// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qm_common.h" /* eq/aeq irq enable */ #define QM_VF_AEQ_INT_SOURCE 0x0 #define QM_VF_AEQ_INT_MASK 0x4 #define QM_VF_EQ_INT_SOURCE 0x8 #define QM_VF_EQ_INT_MASK 0xc #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) #define QM_IRQ_TYPE_MASK GENMASK(15, 0) #define QM_IRQ_TYPE_SHIFT 16 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) /* mailbox */ #define QM_MB_PING_ALL_VFS 0xffff #define QM_MB_CMD_DATA_SHIFT 32 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) #define QM_MB_STATUS_MASK GENMASK(12, 9) /* sqc shift */ #define QM_SQ_HOP_NUM_SHIFT 0 #define QM_SQ_PAGE_SIZE_SHIFT 4 #define QM_SQ_BUF_SIZE_SHIFT 8 #define QM_SQ_SQE_SIZE_SHIFT 12 #define QM_SQ_PRIORITY_SHIFT 0 #define QM_SQ_ORDERS_SHIFT 4 #define QM_SQ_TYPE_SHIFT 8 #define QM_QC_PASID_ENABLE 0x1 #define QM_QC_PASID_ENABLE_SHIFT 7 #define QM_SQ_TYPE_MASK GENMASK(3, 0) #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) /* cqc shift */ #define QM_CQ_HOP_NUM_SHIFT 0 #define QM_CQ_PAGE_SIZE_SHIFT 4 #define QM_CQ_BUF_SIZE_SHIFT 8 #define QM_CQ_CQE_SIZE_SHIFT 12 #define QM_CQ_PHASE_SHIFT 0 #define QM_CQ_FLAG_SHIFT 1 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) #define QM_QC_CQE_SIZE 4 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) /* eqc shift */ #define QM_EQE_AEQE_SIZE (2UL << 12) #define QM_EQC_PHASE_SHIFT 16 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) #define QM_EQE_CQN_MASK GENMASK(15, 0) #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) #define QM_AEQE_TYPE_SHIFT 17 #define QM_AEQE_CQN_MASK GENMASK(15, 0) #define QM_CQ_OVERFLOW 0 #define QM_EQ_OVERFLOW 1 #define QM_CQE_ERROR 2 #define QM_XQ_DEPTH_SHIFT 16 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) #define QM_DOORBELL_CMD_SQ 0 #define QM_DOORBELL_CMD_CQ 1 #define QM_DOORBELL_CMD_EQ 2 #define QM_DOORBELL_CMD_AEQ 3 #define QM_DOORBELL_BASE_V1 0x340 #define QM_DB_CMD_SHIFT_V1 16 #define QM_DB_INDEX_SHIFT_V1 32 #define QM_DB_PRIORITY_SHIFT_V1 48 #define QM_PAGE_SIZE 0x0034 #define QM_QP_DB_INTERVAL 0x10000 #define QM_DB_TIMEOUT_CFG 0x100074 #define QM_DB_TIMEOUT_SET 0x1fffff #define QM_MEM_START_INIT 0x100040 #define QM_MEM_INIT_DONE 0x100044 #define QM_VFT_CFG_RDY 0x10006c #define QM_VFT_CFG_OP_WR 0x100058 #define QM_VFT_CFG_TYPE 0x10005c #define QM_VFT_CFG 0x100060 #define QM_VFT_CFG_OP_ENABLE 0x100054 #define QM_PM_CTRL 0x100148 #define QM_IDLE_DISABLE BIT(9) #define QM_VFT_CFG_DATA_L 0x100064 #define QM_VFT_CFG_DATA_H 0x100068 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) #define QM_SQC_VFT_START_SQN_SHIFT 28 #define QM_SQC_VFT_VALID (1ULL << 44) #define QM_SQC_VFT_SQN_SHIFT 45 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) #define QM_CQC_VFT_VALID (1ULL << 28) #define QM_SQC_VFT_BASE_SHIFT_V2 28 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) #define QM_SQC_VFT_NUM_SHIFT_V2 45 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) #define QM_ABNORMAL_INT_SOURCE 0x100000 #define QM_ABNORMAL_INT_MASK 0x100004 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff #define QM_ABNORMAL_INT_STATUS 0x100008 #define QM_ABNORMAL_INT_SET 0x10000c #define QM_ABNORMAL_INF00 0x100010 #define QM_FIFO_OVERFLOW_TYPE 0xc0 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 #define QM_FIFO_OVERFLOW_VF 0x3f #define QM_ABNORMAL_INF01 0x100014 #define QM_DB_TIMEOUT_TYPE 0xc0 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 #define QM_DB_TIMEOUT_VF 0x3f #define QM_RAS_CE_ENABLE 0x1000ec #define QM_RAS_FE_ENABLE 0x1000f0 #define QM_RAS_NFE_ENABLE 0x1000f4 #define QM_RAS_CE_THRESHOLD 0x1000f8 #define QM_RAS_CE_TIMES_PER_IRQ 1 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 #define QM_ECC_MBIT BIT(2) #define QM_DB_TIMEOUT BIT(10) #define QM_OF_FIFO_OF BIT(11) #define QM_RESET_WAIT_TIMEOUT 400 #define QM_PEH_VENDOR_ID 0x1000d8 #define ACC_VENDOR_ID_VALUE 0x5a5a #define QM_PEH_DFX_INFO0 0x1000fc #define QM_PEH_DFX_INFO1 0x100100 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 #define ACC_MASTER_TRANS_RETURN_RW 3 #define ACC_MASTER_TRANS_RETURN 0x300150 #define ACC_MASTER_GLOBAL_CTRL 0x300000 #define ACC_AM_CFG_PORT_WR_EN 0x30001c #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT #define ACC_AM_ROB_ECC_INT_STS 0x300104 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) #define QM_MSI_CAP_ENABLE BIT(16) /* interfunction communication */ #define QM_IFC_READY_STATUS 0x100128 #define QM_IFC_INT_SET_P 0x100130 #define QM_IFC_INT_CFG 0x100134 #define QM_IFC_INT_SOURCE_P 0x100138 #define QM_IFC_INT_SOURCE_V 0x0020 #define QM_IFC_INT_MASK 0x0024 #define QM_IFC_INT_STATUS 0x0028 #define QM_IFC_INT_SET_V 0x002C #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) #define QM_IFC_INT_SOURCE_MASK BIT(0) #define QM_IFC_INT_DISABLE BIT(0) #define QM_IFC_INT_STATUS_MASK BIT(0) #define QM_IFC_INT_SET_MASK BIT(0) #define QM_WAIT_DST_ACK 10 #define QM_MAX_PF_WAIT_COUNT 10 #define QM_MAX_VF_WAIT_COUNT 40 #define QM_VF_RESET_WAIT_US 20000 #define QM_VF_RESET_WAIT_CNT 3000 #define QM_VF_RESET_WAIT_TIMEOUT_US \ (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) #define POLL_PERIOD 10 #define POLL_TIMEOUT 1000 #define WAIT_PERIOD_US_MAX 200 #define WAIT_PERIOD_US_MIN 100 #define MAX_WAIT_COUNTS 1000 #define QM_CACHE_WB_START 0x204 #define QM_CACHE_WB_DONE 0x208 #define QM_FUNC_CAPS_REG 0x3100 #define QM_CAPBILITY_VERSION GENMASK(7, 0) #define PCI_BAR_2 2 #define PCI_BAR_4 4 #define QMC_ALIGN(sz) ALIGN(sz, 32) #define QM_DBG_READ_LEN 256 #define QM_PCI_COMMAND_INVALID ~0 #define QM_RESET_STOP_TX_OFFSET 1 #define QM_RESET_STOP_RX_OFFSET 2 #define WAIT_PERIOD 20 #define REMOVE_WAIT_DELAY 10 #define QM_QOS_PARAM_NUM 2 #define QM_QOS_MAX_VAL 1000 #define QM_QOS_RATE 100 #define QM_QOS_EXPAND_RATE 1000 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 #define QM_SHAPER_CBS_B 1 #define QM_SHAPER_VFT_OFFSET 6 #define QM_QOS_MIN_ERROR_RATE 5 #define QM_SHAPER_MIN_CBS_S 8 #define QM_QOS_TICK 0x300U #define QM_QOS_DIVISOR_CLK 0x1f40U #define QM_QOS_MAX_CIR_B 200 #define QM_QOS_MIN_CIR_B 100 #define QM_QOS_MAX_CIR_U 6 #define QM_AUTOSUSPEND_DELAY 3000 #define QM_DEV_ALG_MAX_LEN 256 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) #define QM_MK_SQC_W13(priority, orders, alg_type) \ (((priority) << QM_SQ_PRIORITY_SHIFT) | \ ((orders) << QM_SQ_ORDERS_SHIFT) | \ (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) #define INIT_QC_COMMON(qc, base, pasid) do { \ (qc)->head = 0; \ (qc)->tail = 0; \ (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ (qc)->dw3 = 0; \ (qc)->w8 = 0; \ (qc)->rsvd0 = 0; \ (qc)->pasid = cpu_to_le16(pasid); \ (qc)->w11 = 0; \ (qc)->rsvd1 = 0; \ } while (0) enum vft_type { SQC_VFT = 0, CQC_VFT, SHAPER_VFT, }; enum acc_err_result { ACC_ERR_NONE, ACC_ERR_NEED_RESET, ACC_ERR_RECOVERED, }; enum qm_alg_type { ALG_TYPE_0, ALG_TYPE_1, }; enum qm_mb_cmd { QM_PF_FLR_PREPARE = 0x01, QM_PF_SRST_PREPARE, QM_PF_RESET_DONE, QM_VF_PREPARE_DONE, QM_VF_PREPARE_FAIL, QM_VF_START_DONE, QM_VF_START_FAIL, QM_PF_SET_QOS, QM_VF_GET_QOS, }; enum qm_basic_type { QM_TOTAL_QP_NUM_CAP = 0x0, QM_FUNC_MAX_QP_CAP, QM_XEQ_DEPTH_CAP, QM_QP_DEPTH_CAP, QM_EQ_IRQ_TYPE_CAP, QM_AEQ_IRQ_TYPE_CAP, QM_ABN_IRQ_TYPE_CAP, QM_PF2VF_IRQ_TYPE_CAP, QM_PF_IRQ_NUM_CAP, QM_VF_IRQ_NUM_CAP, }; enum qm_pre_store_cap_idx { QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, QM_AEQ_IRQ_TYPE_CAP_IDX, QM_ABN_IRQ_TYPE_CAP_IDX, QM_PF2VF_IRQ_TYPE_CAP_IDX, }; static const struct hisi_qm_cap_info qm_cap_info_comm[] = { {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, }; static const struct hisi_qm_cap_info qm_cap_info_pf[] = { {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, }; static const struct hisi_qm_cap_info qm_cap_info_vf[] = { {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, }; static const struct hisi_qm_cap_info qm_basic_info[] = { {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, }; static const u32 qm_pre_store_caps[] = { QM_EQ_IRQ_TYPE_CAP, QM_AEQ_IRQ_TYPE_CAP, QM_ABN_IRQ_TYPE_CAP, QM_PF2VF_IRQ_TYPE_CAP, }; struct qm_mailbox { __le16 w0; __le16 queue_num; __le32 base_l; __le32 base_h; __le32 rsvd; }; struct qm_doorbell { __le16 queue_num; __le16 cmd; __le16 index; __le16 priority; }; struct hisi_qm_resource { struct hisi_qm *qm; int distance; struct list_head list; }; /** * struct qm_hw_err - Structure describing the device errors * @list: hardware error list * @timestamp: timestamp when the error occurred */ struct qm_hw_err { struct list_head list; unsigned long long timestamp; }; struct hisi_qm_hw_ops { int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); void (*qm_db)(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority); int (*debug_init)(struct hisi_qm *qm); void (*hw_error_init)(struct hisi_qm *qm); void (*hw_error_uninit)(struct hisi_qm *qm); enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); int (*set_msi)(struct hisi_qm *qm, bool set); }; struct hisi_qm_hw_error { u32 int_msk; const char *msg; }; static const struct hisi_qm_hw_error qm_hw_error[] = { { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, { .int_msk = BIT(10), .msg = "qm_db_timeout" }, { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, { /* sentinel */ } }; static const char * const qm_db_timeout[] = { "sq", "cq", "eq", "aeq", }; static const char * const qm_fifo_overflow[] = { "cq", "eq", "aeq", }; static const char * const qp_s[] = { "none", "init", "start", "stop", "close", }; struct qm_typical_qos_table { u32 start; u32 end; u32 val; }; /* the qos step is 100 */ static struct qm_typical_qos_table shaper_cir_s[] = { {100, 100, 4}, {200, 200, 3}, {300, 500, 2}, {600, 1000, 1}, {1100, 100000, 0}, }; static struct qm_typical_qos_table shaper_cbs_s[] = { {100, 200, 9}, {300, 500, 11}, {600, 1000, 12}, {1100, 10000, 16}, {10100, 25000, 17}, {25100, 50000, 18}, {50100, 100000, 19} }; static void qm_irqs_unregister(struct hisi_qm *qm); static int qm_reset_device(struct hisi_qm *qm); static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) { enum qm_state curr = atomic_read(&qm->status.flags); bool avail = false; switch (curr) { case QM_INIT: if (new == QM_START || new == QM_CLOSE) avail = true; break; case QM_START: if (new == QM_STOP) avail = true; break; case QM_STOP: if (new == QM_CLOSE || new == QM_START) avail = true; break; default: break; } dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", qm_s[curr], qm_s[new]); if (!avail) dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", qm_s[curr], qm_s[new]); return avail; } static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, enum qp_state new) { enum qm_state qm_curr = atomic_read(&qm->status.flags); enum qp_state qp_curr = 0; bool avail = false; if (qp) qp_curr = atomic_read(&qp->qp_status.flags); switch (new) { case QP_INIT: if (qm_curr == QM_START || qm_curr == QM_INIT) avail = true; break; case QP_START: if ((qm_curr == QM_START && qp_curr == QP_INIT) || (qm_curr == QM_START && qp_curr == QP_STOP)) avail = true; break; case QP_STOP: if ((qm_curr == QM_START && qp_curr == QP_START) || (qp_curr == QP_INIT)) avail = true; break; case QP_CLOSE: if ((qm_curr == QM_START && qp_curr == QP_INIT) || (qm_curr == QM_START && qp_curr == QP_STOP) || (qm_curr == QM_STOP && qp_curr == QP_STOP) || (qm_curr == QM_STOP && qp_curr == QP_INIT)) avail = true; break; default: break; } dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); if (!avail) dev_warn(&qm->pdev->dev, "Can not change qp state from %s to %s in QM %s\n", qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); return avail; } static u32 qm_get_hw_error_status(struct hisi_qm *qm) { return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); } static u32 qm_get_dev_err_status(struct hisi_qm *qm) { return qm->err_ini->get_dev_hw_err_status(qm); } /* Check if the error causes the master ooo block */ static bool qm_check_dev_error(struct hisi_qm *qm) { u32 val, dev_val; if (qm->fun_type == QM_HW_VF) return false; val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; return val || dev_val; } static int qm_wait_reset_finish(struct hisi_qm *qm) { int delay = 0; /* All reset requests need to be queued for processing */ while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { msleep(++delay); if (delay > QM_RESET_WAIT_TIMEOUT) return -EBUSY; } return 0; } static int qm_reset_prepare_ready(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); /* * PF and VF on host doesnot support resetting at the * same time on Kunpeng920. */ if (qm->ver < QM_HW_V3) return qm_wait_reset_finish(pf_qm); return qm_wait_reset_finish(qm); } static void qm_reset_bit_clear(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); if (qm->ver < QM_HW_V3) clear_bit(QM_RESETTING, &pf_qm->misc_ctl); clear_bit(QM_RESETTING, &qm->misc_ctl); } static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, u64 base, u16 queue, bool op) { mailbox->w0 = cpu_to_le16((cmd) | ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | (0x1 << QM_MB_BUSY_SHIFT)); mailbox->queue_num = cpu_to_le16(queue); mailbox->base_l = cpu_to_le32(lower_32_bits(base)); mailbox->base_h = cpu_to_le32(upper_32_bits(base)); mailbox->rsvd = 0; } /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ int hisi_qm_wait_mb_ready(struct hisi_qm *qm) { u32 val; return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, val, !