SYM_OBJ, [ADF_FW_ASYM_OBJ] = ADF_402XX_ASYM_OBJ, [ADF_FW_DC_OBJ] = ADF_402XX_DC_OBJ, [ADF_FW_ADMIN_OBJ] = ADF_402XX_ADMIN_OBJ, }; struct adf_fw_config { u32 ae_mask; enum adf_fw_objs obj; }; static const struct adf_fw_config adf_fw_cy_config[] = { {ADF_AE_GROUP_1, ADF_FW_SYM_OBJ}, {ADF_AE_GROUP_0, ADF_FW_ASYM_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static const struct adf_fw_config adf_fw_dc_config[] = { {ADF_AE_GROUP_1, ADF_FW_DC_OBJ}, {ADF_AE_GROUP_0, ADF_FW_DC_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static const struct adf_fw_config adf_fw_sym_config[] = { {ADF_AE_GROUP_1, ADF_FW_SYM_OBJ}, {ADF_AE_GROUP_0, ADF_FW_SYM_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static const struct adf_fw_config adf_fw_asym_config[] = { {ADF_AE_GROUP_1, ADF_FW_ASYM_OBJ}, {ADF_AE_GROUP_0, ADF_FW_ASYM_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static const struct adf_fw_config adf_fw_asym_dc_config[] = { {ADF_AE_GROUP_1, ADF_FW_ASYM_OBJ}, {ADF_AE_GROUP_0, ADF_FW_DC_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static const struct adf_fw_config adf_fw_sym_dc_config[] = { {ADF_AE_GROUP_1, ADF_FW_SYM_OBJ}, {ADF_AE_GROUP_0, ADF_FW_DC_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static const struct adf_fw_config adf_fw_dcc_config[] = { {ADF_AE_GROUP_1, ADF_FW_DC_OBJ}, {ADF_AE_GROUP_0, ADF_FW_SYM_OBJ}, {ADF_AE_GROUP_2, ADF_FW_ADMIN_OBJ}, }; static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_dc_config)); static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_sym_config)); static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_asym_config)); static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_asym_dc_config)); static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_sym_dc_config)); static_assert(ARRAY_SIZE(adf_fw_cy_config) == ARRAY_SIZE(adf_fw_dcc_config)); /* Worker thread to service arbiter mappings */ static const u32 default_thrd_to_arb_map[ADF_4XXX_MAX_ACCELENGINES] = { 0x5555555, 0x5555555, 0x5555555, 0x5555555, 0xAAAAAAA, 0xAAAAAAA, 0xAAAAAAA, 0xAAAAAAA, 0x0 }; static const u32 thrd_to_arb_map_dc[ADF_4XXX_MAX_ACCELENGINES] = { 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF, 0x000000FF, 0x0 }; static const u32 thrd_to_arb_map_dcc[ADF_4XXX_MAX_ACCELENGINES] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0000FFFF, 0x0 }; static struct adf_hw_device_class adf_4xxx_class = { .name = ADF_4XXX_DEVICE_NAME, .type = DEV_4XXX, .instances = 0, }; static int get_service_enabled(struct adf_accel_dev *accel_dev) { char services[ADF_CFG_MAX_VAL_LEN_IN_BYTES] = {0}; int ret; ret = adf_cfg_get_param_value(accel_dev, ADF_GENERAL_SEC, ADF_SERVICES_ENABLED, services); if (ret) { dev_err(&GET_DEV(accel_dev), ADF_SERVICES_ENABLED " param not found\n"); return ret; } ret = match_string(adf_cfg_services, ARRAY_SIZE(adf_cfg_services), services); if (ret < 0) dev_err(&GET_DEV(accel_dev), "Invalid value of " ADF_SERVICES_ENABLED " param: %s\n", services); return ret; } static u32 get_accel_mask(struct adf_hw_device_data *self) { return ADF_4XXX_ACCELERATORS_MASK; } static u32 