((val >> QM_MB_BUSY_SHIFT) & 0x1), POLL_PERIOD, POLL_TIMEOUT); } EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); /* 128 bit should be written to hardware at one time to trigger a mailbox */ static void qm_mb_write(struct hisi_qm *qm, const void *src) { void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; #if IS_ENABLED(CONFIG_ARM64) unsigned long tmp0 = 0, tmp1 = 0; #endif if (!IS_ENABLED(CONFIG_ARM64)) { memcpy_toio(fun_base, src, 16); dma_wmb(); return; } #if IS_ENABLED(CONFIG_ARM64) asm volatile("ldp %0, %1, %3\n" "stp %0, %1, %2\n" "dmb oshst\n" : "=&r" (tmp0), "=&r" (tmp1), "+Q" (*((char __iomem *)fun_base)) : "Q" (*((char *)src)) : "memory"); #endif } static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) { int ret; u32 val; if (unlikely(hisi_qm_wait_mb_ready(qm))) { dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); ret = -EBUSY; goto mb_busy; } qm_mb_write(qm, mailbox); if (unlikely(hisi_qm_wait_mb_ready(qm))) { dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); ret = -ETIMEDOUT; goto mb_busy; } val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); if (val & QM_MB_STATUS_MASK) { dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); ret = -EIO; goto mb_busy; } return 0; mb_busy: atomic64_inc(&qm->debug.dfx.mb_err_cnt); return ret; } int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, bool op) { struct qm_mailbox mailbox; int ret; dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", queue, cmd, (unsigned long long)dma_addr); qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); mutex_lock(&qm->mailbox_lock); ret = qm_mb_nolock(qm, &mailbox); mutex_unlock(&qm->mailbox_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_mb); static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) { u64 doorbell; doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | ((u64)index << QM_DB_INDEX_SHIFT_V1) | ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); } static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) { void __iomem *io_base = qm->io_base; u16 randata = 0; u64 doorbell; if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) io_base = qm->db_io_base + (u64)qn * qm->db_interval + QM_DOORBELL_SQ_CQ_BASE_V2; else io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | ((u64)randata << QM_DB_RAND_SHIFT_V2) | ((u64)index << QM_DB_INDEX_SHIFT_V2) | ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); writeq(doorbell, io_base); } static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) { dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", qn, cmd, index); qm->ops->qm_db(qm, qn, cmd, index, priority); } static void qm_disable_clock_gate(struct hisi_qm *qm) { u32 val; /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ if (qm->ver < QM_HW_V3) return; val = readl(qm->io_base + QM_PM_CTRL); val |= QM_IDLE_DISABLE; writel(val, qm->io_base + QM_PM_CTRL); } static int qm_dev_mem_reset(struct hisi_qm *qm) { u32 val; writel(0x1, qm->io_base + QM_MEM_START_INIT); return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); } /** * hisi_qm_get_hw_info() - Get device information. * @qm: The qm which want to get information. * @info_table: Array for storing device information. * @index: Index in info_table. * @is_read: Whether read from reg, 0: not support read from reg. * * This function returns device information the caller needs. */ u32 hisi_qm_get_hw_info(struct hisi_qm *qm, const struct hisi_qm_cap_info *info_table, u32 index, bool is_read) { u32 val; switch (qm->ver) { case QM_HW_V1: return info_table[index].v1_val; case QM_HW_V2: return info_table[index].v2_val; default: if (!is_read) return info_table[index].v3_val; val = readl(qm->io_base + info_table[index].offset); return (val >> info_table[index].shift) & info_table[index].mask; } } EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, u16 *high_bits, enum qm_basic_type type) { u32 depth; depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); *low_bits = depth & QM_XQ_DEPTH_MASK; *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; } int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, u32 dev_algs_size) { struct device *dev = &qm->pdev->dev; char *algs, *ptr; int i; if (!qm->uacce) return 0; if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { dev_err(dev, "algs size %u is equal or larger than %d.\n", dev_algs_size, QM_DEV_ALG_MAX_LEN); return -EINVAL; } algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); if (!algs) return -ENOMEM; for (i = 0; i < dev_algs_size; i++) if (alg_msk & dev_algs[i].alg_msk) strcat(algs, dev_algs[i].alg); ptr = strrchr(algs, '\n'); if (ptr) { *ptr = '\0'; qm->uacce->algs = algs; } return 0; } EXPORT_SYMBOL_GPL(hisi_qm_set_algs); static u32 qm_get_irq_num(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_PF) return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); } static int qm_pm_get_sync(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret; if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) return 0; ret = pm_runtime_resume_and_get(dev); if (ret < 0) { dev_err(dev, "failed to get_sync(%d).\n", ret); return ret; } return 0; } static void qm_pm_put_sync(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) return; pm_runtime_mark_last_busy(dev); pm_runtime_put_autosuspend(dev); } static void qm_cq_head_update(struct hisi_qp *qp) { if (qp->qp_status.cq_head == qp->cq_depth - 1) { qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; qp->qp_status.cq_head = 0; } else { qp->qp_status.cq_head++; } } static void qm_poll_req_cb(struct hisi_qp *qp) { struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; struct hisi_qm *qm = qp->qm; while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { dma_rmb(); qp->req_cb(qp, qp->sqe + qm->sqe_size * le16_to_cpu(cqe->sq_head)); qm_cq_head_update(qp); cqe = qp->cqe + qp->qp_status.cq_head; qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 0); atomic_dec(&qp->qp_status.used); cond_resched(); } /* set c_flag */ qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); } static void qm_work_process(struct work_struct *work) { struct hisi_qm_poll_data *poll_data = container_of(work, struct hisi_qm_poll_data, work); struct hisi_qm *qm = poll_data->qm; u16 eqe_num = poll_data->eqe_num; struct hisi_qp *qp; int i; for (i = eqe_num - 1; i >= 0; i--) { qp = &qm->qp_array[poll_data->qp_finish_id[i]]; if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) continue; if (qp->event_cb) { qp->event_cb(qp); continue; } if (likely(qp->req_cb)) qm_poll_req_cb(qp); } } static void qm_get_complete_eqe_num(struct hisi_qm *qm) { struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; struct hisi_qm_poll_data *poll_data = NULL; u16 eq_depth = qm->eq_depth; u16 cqn, eqe_num = 0; if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { atomic64_inc(&qm->debug.dfx.err_irq_cnt); qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); return; } cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; if (unlikely(cqn >= qm->qp_num)) return; poll_data = &qm->poll_data[cqn]; while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; poll_data->qp_finish_id[eqe_num] = cqn; eqe_num++; if (qm->status.eq_head == eq_depth - 1) { qm->status.eqc_phase = !qm->status.eqc_phase; eqe = qm->eqe; qm->status.eq_head = 0; } else { eqe++; qm->status.eq_head++; } if (eqe_num == (eq_depth >> 1) - 1) break; } poll_data->eqe_num = eqe_num; queue_work(qm->wq, &poll_data->work); qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); } static irqreturn_t qm_eq_irq(int irq, void *data) { struct hisi_qm *qm = data; /* Get qp id of completed tasks and re-enable the interrupt */ qm_get_complete_eqe_num(qm); return IRQ_HANDLED; } static irqreturn_t qm_mb_cmd_irq(int irq, void *data) { struct hisi_qm *qm = data; u32 val; val = readl(qm->io_base + QM_IFC_INT_STATUS); val &= QM_IFC_INT_STATUS_MASK; if (!val) return IRQ_NONE; if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); return IRQ_HANDLED; } schedule_work(&qm->cmd_process); return IRQ_HANDLED; } static void qm_set_qp_disable(struct hisi_qp *qp, int offset) { u32 *addr; if (qp->is_in_kernel) return; addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; *addr = 1; /* make sure setup is completed */ smp_wmb(); } static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) { struct hisi_qp *qp = &qm->qp_array[qp_id]; qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); hisi_qm_stop_qp(qp); qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); } static void qm_reset_function(struct hisi_qm *qm) { struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); struct device *dev = &qm->pdev->dev; int ret; if (qm_check_dev_error(pf_qm)) return; ret = qm_reset_prepare_ready(qm); if (ret) { dev_err(dev, "reset function not ready\n"); return; } ret = hisi_qm_stop(qm, QM_DOWN); if (ret) { dev_err(dev, "failed to stop qm when reset function\n"); goto clear_bit; } ret = hisi_qm_start(qm); if (ret) dev_err(dev, "failed to start qm when reset function\n"); clear_bit: qm_reset_bit_clear(qm); } static irqreturn_t qm_aeq_thread(int irq, void *data) { struct hisi_qm *qm = data; struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; u16 aeq_depth = qm->aeq_depth; u32 type, qp_id; atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; switch (type) { case QM_EQ_OVERFLOW: dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); qm_reset_function(qm); return IRQ_HANDLED; case QM_CQ_OVERFLOW: dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", qp_id); fallthrough; case QM_CQE_ERROR: qm_disable_qp(qm, qp_id); break; default: dev_err(&qm->pdev->dev, "unknown error type %u\n", type); break; } if (qm->status.aeq_head == aeq_depth - 1) { qm->status.aeqc_phase = !qm->status.aeqc_phase; aeqe = qm->aeqe; qm->status.aeq_head = 0; } else { aeqe++; qm->status.aeq_head++; } } qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); return IRQ_HANDLED; } static void qm_init_qp_status(struct hisi_qp *qp) { struct hisi_qp_status *qp_status = &qp->qp_status; qp_status->sq_tail = 0; qp_status->cq_head = 0; qp_status->cqc_phase = true; atomic_set(&qp_status->used, 0); } static void qm_init_prefetch(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; u32 page_type = 0x0; if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) return; switch (PAGE_SIZE) { case SZ_4K: page_type = 0x0; break; case SZ_16K: page_type = 0x1; break; case SZ_64K: page_type = 0x2; break; default: dev_err(dev, "system page size is not support: %lu, default set to 4KB", PAGE_SIZE); } writel(page_type, qm->io_base + QM_PAGE_SIZE); } /* * acc_shaper_para_calc() Get the IR value by the qos formula, the return value * is the expected qos calculated. * the formula: * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps * * IR_b * (2 ^ IR_u) * 8000 * IR(Mbps) = ------------------------- * Tick * (2 ^ IR_s) */ static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) { return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / (QM_QOS_TICK * (1 << cir_s)); } static u32 acc_shaper_calc_cbs_s(u32 ir) { int table_size = ARRAY_SIZE(shaper_cbs_s); int i; for (i = 0; i < table_size; i++) { if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) return shaper_cbs_s[i].val; } return QM_SHAPER_MIN_CBS_S; } static u32 acc_shaper_calc_cir_s(u32 ir) { int table_size = ARRAY_SIZE(shaper_cir_s); int i; for (i = 0; i < table_size; i++) { if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) return shaper_cir_s[i].val; } return 0; } static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) { u32 cir_b, cir_u, cir_s, ir_calc; u32 error_rate; factor->cbs_s = acc_shaper_calc_cbs_s(ir); cir_s = acc_shaper_calc_cir_s(ir); for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; if (error_rate <= QM_QOS_MIN_ERROR_RATE) { factor->cir_b = cir_b; factor->cir_u = cir_u; factor->cir_s = cir_s; return 0; } } } return -EINVAL; } static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, u32 number, struct qm_shaper_factor *factor) { u64 tmp = 0; if (number > 0) { switch (type) { case SQC_VFT: if (qm->ver == QM_HW_V1) { tmp = QM_SQC_VFT_BUF_SIZE | QM_SQC_VFT_SQC_SIZE | QM_SQC_VFT_INDEX_NUMBER | QM_SQC_VFT_VALID | (u64)base << QM_SQC_VFT_START_SQN_SHIFT; } else { tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | QM_SQC_VFT_VALID | (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; } break; case CQC_VFT: if (qm->ver == QM_HW_V1) { tmp = QM_CQC_VFT_BUF_SIZE | QM_CQC_VFT_SQC_SIZE | QM_CQC_VFT_INDEX_NUMBER | QM_CQC_VFT_VALID; } else { tmp = QM_CQC_VFT_VALID; } break; case SHAPER_VFT: if (factor) { tmp = factor->cir_b | (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); } break; } } writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); } static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, u32 fun_num, u32 base, u32 number) { struct qm_shaper_factor *factor = NULL; unsigned int val; int ret; if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) factor = &qm->factor[fun_num]; ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); if (ret) return ret; writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); writel(type, qm->io_base + QM_VFT_CFG_TYPE); if (type == SHAPER_VFT) fun_num |= base << QM_SHAPER_VFT_OFFSET; writel(fun_num, qm->io_base + QM_VFT_CFG); qm_vft_data_cfg(qm, type, base, number, factor); writel(0x0, qm->io_base + QM_VFT_CFG_RDY); writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); } static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) { u32 qos = qm->factor[fun_num].func_qos; int ret, i; ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); if (ret) { dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); return ret; } writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { /* The base number of queue reuse for different alg type */ ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); if (ret) return ret; } return 0; } /* The config should be conducted after qm_dev_mem_reset() */ static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, u32 number) { int ret, i; for (i = SQC_VFT; i <= CQC_VFT; i++) { ret = qm_set_vft_common(qm, i, fun_num, base, number); if (ret) return ret; } /* init default shaper qos val */ if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { ret = qm_shaper_init_vft(qm, fun_num); if (ret) goto back_sqc_cqc; } return 0; back_sqc_cqc: for (i = SQC_VFT; i <= CQC_VFT; i++) qm_set_vft_common(qm, i, fun_num, 0, 0); return ret; } static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) { u64 sqc_vft; int ret; ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); if (ret) return ret; sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); *number = (QM_SQC_VFT_NUM_MASK_V2 & (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; return 0; } void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, dma_addr_t *dma_addr) { struct device *dev = &qm->pdev->dev; void *ctx_addr; ctx_addr = kzalloc(ctx_size, GFP_KERNEL); if (!ctx_addr) return ERR_PTR(-ENOMEM); *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); if (dma_mapping_error(dev, *dma_addr)) { dev_err(dev, "DMA mapping error!\n"); kfree(ctx_addr); return ERR_PTR(-ENOMEM); } return ctx_addr; } void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, const void *ctx_addr, dma_addr_t *dma_addr) { struct device *dev = &qm->pdev->dev; dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); kfree(ctx_addr); } static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) { return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); } static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) { return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); } static void qm_hw_error_init_v1(struct hisi_qm *qm) { writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_hw_error_cfg(struct hisi_qm *qm) { struct hisi_qm_err_info *err_info = &qm->err_info; qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; /* clear QM hw residual error source */ writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); /* configure error type */ writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); } static void qm_hw_error_init_v2(struct hisi_qm *qm) { u32 irq_unmask; qm_hw_error_cfg(qm); irq_unmask = ~qm->error_mask; irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_hw_error_uninit_v2(struct hisi_qm *qm) { u32 irq_mask = qm->error_mask; irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_hw_error_init_v3(struct hisi_qm *qm) { u32 irq_unmask; qm_hw_error_cfg(qm); /* enable close master ooo when hardware error happened */ writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); irq_unmask = ~qm->error_mask; irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); } static void qm_hw_error_uninit_v3(struct hisi_qm *qm) { u32 irq_mask = qm->error_mask; irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); /* disable close master ooo when hardware error happened */ writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); } static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) { const struct hisi_qm_hw_error *err; struct device *dev = &qm->pdev->dev; u32 reg_val, type, vf_num; int i; for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { err = &qm_hw_error[i]; if (!(err->int_msk & error_status)) continue; dev_err(dev, "%s [error status=0x%x] found\n", err->msg, err->int_msk); if (err->int_msk & QM_DB_TIMEOUT) { reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); type = (reg_val & QM_DB_TIMEOUT_TYPE) >> QM_DB_TIMEOUT_TYPE_SHIFT; vf_num = reg_val & QM_DB_TIMEOUT_VF; dev_err(dev, "qm %s doorbell timeout in function %u\n", qm_db_timeout[type], vf_num); } else if (err->int_msk & QM_OF_FIFO_OF) { reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> QM_FIFO_OVERFLOW_TYPE_SHIFT; vf_num = reg_val & QM_FIFO_OVERFLOW_VF; if (type < ARRAY_SIZE(qm_fifo_overflow)) dev_err(dev, "qm %s fifo overflow in function %u\n", qm_fifo_overflow[type], vf_num); else dev_err(dev, "unknown error type\n"); } } } static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) { u32 error_status, tmp; /* read err sts */ tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); error_status = qm->error_mask & tmp; if (error_status) { if (error_status & QM_ECC_MBIT) qm->err_status.is_qm_ecc_mbit = true; qm_log_hw_error(qm, error_status); if (error_status & qm->err_info.qm_reset_mask) return ACC_ERR_NEED_RESET; writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); } return ACC_ERR_RECOVERED; } static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) { struct qm_mailbox mailbox; int ret; qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); mutex_lock(&qm->mailbox_lock); ret = qm_mb_nolock(qm, &mailbox); if (ret) goto err_unlock; *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); err_unlock: mutex_unlock(&qm->mailbox_lock); return ret; } static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) { u32 val; if (qm->fun_type == QM_HW_PF) writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); val |= QM_IFC_INT_SOURCE_MASK; writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); } static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) { struct device *dev = &qm->pdev->dev; u32 cmd; u64 msg; int ret; ret = qm_get_mb_cmd(qm, &msg, vf_id); if (ret) { dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); return; } cmd = msg & QM_MB_CMD_DATA_MASK; switch (cmd) { case QM_VF_PREPARE_FAIL: dev_err(dev, "failed to stop VF(%u)!\n", vf_id); break; case QM_VF_START_FAIL: dev_err(dev, "failed to start VF(%u)!\n", vf_id); break; case QM_VF_PREPARE_DONE: case QM_VF_START_DONE: break; default: dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); break; } } static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; u32 vfs_num = qm->vfs_num; int cnt = 0; int ret = 0; u64 val; u32 i; if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) return 0; while (true) { val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); /* All VFs send command to PF, break */ if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) break; if (++cnt > QM_MAX_PF_WAIT_COUNT) { ret = -EBUSY; break; } msleep(QM_WAIT_DST_ACK); } /* PF check VFs msg */ for (i = 1; i <= vfs_num; i++) { if (val & BIT(i)) qm_handle_vf_msg(qm, i); else dev_err(dev, "VF(%u) not ping PF!\n", i); } /* PF clear interrupt to ack VFs */ qm_clear_cmd_interrupt(qm, val); return ret; } static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) { u32 val; val = readl(qm->io_base + QM_IFC_INT_CFG); val &= ~QM_IFC_SEND_ALL_VFS; val |= fun_num; writel(val, qm->io_base + QM_IFC_INT_CFG); val = readl(qm->io_base + QM_IFC_INT_SET_P); val |= QM_IFC_INT_SET_MASK; writel(val, qm->io_base + QM_IFC_INT_SET_P); } static void qm_trigger_pf_interrupt(struct hisi_qm *qm) { u32 val; val = readl(qm->io_base + QM_IFC_INT_SET_V); val |= QM_IFC_INT_SET_MASK; writel(val, qm->io_base + QM_IFC_INT_SET_V); } static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) { struct device *dev = &qm->pdev->dev; struct qm_mailbox mailbox; int cnt = 0; u64 val; int ret; qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); mutex_lock(&qm->mailbox_lock); ret = qm_mb_nolock(qm, &mailbox); if (ret) { dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); goto err_unlock; } qm_trigger_vf_interrupt(qm, fun_num); while (true) { msleep(QM_WAIT_DST_ACK); val = readq(qm->io_base + QM_IFC_READY_STATUS); /* if VF respond, PF notifies VF successfully. */ if (!(val & BIT(fun_num))) goto err_unlock; if (++cnt > QM_MAX_PF_WAIT_COUNT) { dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); ret = -ETIMEDOUT; break; } } err_unlock: mutex_unlock(&qm->mailbox_lock); return ret; } static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) { struct device *dev = &qm->pdev->dev; u32 vfs_num = qm->vfs_num; struct qm_mailbox mailbox; u64 val = 0; int cnt = 0; int ret; u32 i; qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); mutex_lock(&qm->mailbox_lock); /* PF sends command to all VFs by mailbox */ ret = qm_mb_nolock(qm, &mailbox); if (ret) { dev_err(dev, "failed to send command to VFs!\n"); mutex_unlock(&qm->mailbox_lock); return ret; } qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); while (true) { msleep(QM_WAIT_DST_ACK); val = readq(qm->io_base + QM_IFC_READY_STATUS); /* If all VFs acked, PF notifies VFs successfully. */ if (!(val & GENMASK(vfs_num, 1))) { mutex_unlock(&qm->mailbox_lock); return 0; } if (++cnt > QM_MAX_PF_WAIT_COUNT) break; } mutex_unlock(&qm->mailbox_lock); /* Check which vf respond timeout. */ for (i = 1; i <= vfs_num; i++) { if (val & BIT(i)) dev_err(dev, "failed to get response from VF(%u)!\n", i); } return -ETIMEDOUT; } static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) { struct qm_mailbox mailbox; int cnt = 0; u32 val; int ret; qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); mutex_lock(&qm->mailbox_lock); ret = qm_mb_nolock(qm, &mailbox); if (ret) { dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); goto unlock; } qm_trigger_pf_interrupt(qm); /* Waiting for PF response */ while (true) { msleep(QM_WAIT_DST_ACK); val = readl(qm->io_base + QM_IFC_INT_SET_V); if (!(val & QM_IFC_INT_STATUS_MASK)) break; if (++cnt > QM_MAX_VF_WAIT_COUNT) { ret = -ETIMEDOUT; break; } } unlock: mutex_unlock(&qm->mailbox_lock); return ret; } static int qm_stop_qp(struct hisi_qp *qp) { return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); } static int qm_set_msi(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; if (set) { pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 0); } else { pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, ACC_PEH_MSI_DISABLE); if (qm->err_status.is_qm_ecc_mbit || qm->err_status.is_dev_ecc_mbit) return 0; mdelay(1); if (readl(qm->io_base + QM_PEH_DFX_INFO0)) return -EFAULT; } return 0; } static void qm_wait_msi_finish(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 cmd = ~0; int cnt = 0; u32 val; int ret; while (true) { pci_read_config_dword(pdev, pdev->msi_cap + PCI_MSI_PENDING_64, &cmd); if (!cmd) break; if (++cnt > MAX_WAIT_COUNTS) { pci_warn(pdev, "failed to empty MSI PENDING!\n"); break; } udelay(1); } ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, val, !(val & QM_PEH_DFX_MASK), POLL_PERIOD, POLL_TIMEOUT); if (ret) pci_warn(pdev, "failed to empty PEH MSI!\n"); ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, val, !(val & QM_PEH_MSI_FINISH_MASK), POLL_PERIOD, POLL_TIMEOUT); if (ret) pci_warn(pdev, "failed to finish MSI operation!\n"); } static int qm_set_msi_v3(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; int ret = -ETIMEDOUT; u32 cmd, i; pci_read_config_dword(pdev, pdev->msi_cap, &cmd); if (set) cmd |= QM_MSI_CAP_ENABLE; else cmd &= ~QM_MSI_CAP_ENABLE; pci_write_config_dword(pdev, pdev->msi_cap, cmd); if (set) { for (i = 0; i < MAX_WAIT_COUNTS; i++) { pci_read_config_dword(pdev, pdev->msi_cap, &cmd); if (cmd & QM_MSI_CAP_ENABLE) return 0; udelay(1); } } else { udelay(WAIT_PERIOD_US_MIN); qm_wait_msi_finish(qm); ret = 0; } return ret; } static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { .qm_db = qm_db_v1, .hw_error_init = qm_hw_error_init_v1, .set_msi = qm_set_msi, }; static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { .get_vft = qm_get_vft_v2, .qm_db = qm_db_v2, .hw_error_init = qm_hw_error_init_v2, .hw_error_uninit = qm_hw_error_uninit_v2, .hw_error_handle = qm_hw_error_handle_v2, .set_msi = qm_set_msi, }; static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { .get_vft = qm_get_vft_v2, .qm_db = qm_db_v2, .hw_error_init = qm_hw_error_init_v3, .hw_error_uninit = qm_hw_error_uninit_v3, .hw_error_handle = qm_hw_error_handle_v2, .set_msi = qm_set_msi_v3, }; static void *qm_get_avail_sqe(struct hisi_qp *qp) { struct hisi_qp_status *qp_status = &qp->qp_status; u16 sq_tail = qp_status->sq_tail; if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) return NULL; return qp->sqe + sq_tail * qp->qm->sqe_size; } static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) { u64 *addr; /* Use last 64 bits of DUS to reset status. */ addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; *addr = 0; } static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) { struct device *dev = &qm->pdev->dev; struct hisi_qp *qp; int qp_id; if (!qm_qp_avail_state(qm, NULL, QP_INIT)) return ERR_PTR(-EPERM); if (qm->qp_in_used == qm->qp_num) { dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", qm->qp_num); atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); return ERR_PTR(-EBUSY); } qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); if (qp_id < 0) { dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", qm->qp_num); atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); return ERR_PTR(-EBUSY); } qp = &qm->qp_array[qp_id]; hisi_qm_unset_hw_reset(qp); memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); qp->event_cb = NULL; qp->req_cb = NULL; qp->qp_id = qp_id; qp->alg_type = alg_type; qp->is_in_kernel = true; qm->qp_in_used++; atomic_set(&qp->qp_status.flags, QP_INIT); return qp; } /** * hisi_qm_create_qp() - Create a queue pair from qm. * @qm: The qm we create a qp from. * @alg_type: Accelerator specific algorithm type in sqc. * * Return created qp, negative error code if failed. */ static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) { struct hisi_qp *qp; int ret; ret = qm_pm_get_sync(qm); if (ret) return ERR_PTR(ret); down_write(&qm->qps_lock); qp = qm_create_qp_nolock(qm, alg_type); up_write(&qm->qps_lock); if (IS_ERR(qp)) qm_pm_put_sync(qm); return qp; } /** * hisi_qm_release_qp() - Release a qp back to its qm. * @qp: The qp we want to release. * * This