get_ae_mask(struct adf_hw_device_data *self) { u32 me_disable = self->fuses; return ~me_disable & ADF_4XXX_ACCELENGINES_MASK; } static u32 get_num_accels(struct adf_hw_device_data *self) { return ADF_4XXX_MAX_ACCELERATORS; } static u32 get_num_aes(struct adf_hw_device_data *self) { if (!self || !self->ae_mask) return 0; return hweight32(self->ae_mask); } static u32 get_misc_bar_id(struct adf_hw_device_data *self) { return ADF_4XXX_PMISC_BAR; } static u32 get_etr_bar_id(struct adf_hw_device_data *self) { return ADF_4XXX_ETR_BAR; } static u32 get_sram_bar_id(struct adf_hw_device_data *self) { return ADF_4XXX_SRAM_BAR; } /* * The vector routing table is used to select the MSI-X entry to use for each * interrupt source. * The first ADF_4XXX_ETR_MAX_BANKS entries correspond to ring interrupts. * The final entry corresponds to VF2PF or error interrupts. * This vector table could be used to configure one MSI-X entry to be shared * between multiple interrupt sources. * * The default routing is set to have a one to one correspondence between the * interrupt source and the MSI-X entry used. */ static void set_msix_default_rttable(struct adf_accel_dev *accel_dev) { void __iomem *csr; int i; csr = (&GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR])->virt_addr; for (i = 0; i <= ADF_4XXX_ETR_MAX_BANKS; i++) ADF_CSR_WR(csr, ADF_4XXX_MSIX_RTTABLE_OFFSET(i), i); } static u32 get_accel_cap(struct adf_accel_dev *accel_dev) { struct pci_dev *pdev = accel_dev->accel_pci_dev.pci_dev; u32 capabilities_sym, capabilities_asym, capabilities_dc; u32 capabilities_dcc; u32 fusectl1; /* Read accelerator capabilities mask */ pci_read_config_dword(pdev, ADF_4XXX_FUSECTL1_OFFSET, &fusectl1); capabilities_sym = ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC | ICP_ACCEL_CAPABILITIES_CIPHER | ICP_ACCEL_CAPABILITIES_AUTHENTICATION | ICP_ACCEL_CAPABILITIES_SHA3 | ICP_ACCEL_CAPABILITIES_SHA3_EXT | ICP_ACCEL_CAPABILITIES_HKDF | ICP_ACCEL_CAPABILITIES_CHACHA_POLY | ICP_ACCEL_CAPABILITIES_AESGCM_SPC | ICP_ACCEL_CAPABILITIES_SM3 | ICP_ACCEL_CAPABILITIES_SM4 | ICP_ACCEL_CAPABILITIES_AES_V2; /* A set bit in fusectl1 means the feature is OFF in this SKU */ if (fusectl1 & ICP_ACCEL_4XXX_MASK_CIPHER_SLICE) { capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_HKDF; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CIPHER; } if (fusectl1 & ICP_ACCEL_4XXX_MASK_UCS_SLICE) { capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CHACHA_POLY; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_AESGCM_SPC; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_AES_V2; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CIPHER; } if (fusectl1 & ICP_ACCEL_4XXX_MASK_AUTH_SLICE) { capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_AUTHENTICATION; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SHA3; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SHA3_EXT; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_CIPHER; } if (fusectl1 & ICP_ACCEL_4XXX_MASK_SMX_SLICE) { capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SM3; capabilities_sym &= ~ICP_ACCEL_CAPABILITIES_SM4; } capabilities_asym = ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC | ICP_ACCEL_CAPABILITIES_CIPHER | ICP_ACCEL_CAPABILITIES_SM2 | ICP_ACCEL_CAPABILITIES_ECEDMONT; if (fusectl1 & ICP_ACCEL_4XXX_MASK_PKE_SLICE) { capabilities_asym &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_ASYMMETRIC; capabilities_asym &= ~ICP_ACCEL_CAPABILITIES_SM2; capabilities_asym &= ~ICP_ACCEL_CAPABILITIES_ECEDMONT; } capabilities_dc = ICP_ACCEL_CAPABILITIES_COMPRESSION | ICP_ACCEL_CAPABILITIES_LZ4_COMPRESSION | ICP_ACCEL_CAPABILITIES_LZ4S_COMPRESSION | ICP_ACCEL_CAPABILITIES_CNV_INTEGRITY64; if (fusectl1 & ICP_ACCEL_4XXX_MASK_COMPRESS_SLICE) { capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_COMPRESSION; capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_LZ4_COMPRESSION; capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_LZ4S_COMPRESSION; capabilities_dc &= ~ICP_ACCEL_CAPABILITIES_CNV_INTEGRITY64; } switch (get_service_enabled(accel_dev)) { case SVC_CY: case SVC_CY2: return capabilities_sym | capabilities_asym; case SVC_DC: return capabilities_dc; case SVC_DCC: /* * Sym capabilities are available for chaining operations, * but sym crypto instances cannot be supported */ capabilities_dcc = capabilities_dc | capabilities_sym; capabilities_dcc &= ~ICP_ACCEL_CAPABILITIES_CRYPTO_SYMMETRIC; return capabilities_dcc; case SVC_SYM: return capabilities_sym; case SVC_ASYM: return capabilities_asym; case SVC_ASYM_DC: case SVC_DC_ASYM: return capabilities_asym | capabilities_dc; case SVC_SYM_DC: case SVC_DC_SYM: return capabilities_sym | capabilities_dc; default: return 0; } } static enum dev_sku_info get_sku(struct adf_hw_device_data *self) { return DEV_SKU_1; } static const u32 *adf_get_arbiter_mapping(struct adf_accel_dev *accel_dev) { switch (get_service_enabled(accel_dev)) { case SVC_DC: return thrd_to_arb_map_dc; case SVC_DCC: return thrd_to_arb_map_dcc; default: return default_thrd_to_arb_map; } } static void get_arb_info(struct arb_info *arb_info) { arb_info->arb_cfg = ADF_4XXX_ARB_CONFIG; arb_info->arb_offset = ADF_4XXX_ARB_OFFSET; arb_info->wt2sam_offset = ADF_4XXX_ARB_WRK_2_SER_MAP_OFFSET; } static void get_admin_info(struct admin_info *admin_csrs_info) { admin_csrs_info->mailbox_offset = ADF_4XXX_MAILBOX_BASE_OFFSET; admin_csrs_info->admin_msg_ur = ADF_4XXX_ADMINMSGUR_OFFSET; admin_csrs_info->admin_msg_lr = ADF_4XXX_ADMINMSGLR_OFFSET; } static u32 get_heartbeat_clock(struct adf_hw_device_data *self) { /* * 4XXX uses KPT counter for HB */ return ADF_4XXX_KPT_COUNTER_FREQ; } static void adf_enable_error_correction(struct adf_accel_dev *accel_dev) { struct adf_bar *misc_bar = &GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR]; void __iomem *csr = misc_bar->virt_addr; /* Enable all in errsou3 except VFLR notification on host */ ADF_CSR_WR(csr, ADF_GEN4_ERRMSK3, ADF_GEN4_VFLNOTIFY); } static void adf_enable_ints(struct adf_accel_dev *accel_dev) { void __iomem *addr; addr = (&GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR])->virt_addr; /* Enable bundle interrupts */ ADF_CSR_WR(addr, ADF_4XXX_SMIAPF_RP_X0_MASK_OFFSET, 