function releases the resource of a qp. */ static void hisi_qm_release_qp(struct hisi_qp *qp) { struct hisi_qm *qm = qp->qm; down_write(&qm->qps_lock); if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { up_write(&qm->qps_lock); return; } qm->qp_in_used--; idr_remove(&qm->qp_idr, qp->qp_id); up_write(&qm->qps_lock); qm_pm_put_sync(qm); } static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) { struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; enum qm_hw_ver ver = qm->ver; struct qm_sqc *sqc; dma_addr_t sqc_dma; int ret; sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); if (!sqc) return -ENOMEM; INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); if (ver == QM_HW_V1) { sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); sqc->w8 = cpu_to_le16(qp->sq_depth - 1); } else { sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); sqc->w8 = 0; /* rand_qc */ } sqc->cq_num = cpu_to_le16(qp_id); sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << QM_QC_PASID_ENABLE_SHIFT); sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, sqc_dma)) { kfree(sqc); return -ENOMEM; } ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); kfree(sqc); return ret; } static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) { struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; enum qm_hw_ver ver = qm->ver; struct qm_cqc *cqc; dma_addr_t cqc_dma; int ret; cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); if (!cqc) return -ENOMEM; INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); if (ver == QM_HW_V1) { cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); cqc->w8 = cpu_to_le16(qp->cq_depth - 1); } else { cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); cqc->w8 = 0; /* rand_qc */ } cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, cqc_dma)) { kfree(cqc); return -ENOMEM; } ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); kfree(cqc); return ret; } static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) { int ret; qm_init_qp_status(qp); ret = qm_sq_ctx_cfg(qp, qp_id, pasid); if (ret) return ret; return qm_cq_ctx_cfg(qp, qp_id, pasid); } static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) { struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; int qp_id = qp->qp_id; u32 pasid = arg; int ret; if (!qm_qp_avail_state(qm, qp, QP_START)) return -EPERM; ret = qm_qp_ctx_cfg(qp, qp_id, pasid); if (ret) return ret; atomic_set(&qp->qp_status.flags, QP_START); dev_dbg(dev, "queue %d started\n", qp_id); return 0; } /** * hisi_qm_start_qp() - Start a qp into running. * @qp: The qp we want to start to run. * @arg: Accelerator specific argument. * * After this function, qp can receive request from user. Return 0 if * successful, negative error code if failed. */ int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) { struct hisi_qm *qm = qp->qm; int ret; down_write(&qm->qps_lock); ret = qm_start_qp_nolock(qp, arg); up_write(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_start_qp); /** * qp_stop_fail_cb() - call request cb. * @qp: stopped failed qp. * * Callback function should be called whether task completed or not. */ static void qp_stop_fail_cb(struct hisi_qp *qp) { int qp_used = atomic_read(&qp->qp_status.used); u16 cur_tail = qp->qp_status.sq_tail; u16 sq_depth = qp->sq_depth; u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; struct hisi_qm *qm = qp->qm; u16 pos; int i; for (i = 0; i < qp_used; i++) { pos = (i + cur_head) % sq_depth; qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); atomic_dec(&qp->qp_status.used); } } /** * qm_drain_qp() - Drain a qp. * @qp: The qp we want to drain. * * Determine whether the queue is cleared by judging the tail pointers of * sq and cq. */ static int qm_drain_qp(struct hisi_qp *qp) { size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); struct hisi_qm *qm = qp->qm; struct device *dev = &qm->pdev->dev; struct qm_sqc *sqc; struct qm_cqc *cqc; dma_addr_t dma_addr; int ret = 0, i = 0; void *addr; /* No need to judge if master OOO is blocked. */ if (qm_check_dev_error(qm)) return 0; /* Kunpeng930 supports drain qp by device */ if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { ret = qm_stop_qp(qp); if (ret) dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); return ret; } addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); if (IS_ERR(addr)) { dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); return -ENOMEM; } while (++i) { ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); if (ret) { dev_err_ratelimited(dev, "Failed to dump sqc!\n"); break; } sqc = addr; ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), qp->qp_id); if (ret) { dev_err_ratelimited(dev, "Failed to dump cqc!\n"); break; } cqc = addr + sizeof(struct qm_sqc); if ((sqc->tail == cqc->tail) && (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) break; if (i == MAX_WAIT_COUNTS) { dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); ret = -EBUSY; break; } usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); } hisi_qm_ctx_free(qm, size, addr, &dma_addr); return ret; } static int qm_stop_qp_nolock(struct hisi_qp *qp) { struct device *dev = &qp->qm->pdev->dev; int ret; /* * It is allowed to stop and release qp when reset, If the qp is * stopped when reset but still want to be released then, the * is_resetting flag should be set negative so that this qp will not * be restarted after reset. */ if (atomic_read(&qp->qp_status.flags) == QP_STOP) { qp->is_resetting = false; return 0; } if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) return -EPERM; atomic_set(&qp->qp_status.flags, QP_STOP); ret = qm_drain_qp(qp); if (ret) dev_err(dev, "Failed to drain out data for stopping!\n"); flush_workqueue(qp->qm->wq); if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) qp_stop_fail_cb(qp); dev_dbg(dev, "stop queue %u!", qp->qp_id); return 0; } /** * hisi_qm_stop_qp() - Stop a qp in qm. * @qp: The qp we want to stop. * * This function is reverse of hisi_qm_start_qp. Return 0 if successful. */ int hisi_qm_stop_qp(struct hisi_qp *qp) { int ret; down_write(&qp->qm->qps_lock); ret = qm_stop_qp_nolock(qp); up_write(&qp->qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); /** * hisi_qp_send() - Queue up a task in the hardware queue. * @qp: The qp in which to put the message. * @msg: The message. * * This function will return -EBUSY if qp is currently full, and -EAGAIN * if qp related qm is resetting. * * Note: This function may run with qm_irq_thread and ACC reset at same time. * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC * reset may happen, we have no lock here considering performance. This * causes current qm_db sending fail or can not receive sended sqe. QM * sync/async receive function should handle the error sqe. ACC reset * done function should clear used sqe to 0. */ int hisi_qp_send(struct hisi_qp *qp, const void *msg) { struct hisi_qp_status *qp_status = &qp->qp_status; u16 sq_tail = qp_status->sq_tail; u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; void *sqe = qm_get_avail_sqe(qp); if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || atomic_read(&qp->qm->status.flags) == QM_STOP || qp->is_resetting)) { dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); return -EAGAIN; } if (!sqe) return -EBUSY; memcpy(sqe, msg, qp->qm->sqe_size); qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); atomic_inc(&qp->qp_status.used); qp_status->sq_tail = sq_tail_next; return 0; } EXPORT_SYMBOL_GPL(hisi_qp_send); static void hisi_qm_cache_wb(struct hisi_qm *qm) { unsigned int val; if (qm->ver == QM_HW_V1) return; writel(0x1, qm->io_base + QM_CACHE_WB_START); if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT)) dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); } static void qm_qp_event_notifier(struct hisi_qp *qp) { wake_up_interruptible(&qp->uacce_q->wait); } /* This function returns free number of qp in qm. */ static int hisi_qm_get_available_instances(struct uacce_device *uacce) { struct hisi_qm *qm = uacce->priv; int ret; down_read(&qm->qps_lock); ret = qm->qp_num - qm->qp_in_used; up_read(&qm->qps_lock); return ret; } static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) { int i; for (i = 0; i < qm->qp_num; i++) qm_set_qp_disable(&qm->qp_array[i], offset); } static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, unsigned long arg, struct uacce_queue *q) { struct hisi_qm *qm = uacce->priv; struct hisi_qp *qp; u8 alg_type = 0; qp = hisi_qm_create_qp(qm, alg_type); if (IS_ERR(qp)) return PTR_ERR(qp); q->priv = qp; q->uacce = uacce; qp->uacce_q = q; qp->event_cb = qm_qp_event_notifier; qp->pasid = arg; qp->is_in_kernel = false; return 0; } static void hisi_qm_uacce_put_queue(struct uacce_queue *q) { struct hisi_qp *qp = q->priv; hisi_qm_release_qp(qp); } /* map sq/cq/doorbell to user space */ static int hisi_qm_uacce_mmap(struct uacce_queue *q, struct vm_area_struct *vma, struct uacce_qfile_region *qfr) { struct hisi_qp *qp = q->priv; struct hisi_qm *qm = qp->qm; resource_size_t phys_base = qm->db_phys_base + qp->qp_id * qm->db_interval; size_t sz = vma->vm_end - vma->vm_start; struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; unsigned long vm_pgoff; int ret; switch (qfr->type) { case UACCE_QFRT_MMIO: if (qm->ver == QM_HW_V1) { if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) return -EINVAL; } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) return -EINVAL; } else { if (sz > qm->db_interval) return -EINVAL; } vm_flags_set(vma, VM_IO); return remap_pfn_range(vma, vma->vm_start, phys_base >> PAGE_SHIFT, sz, pgprot_noncached(vma->vm_page_prot)); case UACCE_QFRT_DUS: if (sz != qp->qdma.size) return -EINVAL; /* * dma_mmap_coherent() requires vm_pgoff as 0 * restore vm_pfoff to initial value for mmap() */ vm_pgoff = vma->vm_pgoff; vma->vm_pgoff = 0; ret = dma_mmap_coherent(dev, vma, qp->qdma.va, qp->qdma.dma, sz); vma->vm_pgoff = vm_pgoff; return ret; default: return -EINVAL; } } static int hisi_qm_uacce_start_queue(struct uacce_queue *q) { struct hisi_qp *qp = q->priv; return hisi_qm_start_qp(qp, qp->pasid); } static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) { hisi_qm_stop_qp(q->priv); } static int hisi_qm_is_q_updated(struct uacce_queue *q) { struct hisi_qp *qp = q->priv; struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; int updated = 0; while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { /* make sure to read data from memory */ dma_rmb(); qm_cq_head_update(qp); cqe = qp->cqe + qp->qp_status.cq_head; updated = 1; } return updated; } static void qm_set_sqctype(struct uacce_queue *q, u16 type) { struct hisi_qm *qm = q->uacce->priv; struct hisi_qp *qp = q->priv; down_write(&qm->qps_lock); qp->alg_type = type; up_write(&qm->qps_lock); } static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, unsigned long arg) { struct hisi_qp *qp = q->priv; struct hisi_qp_info qp_info; struct hisi_qp_ctx qp_ctx; if (cmd == UACCE_CMD_QM_SET_QP_CTX) { if (copy_from_user(&qp_ctx, (void __user *)arg, sizeof(struct hisi_qp_ctx))) return -EFAULT; if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) return -EINVAL; qm_set_sqctype(q, qp_ctx.qc_type); qp_ctx.id = qp->qp_id; if (copy_to_user((void __user *)arg, &qp_ctx, sizeof(struct hisi_qp_ctx))) return -EFAULT; return 0; } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { if (copy_from_user(&qp_info, (void __user *)arg, sizeof(struct hisi_qp_info))) return -EFAULT; qp_info.sqe_size = qp->qm->sqe_size; qp_info.sq_depth = qp->sq_depth; qp_info.cq_depth = qp->cq_depth; if (copy_to_user((void __user *)arg, &qp_info, sizeof(struct hisi_qp_info))) return -EFAULT; return 0; } return -EINVAL; } /** * qm_hw_err_isolate() - Try to set the isolation status of the uacce device * according to user's configuration of error threshold. * @qm: the uacce device */ static int qm_hw_err_isolate(struct hisi_qm *qm) { struct qm_hw_err *err, *tmp, *hw_err; struct qm_err_isolate *isolate; u32 count = 0; isolate = &qm->isolate_data; #define SECONDS_PER_HOUR 3600 /* All the hw errs are processed by PF driver */ if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) return 0; hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); if (!hw_err) return -ENOMEM; /* * Time-stamp every slot AER error. Then check the AER error log when the * next device AER error occurred. if the device slot AER error count exceeds * the setting error threshold in one hour, the isolated state will be set * to true. And the AER error logs that exceed one hour will be cleared. */ mutex_lock(&isolate->isolate_lock); hw_err->timestamp = jiffies; list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { if ((hw_err->timestamp - err->timestamp) / HZ > SECONDS_PER_HOUR) { list_del(&err->list); kfree(err); } else { count++; } } list_add(&hw_err->list, &isolate->qm_hw_errs); mutex_unlock(&isolate->isolate_lock); if (count >= isolate->err_threshold) isolate->is_isolate = true; return 0; } static void qm_hw_err_destroy(struct hisi_qm *qm) { struct qm_hw_err *err, *tmp; mutex_lock(&qm->isolate_data.isolate_lock); list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { list_del(&err->list); kfree(err); } mutex_unlock(&qm->isolate_data.isolate_lock); } static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) { struct hisi_qm *qm = uacce->priv; struct hisi_qm *pf_qm; if (uacce->is_vf) pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); else pf_qm = qm; return pf_qm->isolate_data.is_isolate ? UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; } static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) { struct hisi_qm *qm = uacce->priv; /* Must be set by PF */ if (uacce->is_vf) return -EPERM; if (qm->isolate_data.is_isolate) return -EPERM; qm->isolate_data.err_threshold = num; /* After the policy is updated, need to reset the hardware err list */ qm_hw_err_destroy(qm); return 0; } static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) { struct hisi_qm *qm = uacce->priv; struct hisi_qm *pf_qm; if (uacce->is_vf) { pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); return pf_qm->isolate_data.err_threshold; } return qm->isolate_data.err_threshold; } static const struct uacce_ops uacce_qm_ops = { .get_available_instances = hisi_qm_get_available_instances, .get_queue = hisi_qm_uacce_get_queue, .put_queue = hisi_qm_uacce_put_queue, .start_queue = hisi_qm_uacce_start_queue, .stop_queue = hisi_qm_uacce_stop_queue, .mmap = hisi_qm_uacce_mmap, .ioctl = hisi_qm_uacce_ioctl, .is_q_updated = hisi_qm_is_q_updated, .get_isolate_state = hisi_qm_get_isolate_state, .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, }; static void qm_remove_uacce(struct hisi_qm *qm) { struct uacce_device *uacce = qm->uacce; if (qm->use_sva) { qm_hw_err_destroy(qm); uacce_remove(uacce); qm->uacce = NULL; } } static int qm_alloc_uacce(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct uacce_device *uacce; unsigned long mmio_page_nr; unsigned long dus_page_nr; u16 sq_depth, cq_depth; struct uacce_interface interface = { .flags = UACCE_DEV_SVA, .ops = &uacce_qm_ops, }; int ret; ret = strscpy(interface.name, dev_driver_string(&pdev->dev), sizeof(interface.name)); if (ret < 0) return -ENAMETOOLONG; uacce = uacce_alloc(&pdev->dev, &interface); if (IS_ERR(uacce)) return PTR_ERR(uacce); if (uacce->flags & UACCE_DEV_SVA) { qm->use_sva = true; } else { /* only consider sva case */ qm_remove_uacce(qm); return -EINVAL; } uacce->is_vf = pdev->is_virtfn; uacce->priv = qm; if (qm->ver == QM_HW_V1) uacce->api_ver = HISI_QM_API_VER_BASE; else if (qm->ver == QM_HW_V2) uacce->api_ver = HISI_QM_API_VER2_BASE; else uacce->api_ver = HISI_QM_API_VER3_BASE; if (qm->ver == QM_HW_V1) mmio_page_nr = QM_DOORBELL_PAGE_NR; else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) mmio_page_nr = QM_DOORBELL_PAGE_NR + QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; else mmio_page_nr = qm->db_interval / PAGE_SIZE; qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); /* Add one more page for device or qp status */ dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> PAGE_SHIFT; uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; qm->uacce = uacce; INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); mutex_init(&qm->isolate_data.isolate_lock); return 0; } /** * qm_frozen() - Try to froze QM to cut continuous queue request. If * there is user on the QM, return failure without doing anything. * @qm: The qm needed to be fronzen. * * This function frozes QM, then we can do SRIOV disabling. */ static int qm_frozen(struct hisi_qm *qm) { if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) return 0; down_write(&qm->qps_lock); if (!qm->qp_in_used) { qm->qp_in_used = qm->qp_num; up_write(&qm->qps_lock); set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); return 0; } up_write(&qm->qps_lock); return -EBUSY; } static int qm_try_frozen_vfs(struct pci_dev *pdev, struct hisi_qm_list *qm_list) { struct hisi_qm *qm, *vf_qm; struct pci_dev *dev; int ret = 0; if (!qm_list || !pdev) return -EINVAL; /* Try to frozen all the VFs as disable SRIOV */ mutex_lock(&qm_list->lock); list_for_each_entry(qm, &qm_list->list, list) { dev = qm->pdev; if (dev == pdev) continue; if (pci_physfn(dev) == pdev) { vf_qm = pci_get_drvdata(dev); ret = qm_frozen(vf_qm); if (ret) goto frozen_fail; } } frozen_fail: mutex_unlock(&qm_list->lock); return ret; } /** * hisi_qm_wait_task_finish() - Wait until the task is finished * when removing the driver. * @qm: The qm needed to wait for the task to finish. * @qm_list: The list of all available devices. */ void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) { while (qm_frozen(qm) || ((qm->fun_type == QM_HW_PF) && qm_try_frozen_vfs(qm->pdev, qm_list))) { msleep(WAIT_PERIOD); } while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || test_bit(QM_RESETTING, &qm->misc_ctl)) msleep(WAIT_PERIOD); if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) flush_work(&qm->cmd_process); udelay(REMOVE_WAIT_DELAY); } EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) { struct device *dev = &qm->pdev->dev; struct qm_dma *qdma; int i; for (i = num - 1; i >= 0; i--) { qdma = &qm->qp_array[i].qdma; dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); kfree(qm->poll_data[i].qp_finish_id); } kfree(qm->poll_data); kfree(qm->qp_array); } static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, u16 sq_depth, u16 cq_depth) { struct device *dev = &qm->pdev->dev; size_t off = qm->sqe_size * sq_depth; struct hisi_qp *qp; int ret = -ENOMEM; qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), GFP_KERNEL); if (!qm->poll_data[id].qp_finish_id) return -ENOMEM; qp = &qm->qp_array[id]; qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, GFP_KERNEL); if (!qp->qdma.va) goto err_free_qp_finish_id; qp->sqe = qp->qdma.va; qp->sqe_dma = qp->qdma.dma; qp->cqe = qp->qdma.va + off; qp->cqe_dma = qp->qdma.dma + off; qp->qdma.size = dma_size; qp->sq_depth = sq_depth; qp->cq_depth = cq_depth; qp->qm = qm; qp->qp_id = id; return 0; err_free_qp_finish_id: kfree(qm->poll_data[id].qp_finish_id); return ret; } static void hisi_qm_pre_init(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; if (qm->ver == QM_HW_V1) qm->ops = &qm_hw_ops_v1; else if (qm->ver == QM_HW_V2) qm->ops = &qm_hw_ops_v2; else qm->ops = &qm_hw_ops_v3; pci_set_drvdata(pdev, qm); mutex_init(&qm->mailbox_lock); init_rwsem(&qm->qps_lock); qm->qp_in_used = 0; if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); } } static void qm_cmd_uninit(struct hisi_qm *qm) { u32 val; if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) return; val = readl(qm->io_base + QM_IFC_INT_MASK); val |= QM_IFC_INT_DISABLE; writel(val, qm->io_base + QM_IFC_INT_MASK); } static void qm_cmd_init(struct hisi_qm *qm) { u32 val; if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) return; /* Clear communication interrupt source */ qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); /* Enable pf to vf communication reg. */ val = readl(qm->io_base + QM_IFC_INT_MASK); val &= ~QM_IFC_INT_DISABLE; writel(val, qm->io_base + QM_IFC_INT_MASK); } static void qm_put_pci_res(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) iounmap(qm->db_io_base); iounmap(qm->io_base); pci_release_mem_regions(pdev); } static void hisi_qm_pci_uninit(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; pci_free_irq_vectors(pdev); qm_put_pci_res(qm); pci_disable_device(pdev); } static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) { if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) writel(state, qm->io_base + QM_VF_STATE); } static void hisi_qm_unint_work(struct hisi_qm *qm) { destroy_workqueue(qm->wq); } static void hisi_qm_memory_uninit(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; hisi_qp_memory_uninit(qm, qm->qp_num); if (qm->qdma.va) { hisi_qm_cache_wb(qm); dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); } idr_destroy(&qm->qp_idr); if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) kfree(qm->factor); } /** * hisi_qm_uninit() - Uninitialize qm. * @qm: The qm needed uninit. * * This function uninits qm related device resources. */ void hisi_qm_uninit(struct hisi_qm *qm) { qm_cmd_uninit(qm); hisi_qm_unint_work(qm); down_write(&qm->qps_lock); if (!qm_avail_state(qm, QM_CLOSE)) { up_write(&qm->qps_lock); return; } hisi_qm_memory_uninit(qm); hisi_qm_set_state(qm, QM_NOT_READY); up_write(&qm->qps_lock); qm_remove_uacce(qm); qm_irqs_unregister(qm); hisi_qm_pci_uninit(qm); } EXPORT_SYMBOL_GPL(hisi_qm_uninit); /** * hisi_qm_get_vft() - Get vft from a qm. * @qm: The qm we want to get its vft. * @base: The base number of queue in vft. * @number: The number of queues in vft. * * We can allocate multiple queues to a qm by configuring virtual function * table. We get related configures by this function. Normally, we call this * function in VF driver to get the queue information. * * qm hw v1 does not support this interface. */ static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) { if (!base || !number) return -EINVAL; if (!qm->ops->get_vft) { dev_err(&qm->pdev->dev, "Don't support vft read!\n"); return -EINVAL; } return qm->ops->get_vft(qm, base, number); } /** * hisi_qm_set_vft() - Set vft to a qm. * @qm: The qm we want to set its vft. * @fun_num: The function number. * @base: The base number of queue in vft. * @number: The number of queues in vft. * * This function is alway called in PF driver, it is used to assign queues * among PF and VFs. * * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) * (VF function number 0x2) */ static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, u32 number) { u32 max_q_num = qm->ctrl_qp_num; if (base >= max_q_num || number > max_q_num || (base + number) > max_q_num) return -EINVAL; return qm_set_sqc_cqc_vft(qm, fun_num, base, number); } static void qm_init_eq_aeq_status(struct hisi_qm *qm) { struct hisi_qm_status *status = &qm->status; status->eq_head = 0; status->aeq_head = 0; status->eqc_phase = true; status->aeqc_phase = true; } static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) { /* Clear eq/aeq interrupt source */ qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); } static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) { writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); } static int qm_eq_ctx_cfg(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct qm_eqc *eqc; dma_addr_t eqc_dma; int ret; eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); if (!eqc) return -ENOMEM; eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); if (qm->ver == QM_HW_V1) eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, eqc_dma)) { kfree(eqc); return -ENOMEM; } ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); kfree(eqc); return ret; } static int qm_aeq_ctx_cfg(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct qm_aeqc *aeqc; dma_addr_t aeqc_dma; int ret; aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); if (!aeqc) return -ENOMEM; aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), DMA_TO_DEVICE); if (dma_mapping_error(dev, aeqc_dma)) { kfree(aeqc); return -ENOMEM; } ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); kfree(aeqc); return ret; } static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret; qm_init_eq_aeq_status(qm); ret = qm_eq_ctx_cfg(qm); if (ret) { dev_err(dev, "Set eqc failed!\n"); return ret; } return qm_aeq_ctx_cfg(qm); } static int __hisi_qm_start(struct hisi_qm *qm) { int ret; WARN_ON(!qm->qdma.va); if (qm->fun_type == QM_HW_PF) { ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); if (ret) return ret; } ret = qm_eq_aeq_ctx_cfg(qm); if (ret) return ret; ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); if (ret) return ret; ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); if (ret) return ret; qm_init_prefetch(qm); qm_enable_eq_aeq_interrupts(qm); return 0; } /** * hisi_qm_start() - start qm * @qm: The qm to be started. * * This function starts a qm, then we can allocate qp from this qm. */ int hisi_qm_start(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret = 0; down_write(&qm->qps_lock); if (!qm_avail_state(qm, QM_START)) { up_write(&qm->qps_lock); return -EPERM; } dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); if (!qm->qp_num) { dev_err(dev, "qp_num should not be 0\n"); ret = -EINVAL; goto err_unlock; } ret = __hisi_qm_start(qm); if (!ret) atomic_set(&qm->status.flags, QM_START); hisi_qm_set_state(qm, QM_READY); err_unlock: up_write(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_start); static int qm_restart(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct hisi_qp *qp; int ret, i; ret = hisi_qm_start(qm); if (ret < 0) return ret; down_write(&qm->qps_lock); for (i = 0; i < qm->qp_num; i++) { qp = &qm->qp_array[i]; if (atomic_read(&qp->qp_status.flags) == QP_STOP && qp->is_resetting == true) { ret = qm_start_qp_nolock(qp, 0); if (ret < 0) { dev_err(dev, "Failed to start qp%d!\n", i); up_write(&qm->qps_lock); return ret; } qp->is_resetting = false; } } up_write(&qm->qps_lock); return 0; } /* Stop started qps in reset flow */ static int qm_stop_started_qp(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; struct hisi_qp *qp; int i, ret; for (i = 0; i < qm->qp_num; i++) { qp = &qm->qp_array[i]; if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { qp->is_resetting = true; ret = qm_stop_qp_nolock(qp); if (ret < 0) { dev_err(dev, "Failed to stop qp%d!\n", i); return ret; } } } return 0; } /** * qm_clear_queues() - Clear all queues memory in a qm. * @qm: The qm in which the queues will be cleared. * * This function clears all queues memory in a qm. Reset of accelerator can * use this to clear queues. */ static void qm_clear_queues(struct hisi_qm *qm) { struct hisi_qp *qp; int i; for (i = 0; i < qm->qp_num; i++) { qp = &qm->qp_array[i]; if (qp->is_in_kernel && qp->is_resetting) memset(qp->qdma.va, 0, qp->qdma.size); } memset(qm->qdma.va, 0, qm->qdma.size); } /** * hisi_qm_stop() - Stop a qm. * @qm: The qm which will be stopped. * @r: The reason to stop qm. * * This function stops qm and its qps, then qm can not accept request. * Related resources are not released at this state, we can use hisi_qm_start * to let qm start again. */ int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) { struct device *dev = &qm->pdev->dev; int ret = 0; down_write(&qm->qps_lock); qm->status.stop_reason = r; if (!qm_avail_state(qm, QM_STOP)) { ret = -EPERM; goto err_unlock; } if (qm->status.stop_reason == QM_SOFT_RESET || qm->status.stop_reason == QM_DOWN) { hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); ret = qm_stop_started_qp(qm); if (ret < 0) { dev_err(dev, "Failed to stop started qp!