0); ADF_CSR_WR(addr, ADF_4XXX_SMIAPF_RP_X1_MASK_OFFSET, 0); /* Enable misc interrupts */ ADF_CSR_WR(addr, ADF_4XXX_SMIAPF_MASK_OFFSET, 0); } static int adf_init_device(struct adf_accel_dev *accel_dev) { void __iomem *addr; u32 status; u32 csr; int ret; addr = (&GET_BARS(accel_dev)[ADF_4XXX_PMISC_BAR])->virt_addr; /* Temporarily mask PM interrupt */ csr = ADF_CSR_RD(addr, ADF_GEN4_ERRMSK2); csr |= ADF_GEN4_PM_SOU; ADF_CSR_WR(addr, ADF_GEN4_ERRMSK2, csr); /* Set DRV_ACTIVE bit to power up the device */ ADF_CSR_WR(addr, ADF_GEN4_PM_INTERRUPT, ADF_GEN4_PM_DRV_ACTIVE); /* Poll status register to make sure the device is powered up */ ret = read_poll_timeout(ADF_CSR_RD, status, status & ADF_GEN4_PM_INIT_STATE, ADF_GEN4_PM_POLL_DELAY_US, ADF_GEN4_PM_POLL_TIMEOUT_US, true, addr, ADF_GEN4_PM_STATUS); if (ret) dev_err(&GET_DEV(accel_dev), "Failed to power up the device\n"); return ret; } static u32 uof_get_num_objs(void) { return ARRAY_SIZE(adf_fw_cy_config); } static const struct adf_fw_config *get_fw_config(struct adf_accel_dev *accel_dev) { switch (get_service_enabled(accel_dev)) { case SVC_CY: case SVC_CY2: return adf_fw_cy_config; case SVC_DC: return adf_fw_dc_config; case SVC_DCC: return adf_fw_dcc_config; case SVC_SYM: return adf_fw_sym_config; case SVC_ASYM: return adf_fw_asym_config; case SVC_ASYM_DC: case SVC_DC_ASYM: return adf_fw_asym_dc_config; case SVC_SYM_DC: case SVC_DC_SYM: return adf_fw_sym_dc_config; default: return NULL; } } enum adf_rp_groups { RP_GROUP_0 = 0, RP_GROUP_1, RP_GROUP_COUNT }; static u16 get_ring_to_svc_map(struct adf_accel_dev *accel_dev) { enum adf_cfg_service_type rps[RP_GROUP_COUNT]; const struct adf_fw_config *fw_config; u16 ring_to_svc_map; int i, j; fw_config = get_fw_config(accel_dev); if (!fw_config) return 0; for (i = 0; i < RP_GROUP_COUNT; i++) { switch (fw_config[i].ae_mask) { case ADF_AE_GROUP_0: j = RP_GROUP_0; break; case ADF_AE_GROUP_1: j = RP_GROUP_1; break; default: return 0; } switch (fw_config[i].obj) { case ADF_FW_SYM_OBJ: rps[j] = SYM; break; case ADF_FW_ASYM_OBJ: rps[j] = ASYM; break; case ADF_FW_DC_OBJ: rps[j] = COMP; break; default: rps[j] = 0; break; } } ring_to_svc_map = rps[RP_GROUP_0] << ADF_CFG_SERV_RING_PAIR_0_SHIFT | rps[RP_GROUP_1] << ADF_CFG_SERV_RING_PAIR_1_SHIFT | rps[RP_GROUP_0] << ADF_CFG_SERV_RING_PAIR_2_SHIFT | rps[RP_GROUP_1] << ADF_CFG_SERV_RING_PAIR_3_SHIFT; return ring_to_svc_map; } static const char *uof_get_name(struct adf_accel_dev *accel_dev, u32 obj_num, const char * const fw_objs[], int num_objs) { const struct adf_fw_config *fw_config; int id; fw_config = get_fw_config(accel_dev); if (fw_config) id = fw_config[obj_num].obj; else id = -EINVAL; if (id < 0 || id > num_objs) return NULL; return fw_objs[id]; } static const char *uof_get_name_4xxx(struct adf_accel_dev *accel_dev, u32 obj_num) { int num_fw_objs = ARRAY_SIZE(adf_4xxx_fw_objs); return uof_get_name(accel_dev, obj_num, adf_4xxx_fw_objs, num_fw_objs); } static const char *uof_get_name_402xx(struct adf_accel_dev *accel_dev, u32 obj_num) { int num_fw_objs = ARRAY_SIZE(adf_402xx_fw_objs); return