\n"); goto err_unlock; } hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); } qm_disable_eq_aeq_interrupts(qm); if (qm->fun_type == QM_HW_PF) { ret = hisi_qm_set_vft(qm, 0, 0, 0); if (ret < 0) { dev_err(dev, "Failed to set vft!\n"); ret = -EBUSY; goto err_unlock; } } qm_clear_queues(qm); atomic_set(&qm->status.flags, QM_STOP); err_unlock: up_write(&qm->qps_lock); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_stop); static void qm_hw_error_init(struct hisi_qm *qm) { if (!qm->ops->hw_error_init) { dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); return; } qm->ops->hw_error_init(qm); } static void qm_hw_error_uninit(struct hisi_qm *qm) { if (!qm->ops->hw_error_uninit) { dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); return; } qm->ops->hw_error_uninit(qm); } static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) { if (!qm->ops->hw_error_handle) { dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); return ACC_ERR_NONE; } return qm->ops->hw_error_handle(qm); } /** * hisi_qm_dev_err_init() - Initialize device error configuration. * @qm: The qm for which we want to do error initialization. * * Initialize QM and device error related configuration. */ void hisi_qm_dev_err_init(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_VF) return; qm_hw_error_init(qm); if (!qm->err_ini->hw_err_enable) { dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); return; } qm->err_ini->hw_err_enable(qm); } EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); /** * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. * @qm: The qm for which we want to do error uninitialization. * * Uninitialize QM and device error related configuration. */ void hisi_qm_dev_err_uninit(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_VF) return; qm_hw_error_uninit(qm); if (!qm->err_ini->hw_err_disable) { dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); return; } qm->err_ini->hw_err_disable(qm); } EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); /** * hisi_qm_free_qps() - free multiple queue pairs. * @qps: The queue pairs need to be freed. * @qp_num: The num of queue pairs. */ void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) { int i; if (!qps || qp_num <= 0) return; for (i = qp_num - 1; i >= 0; i--) hisi_qm_release_qp(qps[i]); } EXPORT_SYMBOL_GPL(hisi_qm_free_qps); static void free_list(struct list_head *head) { struct hisi_qm_resource *res, *tmp; list_for_each_entry_safe(res, tmp, head, list) { list_del(&res->list); kfree(res); } } static int hisi_qm_sort_devices(int node, struct list_head *head, struct hisi_qm_list *qm_list) { struct hisi_qm_resource *res, *tmp; struct hisi_qm *qm; struct list_head *n; struct device *dev; int dev_node; list_for_each_entry(qm, &qm_list->list, list) { dev = &qm->pdev->dev; dev_node = dev_to_node(dev); if (dev_node < 0) dev_node = 0; res = kzalloc(sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; res->qm = qm; res->distance = node_distance(dev_node, node); n = head; list_for_each_entry(tmp, head, list) { if (res->distance < tmp->distance) { n = &tmp->list; break; } } list_add_tail(&res->list, n); } return 0; } /** * hisi_qm_alloc_qps_node() - Create multiple queue pairs. * @qm_list: The list of all available devices. * @qp_num: The number of queue pairs need created. * @alg_type: The algorithm type. * @node: The numa node. * @qps: The queue pairs need created. * * This function will sort all available device according to numa distance. * Then try to create all queue pairs from one device, if all devices do * not meet the requirements will return error. */ int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, u8 alg_type, int node, struct hisi_qp **qps) { struct hisi_qm_resource *tmp; int ret = -ENODEV; LIST_HEAD(head); int i; if (!qps || !qm_list || qp_num <= 0) return -EINVAL; mutex_lock(&qm_list->lock); if (hisi_qm_sort_devices(node, &head, qm_list)) { mutex_unlock(&qm_list->lock); goto err; } list_for_each_entry(tmp, &head, list) { for (i = 0; i < qp_num; i++) { qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); if (IS_ERR(qps[i])) { hisi_qm_free_qps(qps, i); break; } } if (i == qp_num) { ret = 0; break; } } mutex_unlock(&qm_list->lock); if (ret) pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", node, alg_type, qp_num); err: free_list(&head); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) { u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; u32 max_qp_num = qm->max_qp_num; u32 q_base = qm->qp_num; int ret; if (!num_vfs) return -EINVAL; vfs_q_num = qm->ctrl_qp_num - qm->qp_num; /* If vfs_q_num is less than num_vfs, return error. */ if (vfs_q_num < num_vfs) return -EINVAL; q_num = vfs_q_num / num_vfs; remain_q_num = vfs_q_num % num_vfs; for (i = num_vfs; i > 0; i--) { /* * if q_num + remain_q_num > max_qp_num in last vf, divide the * remaining queues equally. */ if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { act_q_num = q_num + remain_q_num; remain_q_num = 0; } else if (remain_q_num > 0) { act_q_num = q_num + 1; remain_q_num--; } else { act_q_num = q_num; } act_q_num = min(act_q_num, max_qp_num); ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); if (ret) { for (j = num_vfs; j > i; j--) hisi_qm_set_vft(qm, j, 0, 0); return ret; } q_base += act_q_num; } return 0; } static int qm_clear_vft_config(struct hisi_qm *qm) { int ret; u32 i; for (i = 1; i <= qm->vfs_num; i++) { ret = hisi_qm_set_vft(qm, i, 0, 0); if (ret) return ret; } qm->vfs_num = 0; return 0; } static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) { struct device *dev = &qm->pdev->dev; u32 ir = qos * QM_QOS_RATE; int ret, total_vfs, i; total_vfs = pci_sriov_get_totalvfs(qm->pdev); if (fun_index > total_vfs) return -EINVAL; qm->factor[fun_index].func_qos = qos; ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); if (ret) { dev_err(dev, "failed to calculate shaper parameter!\n"); return -EINVAL; } for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { /* The base number of queue reuse for different alg type */ ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); if (ret) { dev_err(dev, "type: %d, failed to set shaper vft!\n", i); return -EINVAL; } } return 0; } static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) { u64 cir_u = 0, cir_b = 0, cir_s = 0; u64 shaper_vft, ir_calc, ir; unsigned int val; u32 error_rate; int ret; ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); if (ret) return 0; writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); writel(fun_index, qm->io_base + QM_VFT_CFG); writel(0x0, qm->io_base + QM_VFT_CFG_RDY); writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, val & BIT(0), POLL_PERIOD, POLL_TIMEOUT); if (ret) return 0; shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; if (error_rate > QM_QOS_MIN_ERROR_RATE) { pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); return 0; } return ir; } static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) { struct device *dev = &qm->pdev->dev; u64 mb_cmd; u32 qos; int ret; qos = qm_get_shaper_vft_qos(qm, fun_num); if (!qos) { dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); return; } mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; ret = qm_ping_single_vf(qm, mb_cmd, fun_num); if (ret) dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); } static int qm_vf_read_qos(struct hisi_qm *qm) { int cnt = 0; int ret = -EINVAL; /* reset mailbox qos val */ qm->mb_qos = 0; /* vf ping pf to get function qos */ ret = qm_ping_pf(qm, QM_VF_GET_QOS); if (ret) { pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); return ret; } while (true) { msleep(QM_WAIT_DST_ACK); if (qm->mb_qos) break; if (++cnt > QM_MAX_VF_WAIT_COUNT) { pci_err(qm->pdev, "PF ping VF timeout!\n"); return -ETIMEDOUT; } } return ret; } static ssize_t qm_algqos_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct hisi_qm *qm = filp->private_data; char tbuf[QM_DBG_READ_LEN]; u32 qos_val, ir; int ret; ret = hisi_qm_get_dfx_access(qm); if (ret) return ret; /* Mailbox and reset cannot be operated at the same time */ if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); ret = -EAGAIN; goto err_put_dfx_access; } if (qm->fun_type == QM_HW_PF) { ir = qm_get_shaper_vft_qos(qm, 0); } else { ret = qm_vf_read_qos(qm); if (ret) goto err_get_status; ir = qm->mb_qos; } qos_val = ir / QM_QOS_RATE; ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); err_get_status: clear_bit(QM_RESETTING, &qm->misc_ctl); err_put_dfx_access: hisi_qm_put_dfx_access(qm); return ret; } static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, unsigned long *val, unsigned int *fun_index) { const struct bus_type *bus_type = qm->pdev->dev.bus; char tbuf_bdf[QM_DBG_READ_LEN] = {0}; char val_buf[QM_DBG_READ_LEN] = {0}; struct pci_dev *pdev; struct device *dev; int ret; ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); if (ret != QM_QOS_PARAM_NUM) return -EINVAL; ret = kstrtoul(val_buf, 10, val); if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); return -EINVAL; } dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); if (!dev) { pci_err(qm->pdev, "input pci bdf number is error!\n"); return -ENODEV; } pdev = container_of(dev, struct pci_dev, dev); *fun_index = pdev->devfn; return 0; } static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct hisi_qm *qm = filp->private_data; char tbuf[QM_DBG_READ_LEN]; unsigned int fun_index; unsigned long val; int len, ret; if (*pos != 0) return 0; if (count >= QM_DBG_READ_LEN) return -ENOSPC; len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); if (len < 0) return len; tbuf[len] = '\0'; ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); if (ret) return ret; /* Mailbox and reset cannot be operated at the same time */ if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); return -EAGAIN; } ret = qm_pm_get_sync(qm); if (ret) { ret = -EINVAL; goto err_get_status; } ret = qm_func_shaper_enable(qm, fun_index, val); if (ret) { pci_err(qm->pdev, "failed to enable function shaper!\n"); ret = -EINVAL; goto err_put_sync; } pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", fun_index, val); ret = count; err_put_sync: qm_pm_put_sync(qm); err_get_status: clear_bit(QM_RESETTING, &qm->misc_ctl); return ret; } static const struct file_operations qm_algqos_fops = { .owner = THIS_MODULE, .open = simple_open, .read = qm_algqos_read, .write = qm_algqos_write, }; /** * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. * @qm: The qm for which we want to add debugfs files. * * Create function qos debugfs files, VF ping PF to get function qos. */ void hisi_qm_set_algqos_init(struct hisi_qm *qm) { if (qm->fun_type == QM_HW_PF) debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, qm, &qm_algqos_fops); else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, qm, &qm_algqos_fops); } static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) { int i; for (i = 1; i <= total_func; i++) qm->factor[i].func_qos = QM_QOS_MAX_VAL; } /** * hisi_qm_sriov_enable() - enable virtual functions * @pdev: the PCIe device * @max_vfs: the number of virtual functions to enable * * Returns the number of enabled VFs. If there are VFs enabled already or * max_vfs is more than the total number of device can be enabled, returns * failure. */ int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) { struct hisi_qm *qm = pci_get_drvdata(pdev); int pre_existing_vfs, num_vfs, total_vfs, ret; ret = qm_pm_get_sync(qm); if (ret) return ret; total_vfs = pci_sriov_get_totalvfs(pdev); pre_existing_vfs = pci_num_vf(pdev); if (pre_existing_vfs) { pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", pre_existing_vfs); goto err_put_sync; } if (max_vfs > total_vfs) { pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); ret = -ERANGE; goto err_put_sync; } num_vfs = max_vfs; if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) hisi_qm_init_vf_qos(qm, num_vfs); ret = qm_vf_q_assign(qm, num_vfs); if (ret) { pci_err(pdev, "Can't assign queues for VF!\n"); goto err_put_sync; } qm->vfs_num = num_vfs; ret = pci_enable_sriov(pdev, num_vfs); if (ret) { pci_err(pdev, "Can't enable VF!\n"); qm_clear_vft_config(qm); goto err_put_sync; } pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); return num_vfs; err_put_sync: qm_pm_put_sync(qm); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); /** * hisi_qm_sriov_disable - disable virtual functions * @pdev: the PCI device. * @is_frozen: true when all the VFs are frozen. * * Return failure if there are VFs assigned already or VF is in used. */ int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) { struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; if (pci_vfs_assigned(pdev)) { pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); return -EPERM; } /* While VF is in used, SRIOV cannot be disabled. */ if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { pci_err(pdev, "Task is using its VF!\n"); return -EBUSY; } pci_disable_sriov(pdev); ret = qm_clear_vft_config(qm); if (ret) return ret; qm_pm_put_sync(qm); return 0; } EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); /** * hisi_qm_sriov_configure - configure the number of VFs * @pdev: The PCI device * @num_vfs: The number of VFs need enabled * * Enable SR-IOV according to num_vfs, 0 means disable. */ int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) { if (num_vfs == 0) return hisi_qm_sriov_disable(pdev, false); else return hisi_qm_sriov_enable(pdev, num_vfs); } EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) { u32 err_sts; if (!qm->err_ini->get_dev_hw_err_status) { dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); return ACC_ERR_NONE; } /* get device hardware error status */ err_sts = qm->err_ini->get_dev_hw_err_status(qm); if (err_sts) { if (err_sts & qm->err_info.ecc_2bits_mask) qm->err_status.is_dev_ecc_mbit = true; if (qm->err_ini->log_dev_hw_err) qm->err_ini->log_dev_hw_err(qm, err_sts); if (err_sts & qm->err_info.dev_reset_mask) return ACC_ERR_NEED_RESET; if (qm->err_ini->clear_dev_hw_err_status) qm->err_ini->clear_dev_hw_err_status(qm, err_sts); } return ACC_ERR_RECOVERED; } static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) { enum acc_err_result qm_ret, dev_ret; /* log qm error */ qm_ret = qm_hw_error_handle(qm); /* log device error */ dev_ret = qm_dev_err_handle(qm); return (qm_ret == ACC_ERR_NEED_RESET || dev_ret == ACC_ERR_NEED_RESET) ? ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; } /** * hisi_qm_dev_err_detected() - Get device and qm error status then log it. * @pdev: The PCI device which need report error. * @state: The connectivity between CPU and device. * * We register this function into PCIe AER handlers, It will report device or * qm hardware error status when error occur. */ pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct hisi_qm *qm = pci_get_drvdata(pdev); enum acc_err_result ret; if (pdev->is_virtfn) return PCI_ERS_RESULT_NONE; pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; ret = qm_process_dev_error(qm); if (ret == ACC_ERR_NEED_RESET) return PCI_ERS_RESULT_NEED_RESET; return PCI_ERS_RESULT_RECOVERED; } EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); static int qm_check_req_recv(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; u32 val; if (qm->ver >= QM_HW_V3) return 0; writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, (val == ACC_VENDOR_ID_VALUE), POLL_PERIOD, POLL_TIMEOUT); if (ret) { dev_err(&pdev->dev, "Fails to read QM reg!\n"); return ret; } writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, (val == PCI_VENDOR_ID_HUAWEI), POLL_PERIOD, POLL_TIMEOUT); if (ret) dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); return ret; } static int qm_set_pf_mse(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; u16 cmd; int i; pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (set) cmd |= PCI_COMMAND_MEMORY; else cmd &= ~PCI_COMMAND_MEMORY; pci_write_config_word(pdev, PCI_COMMAND, cmd); for (i = 0; i < MAX_WAIT_COUNTS; i++) { pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) return 0; udelay(1); } return -ETIMEDOUT; } static int qm_set_vf_mse(struct hisi_qm *qm, bool set) { struct pci_dev *pdev = qm->pdev; u16 sriov_ctrl; int pos; int i; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); if (set) sriov_ctrl |= PCI_SRIOV_CTRL_MSE; else sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); for (i = 0; i < MAX_WAIT_COUNTS; i++) { pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) return 0; udelay(1); } return -ETIMEDOUT; } static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) { u32 nfe_enb = 0; /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ if (qm->ver >= QM_HW_V3) return; if (!qm->err_status.is_dev_ecc_mbit && qm->err_status.is_qm_ecc_mbit && qm->err_ini->close_axi_master_ooo) { qm->err_ini->close_axi_master_ooo(qm); } else if (qm->err_status.is_dev_ecc_mbit && !qm->err_status.is_qm_ecc_mbit && !qm->err_ini->close_axi_master_ooo) { nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, qm->io_base + QM_RAS_NFE_ENABLE); writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); } } static int qm_vf_reset_prepare(struct hisi_qm *qm, enum qm_stop_reason stop_reason) { struct hisi_qm_list *qm_list = qm->qm_list; struct pci_dev *pdev = qm->pdev; struct pci_dev *virtfn; struct hisi_qm *vf_qm; int ret = 0; mutex_lock(&qm_list->lock); list_for_each_entry(vf_qm, &qm_list->list, list) { virtfn = vf_qm->pdev; if (virtfn == pdev) continue; if (pci_physfn(virtfn) == pdev) { /* save VFs PCIE BAR configuration */ pci_save_state(virtfn); ret = hisi_qm_stop(vf_qm, stop_reason); if (ret) goto stop_fail; } } stop_fail: mutex_unlock(&qm_list->lock); return ret; } static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, enum qm_stop_reason stop_reason) { struct pci_dev *pdev = qm->pdev; int ret; if (!qm->vfs_num) return 0; /* Kunpeng930 supports to notify VFs to stop before PF reset */ if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { ret = qm_ping_all_vfs(qm, cmd); if (ret) pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); } else { ret = qm_vf_reset_prepare(qm, stop_reason); if (ret) pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); } return ret; } static int qm_controller_reset_prepare(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = qm_reset_prepare_ready(qm); if (ret) { pci_err(pdev, "Controller reset not ready!\n"); return ret; } qm_dev_ecc_mbit_handle(qm); /* PF obtains the information of VF by querying the register. */ qm_cmd_uninit(qm); /* Whether VFs stop successfully, soft reset will continue. */ ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); if (ret) pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); ret = hisi_qm_stop(qm, QM_SOFT_RESET); if (ret) { pci_err(pdev, "Fails to stop QM!\n"); qm_reset_bit_clear(qm); return ret; } if (qm->use_sva) { ret = qm_hw_err_isolate(qm); if (ret) pci_err(pdev, "failed to isolate hw err!\n"); } ret = qm_wait_vf_prepare_finish(qm); if (ret) pci_err(pdev, "failed to stop by vfs in soft reset!\n"); clear_bit(QM_RST_SCHED, &qm->misc_ctl); return 0; } static int qm_master_ooo_check(struct hisi_qm *qm) { u32 val; int ret; /* Check the ooo register of the device before resetting the device. */ writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, val, (val == ACC_MASTER_TRANS_RETURN_RW), POLL_PERIOD, POLL_TIMEOUT); if (ret) pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); return ret; } static int qm_soft_reset_prepare(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; /* Ensure all doorbells and mailboxes received by QM */ ret = qm_check_req_recv(qm); if (ret) return ret; if (qm->vfs_num) { ret = qm_set_vf_mse(qm, false); if (ret) { pci_err(pdev, "Fails to disable vf MSE bit.\n"); return ret; } } ret = qm->ops->set_msi(qm, false); if (ret) { pci_err(pdev, "Fails to disable PEH MSI bit.\n"); return ret; } ret = qm_master_ooo_check(qm); if (ret) return ret; if (qm->err_ini->close_sva_prefetch) qm->err_ini->close_sva_prefetch(qm); ret = qm_set_pf_mse(qm, false); if (ret) pci_err(pdev, "Fails to disable pf MSE bit.\n"); return ret; } static int qm_reset_device(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; /* The reset related sub-control registers are not in PCI BAR */ if (ACPI_HANDLE(&pdev->dev)) { unsigned long long value = 0; acpi_status s; s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), qm->err_info.acpi_rst, NULL, &value); if (ACPI_FAILURE(s)) { pci_err(pdev, "NO controller reset method!\n"); return -EIO; } if (value) { pci_err(pdev, "Reset step %llu failed!\n", value); return -EIO; } return 0; } pci_err(pdev, "No reset method!\n"); return -EINVAL; } static int qm_soft_reset(struct hisi_qm *qm) { int ret; ret = qm_soft_reset_prepare(qm); if (ret) return ret; return qm_reset_device(qm); } static int qm_vf_reset_done(struct hisi_qm *qm) { struct hisi_qm_list *qm_list = qm->qm_list; struct pci_dev *pdev = qm->pdev; struct pci_dev *virtfn; struct hisi_qm *vf_qm; int ret = 0; mutex_lock(&qm_list->lock); list_for_each_entry(vf_qm, &qm_list->list, list) { virtfn = vf_qm->pdev; if (virtfn == pdev) continue; if (pci_physfn(virtfn) == pdev) { /* enable VFs PCIE BAR configuration */ pci_restore_state(virtfn); ret = qm_restart(vf_qm); if (ret) goto restart_fail; } } restart_fail: mutex_unlock(&qm_list->lock); return ret; } static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) { struct pci_dev *pdev = qm->pdev; int ret; if (!qm->vfs_num) return 0; ret = qm_vf_q_assign(qm, qm->vfs_num); if (ret) { pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); return ret; } /* Kunpeng930 supports to notify VFs to start after PF reset. */ if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { ret = qm_ping_all_vfs(qm, cmd); if (ret) pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); } else { ret = qm_vf_reset_done(qm); if (ret) pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); } return ret; } static int qm_dev_hw_init(struct hisi_qm *qm) { return qm->err_ini->hw_init(qm); } static void qm_restart_prepare(struct hisi_qm *qm) { u32 value; if (qm->err_ini->open_sva_prefetch) qm->err_ini->open_sva_prefetch(qm); if (qm->ver >= QM_HW_V3) return; if (!qm->err_status.is_qm_ecc_mbit && !qm->err_status.is_dev_ecc_mbit) return; /* temporarily close the OOO port used for PEH to write out MSI */ value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); writel(value & ~qm->err_info.msi_wr_port, qm->io_base + ACC_AM_CFG_PORT_WR_EN); /* clear dev ecc 2bit error source if having */ value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; if (value && qm->err_ini->clear_dev_hw_err_status) qm->err_ini->clear_dev_hw_err_status(qm, value); /* clear QM ecc mbit error source */ writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); /* clear AM Reorder Buffer ecc mbit source */ writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); } static void qm_restart_done(struct hisi_qm *qm) { u32 value; if (qm->ver >= QM_HW_V3) goto clear_flags; if (!qm->err_status.is_qm_ecc_mbit && !qm->err_status.is_dev_ecc_mbit) return; /* open the OOO port for PEH to write out MSI */ value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); value |= qm->err_info.msi_wr_port; writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); clear_flags: qm->err_status.is_qm_ecc_mbit = false; qm->err_status.is_dev_ecc_mbit = false; } static int qm_controller_reset_done(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = qm->ops->set_msi(qm, true); if (ret) { pci_err(pdev, "Fails to enable PEH MSI bit!\n"); return ret; } ret = qm_set_pf_mse(qm, true); if (ret) { pci_err(pdev, "Fails to enable pf MSE bit!\n"); return ret; } if (qm->vfs_num) { ret = qm_set_vf_mse(qm, true); if (ret) { pci_err(pdev, "Fails to enable vf MSE bit!\n"); return ret; } } ret = qm_dev_hw_init(qm); if (ret) { pci_err(pdev, "Failed to init device\n"); return ret; } qm_restart_prepare(qm); hisi_qm_dev_err_init(qm); if (qm->err_ini->open_axi_master_ooo) qm->err_ini->open_axi_master_ooo(qm); ret = qm_dev_mem_reset(qm); if (ret) { pci_err(pdev, "failed to reset device memory\n"); return ret; } ret = qm_restart(qm); if (ret) { pci_err(pdev, "Failed to start QM!\n"); return ret; } ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); if (ret) pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); ret = qm_wait_vf_prepare_finish(qm); if (ret) pci_err(pdev, "failed to start by vfs in soft reset!\n"); qm_cmd_init(qm); qm_restart_done(qm); qm_reset_bit_clear(qm); return 0; } static int qm_controller_reset(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; pci_info(pdev, "Controller resetting...\n"); ret = qm_controller_reset_prepare(qm); if (ret) { hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); clear_bit(QM_RST_SCHED, &qm->misc_ctl); return ret; } hisi_qm_show_last_dfx_regs(qm); if (qm->err_ini->show_last_dfx_regs) qm->err_ini->show_last_dfx_regs(qm); ret = qm_soft_reset(qm); if (ret) goto err_reset; ret = qm_controller_reset_done(qm); if (ret) goto err_reset; pci_info(pdev, "Controller reset complete\n"); return 0; err_reset: pci_err(pdev, "Controller reset failed (%d)\n", ret); qm_reset_bit_clear(qm); /* if resetting fails, isolate the device */ if (qm->use_sva) qm->isolate_data.is_isolate = true; return ret; } /** * hisi_qm_dev_slot_reset() - slot reset * @pdev: the PCIe device * * This function offers QM relate PCIe device reset interface. Drivers which * use QM can use this function as slot_reset in its struct pci_error_handlers. */ pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) { struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; if (pdev->is_virtfn) return PCI_ERS_RESULT_RECOVERED; /* reset pcie device controller */ ret = qm_controller_reset(qm); if (ret) { pci_err(pdev, "Controller reset failed (%d)\n", ret); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); void hisi_qm_reset_prepare(struct pci_dev *pdev) { struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); struct hisi_qm *qm = pci_get_drvdata(pdev); u32 delay = 0; int ret; hisi_qm_dev_err_uninit(pf_qm); /* * Check whether there is an ECC mbit error, If it occurs, need to * wait for soft reset to fix it. */ while (qm_check_dev_error(pf_qm)) { msleep(++delay); if (delay > QM_RESET_WAIT_TIMEOUT) return; } ret = qm_reset_prepare_ready(qm); if (ret) { pci_err(pdev, "FLR not ready!\n"); return; } /* PF obtains the information of VF by querying the register. */ if (qm->fun_type == QM_HW_PF) qm_cmd_uninit(qm); ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); if (ret) pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); ret = hisi_qm_stop(qm, QM_DOWN); if (ret) { pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); return; } ret = qm_wait_vf_prepare_finish(qm); if (ret) pci_err(pdev, "failed to stop by vfs in FLR!\n"); pci_info(pdev, "FLR resetting...