uof_get_name(accel_dev, obj_num, adf_402xx_fw_objs, num_fw_objs); } static u32 uof_get_ae_mask(struct adf_accel_dev *accel_dev, u32 obj_num) { const struct adf_fw_config *fw_config; fw_config = get_fw_config(accel_dev); if (!fw_config) return 0; return fw_config[obj_num].ae_mask; } void adf_init_hw_data_4xxx(struct adf_hw_device_data *hw_data, u32 dev_id) { hw_data->dev_class = &adf_4xxx_class; hw_data->instance_id = adf_4xxx_class.instances++; hw_data->num_banks = ADF_4XXX_ETR_MAX_BANKS; hw_data->num_banks_per_vf = ADF_4XXX_NUM_BANKS_PER_VF; hw_data->num_rings_per_bank = ADF_4XXX_NUM_RINGS_PER_BANK; hw_data->num_accel = ADF_4XXX_MAX_ACCELERATORS; hw_data->num_engines = ADF_4XXX_MAX_ACCELENGINES; hw_data->num_logical_accel = 1; hw_data->tx_rx_gap = ADF_4XXX_RX_RINGS_OFFSET; hw_data->tx_rings_mask = ADF_4XXX_TX_RINGS_MASK; hw_data->ring_to_svc_map = ADF_GEN4_DEFAULT_RING_TO_SRV_MAP; hw_data->alloc_irq = adf_isr_resource_alloc; hw_data->free_irq = adf_isr_resource_free; hw_data->enable_error_correction = adf_enable_error_correction; hw_data->get_accel_mask = get_accel_mask; hw_data->get_ae_mask = get_ae_mask; hw_data->get_num_accels = get_num_accels; hw_data->get_num_aes = get_num_aes; hw_data->get_sram_bar_id = get_sram_bar_id; hw_data->get_etr_bar_id = get_etr_bar_id; hw_data->get_misc_bar_id = get_misc_bar_id; hw_data->get_arb_info = get_arb_info; hw_data->get_admin_info = get_admin_info; hw_data->get_accel_cap = get_accel_cap; hw_data->get_sku = get_sku; hw_data->init_admin_comms = adf_init_admin_comms; hw_data->exit_admin_comms = adf_exit_admin_comms; hw_data->send_admin_init = adf_send_admin_init; hw_data->init_arb = adf_init_arb; hw_data->exit_arb = adf_exit_arb; hw_data->get_arb_mapping = adf_get_arbiter_mapping; hw_data->enable_ints = adf_enable_ints; hw_data->init_device = adf_init_device; hw_data->reset_device = adf_reset_flr; hw_data->admin_ae_mask = ADF_4XXX_ADMIN_AE_MASK; switch (dev_id) { case ADF_402XX_PCI_DEVICE_ID: hw_data->fw_name = ADF_402XX_FW; hw_data->fw_mmp_name = ADF_402XX_MMP; hw_data->uof_get_name = uof_get_name_402xx; break; default: hw_data->fw_name = ADF_4XXX_FW; hw_data->fw_mmp_name = ADF_4XXX_MMP; hw_data->uof_get_name = uof_get_name_4xxx; } hw_data->uof_get_num_objs = uof_get_num_objs; hw_data->uof_get_ae_mask = uof_get_ae_mask; hw_data->set_msix_rttable = set_msix_default_rttable; hw_data->set_ssm_wdtimer = adf_gen4_set_ssm_wdtimer; hw_data->get_ring_to_svc_map = get_ring_to_svc_map; hw_data->disable_iov = adf_disable_sriov; hw_data->ring_pair_reset = adf_gen4_ring_pair_reset; hw_data->enable_pm = adf_gen4_enable_pm; hw_data->handle_pm_interrupt = adf_gen4_handle_pm_interrupt; hw_data->dev_config = adf_gen4_dev_config; hw_data->start_timer = adf_gen4_timer_start; hw_data->stop_timer = adf_gen4_timer_stop; hw_data->get_hb_clock = get_heartbeat_clock; hw_data->num_hb_ctrs = ADF_NUM_HB_CNT_PER_AE; adf_gen4_init_hw_csr_ops(&hw_data->csr_ops); adf_gen4_init_pf_pfvf_ops(&hw_data->pfvf_ops); adf_gen4_init_dc_ops(&hw_data->dc_ops); } void adf_clean_hw_data_4xxx(struct adf_hw_device_data *hw_data) { hw_data->dev_class->instances--; }