\n"); } EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); static bool qm_flr_reset_complete(struct pci_dev *pdev) { struct pci_dev *pf_pdev = pci_physfn(pdev); struct hisi_qm *qm = pci_get_drvdata(pf_pdev); u32 id; pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); if (id == QM_PCI_COMMAND_INVALID) { pci_err(pdev, "Device can not be used!\n"); return false; } return true; } void hisi_qm_reset_done(struct pci_dev *pdev) { struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; if (qm->fun_type == QM_HW_PF) { ret = qm_dev_hw_init(qm); if (ret) { pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); goto flr_done; } } hisi_qm_dev_err_init(pf_qm); ret = qm_restart(qm); if (ret) { pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); goto flr_done; } ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); if (ret) pci_err(pdev, "failed to start vfs by pf in FLR.\n"); ret = qm_wait_vf_prepare_finish(qm); if (ret) pci_err(pdev, "failed to start by vfs in FLR!\n"); flr_done: if (qm->fun_type == QM_HW_PF) qm_cmd_init(qm); if (qm_flr_reset_complete(pdev)) pci_info(pdev, "FLR reset complete\n"); qm_reset_bit_clear(qm); } EXPORT_SYMBOL_GPL(hisi_qm_reset_done); static irqreturn_t qm_abnormal_irq(int irq, void *data) { struct hisi_qm *qm = data; enum acc_err_result ret; atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); ret = qm_process_dev_error(qm); if (ret == ACC_ERR_NEED_RESET && !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) schedule_work(&qm->rst_work); return IRQ_HANDLED; } /** * hisi_qm_dev_shutdown() - Shutdown device. * @pdev: The device will be shutdown. * * This function will stop qm when OS shutdown or rebooting. */ void hisi_qm_dev_shutdown(struct pci_dev *pdev) { struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; ret = hisi_qm_stop(qm, QM_DOWN); if (ret) dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); hisi_qm_cache_wb(qm); } EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); static void hisi_qm_controller_reset(struct work_struct *rst_work) { struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); int ret; ret = qm_pm_get_sync(qm); if (ret) { clear_bit(QM_RST_SCHED, &qm->misc_ctl); return; } /* reset pcie device controller */ ret = qm_controller_reset(qm); if (ret) dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); qm_pm_put_sync(qm); } static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, enum qm_stop_reason stop_reason) { enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; struct pci_dev *pdev = qm->pdev; int ret; ret = qm_reset_prepare_ready(qm); if (ret) { dev_err(&pdev->dev, "reset prepare not ready!\n"); atomic_set(&qm->status.flags, QM_STOP); cmd = QM_VF_PREPARE_FAIL; goto err_prepare; } ret = hisi_qm_stop(qm, stop_reason); if (ret) { dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); atomic_set(&qm->status.flags, QM_STOP); cmd = QM_VF_PREPARE_FAIL; goto err_prepare; } else { goto out; } err_prepare: hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); out: pci_save_state(pdev); ret = qm_ping_pf(qm, cmd); if (ret) dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); } static void qm_pf_reset_vf_done(struct hisi_qm *qm) { enum qm_mb_cmd cmd = QM_VF_START_DONE; struct pci_dev *pdev = qm->pdev; int ret; pci_restore_state(pdev); ret = hisi_qm_start(qm); if (ret) { dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); cmd = QM_VF_START_FAIL; } qm_cmd_init(qm); ret = qm_ping_pf(qm, cmd); if (ret) dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); qm_reset_bit_clear(qm); } static int qm_wait_pf_reset_finish(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; u32 val, cmd; u64 msg; int ret; /* Wait for reset to finish */ ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, val == BIT(0), QM_VF_RESET_WAIT_US, QM_VF_RESET_WAIT_TIMEOUT_US); /* hardware completion status should be available by this time */ if (ret) { dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); return -ETIMEDOUT; } /* * Whether message is got successfully, * VF needs to ack PF by clearing the interrupt. */ ret = qm_get_mb_cmd(qm, &msg, 0); qm_clear_cmd_interrupt(qm, 0); if (ret) { dev_err(dev, "failed to get msg from PF in reset done!\n"); return ret; } cmd = msg & QM_MB_CMD_DATA_MASK; if (cmd != QM_PF_RESET_DONE) { dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); ret = -EINVAL; } return ret; } static void qm_pf_reset_vf_process(struct hisi_qm *qm, enum qm_stop_reason stop_reason) { struct device *dev = &qm->pdev->dev; int ret; dev_info(dev, "device reset start...\n"); /* The message is obtained by querying the register during resetting */ qm_cmd_uninit(qm); qm_pf_reset_vf_prepare(qm, stop_reason); ret = qm_wait_pf_reset_finish(qm); if (ret) goto err_get_status; qm_pf_reset_vf_done(qm); dev_info(dev, "device reset done.\n"); return; err_get_status: qm_cmd_init(qm); qm_reset_bit_clear(qm); } static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) { struct device *dev = &qm->pdev->dev; u64 msg; u32 cmd; int ret; /* * Get the msg from source by sending mailbox. Whether message is got * successfully, destination needs to ack source by clearing the interrupt. */ ret = qm_get_mb_cmd(qm, &msg, fun_num); qm_clear_cmd_interrupt(qm, BIT(fun_num)); if (ret) { dev_err(dev, "failed to get msg from source!\n"); return; } cmd = msg & QM_MB_CMD_DATA_MASK; switch (cmd) { case QM_PF_FLR_PREPARE: qm_pf_reset_vf_process(qm, QM_DOWN); break; case QM_PF_SRST_PREPARE: qm_pf_reset_vf_process(qm, QM_SOFT_RESET); break; case QM_VF_GET_QOS: qm_vf_get_qos(qm, fun_num); break; case QM_PF_SET_QOS: qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; break; default: dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); break; } } static void qm_cmd_process(struct work_struct *cmd_process) { struct hisi_qm *qm = container_of(cmd_process, struct hisi_qm, cmd_process); u32 vfs_num = qm->vfs_num; u64 val; u32 i; if (qm->fun_type == QM_HW_PF) { val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); if (!val) return; for (i = 1; i <= vfs_num; i++) { if (val & BIT(i)) qm_handle_cmd_msg(qm, i); } return; } qm_handle_cmd_msg(qm, 0); } /** * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. * @qm: The qm needs add. * @qm_list: The qm list. * * This function adds qm to qm list, and will register algorithm to * crypto when the qm list is empty. */ int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) { struct device *dev = &qm->pdev->dev; int flag = 0; int ret = 0; mutex_lock(&qm_list->lock); if (list_empty(&qm_list->list)) flag = 1; list_add_tail(&qm->list, &qm_list->list); mutex_unlock(&qm_list->lock); if (qm->ver <= QM_HW_V2 && qm->use_sva) { dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); return 0; } if (flag) { ret = qm_list->register_to_crypto(qm); if (ret) { mutex_lock(&qm_list->lock); list_del(&qm->list); mutex_unlock(&qm_list->lock); } } return ret; } EXPORT_SYMBOL_GPL(hisi_qm_alg_register); /** * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from * qm list. * @qm: The qm needs delete. * @qm_list: The qm list. * * This function deletes qm from qm list, and will unregister algorithm * from crypto when the qm list is empty. */ void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) { mutex_lock(&qm_list->lock); list_del(&qm->list); mutex_unlock(&qm_list->lock); if (qm->ver <= QM_HW_V2 && qm->use_sva) return; if (list_empty(&qm_list->list)) qm_list->unregister_from_crypto(qm); } EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); static void qm_unregister_abnormal_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; if (qm->fun_type == QM_HW_VF) return; val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) return; irq_vector = val & QM_IRQ_VECTOR_MASK; free_irq(pci_irq_vector(pdev, irq_vector), qm); } static int qm_register_abnormal_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; int ret; if (qm->fun_type == QM_HW_VF) return 0; val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) return 0; irq_vector = val & QM_IRQ_VECTOR_MASK; ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); if (ret) dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); return ret; } static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) return; irq_vector = val & QM_IRQ_VECTOR_MASK; free_irq(pci_irq_vector(pdev, irq_vector), qm); } static int qm_register_mb_cmd_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; int ret; val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) return 0; irq_vector = val & QM_IRQ_VECTOR_MASK; ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); if (ret) dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); return ret; } static void qm_unregister_aeq_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) return; irq_vector = val & QM_IRQ_VECTOR_MASK; free_irq(pci_irq_vector(pdev, irq_vector), qm); } static int qm_register_aeq_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; int ret; val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) return 0; irq_vector = val & QM_IRQ_VECTOR_MASK; ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); if (ret) dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); return ret; } static void qm_unregister_eq_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) return; irq_vector = val & QM_IRQ_VECTOR_MASK; free_irq(pci_irq_vector(pdev, irq_vector), qm); } static int qm_register_eq_irq(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; u32 irq_vector, val; int ret; val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) return 0; irq_vector = val & QM_IRQ_VECTOR_MASK; ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); if (ret) dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); return ret; } static void qm_irqs_unregister(struct hisi_qm *qm) { qm_unregister_mb_cmd_irq(qm); qm_unregister_abnormal_irq(qm); qm_unregister_aeq_irq(qm); qm_unregister_eq_irq(qm); } static int qm_irqs_register(struct hisi_qm *qm) { int ret; ret = qm_register_eq_irq(qm); if (ret) return ret; ret = qm_register_aeq_irq(qm); if (ret) goto free_eq_irq; ret = qm_register_abnormal_irq(qm); if (ret) goto free_aeq_irq; ret = qm_register_mb_cmd_irq(qm); if (ret) goto free_abnormal_irq; return 0; free_abnormal_irq: qm_unregister_abnormal_irq(qm); free_aeq_irq: qm_unregister_aeq_irq(qm); free_eq_irq: qm_unregister_eq_irq(qm); return ret; } static int qm_get_qp_num(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; bool is_db_isolation; /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ if (qm->fun_type == QM_HW_VF) { if (qm->ver != QM_HW_V1) /* v2 starts to support get vft by mailbox */ return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); return 0; } is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_FUNC_MAX_QP_CAP, is_db_isolation); if (qm->qp_num <= qm->max_qp_num) return 0; if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { /* Check whether the set qp number is valid */ dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", qm->qp_num, qm->max_qp_num); return -EINVAL; } dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", qm->qp_num, qm->max_qp_num); qm->qp_num = qm->max_qp_num; qm->debug.curr_qm_qp_num = qm->qp_num; return 0; } static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) { struct hisi_qm_cap_record *qm_cap; struct pci_dev *pdev = qm->pdev; size_t i, size; size = ARRAY_SIZE(qm_pre_store_caps); qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); if (!qm_cap) return -ENOMEM; for (i = 0; i < size; i++) { qm_cap[i].type = qm_pre_store_caps[i]; qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, qm_pre_store_caps[i], qm->cap_ver); } qm->cap_tables.qm_cap_table = qm_cap; return 0; } static int qm_get_hw_caps(struct hisi_qm *qm) { const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? qm_cap_info_pf : qm_cap_info_vf; u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : ARRAY_SIZE(qm_cap_info_vf); u32 val, i; /* Doorbell isolate register is a independent register. */ val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); if (val) set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); if (qm->ver >= QM_HW_V3) { val = readl(qm->io_base + QM_FUNC_CAPS_REG); qm->cap_ver = val & QM_CAPBILITY_VERSION; } /* Get PF/VF common capbility */ for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); if (val) set_bit(qm_cap_info_comm[i].type, &qm->caps); } /* Get PF/VF different capbility */ for (i = 0; i < size; i++) { val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); if (val) set_bit(cap_info[i].type, &qm->caps); } /* Fetch and save the value of irq type related capability registers */ return qm_pre_store_irq_type_caps(qm); } static int qm_get_pci_res(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; int ret; ret = pci_request_mem_regions(pdev, qm->dev_name); if (ret < 0) { dev_err(dev, "Failed to request mem regions!\n"); return ret; } qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); if (!qm->io_base) { ret = -EIO; goto err_request_mem_regions; } ret = qm_get_hw_caps(qm); if (ret) goto err_ioremap; if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { qm->db_interval = QM_QP_DB_INTERVAL; qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); qm->db_io_base = ioremap(qm->db_phys_base, pci_resource_len(pdev, PCI_BAR_4)); if (!qm->db_io_base) { ret = -EIO; goto err_ioremap; } } else { qm->db_phys_base = qm->phys_base; qm->db_io_base = qm->io_base; qm->db_interval = 0; } ret = qm_get_qp_num(qm); if (ret) goto err_db_ioremap; return 0; err_db_ioremap: if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) iounmap(qm->db_io_base); err_ioremap: iounmap(qm->io_base); err_request_mem_regions: pci_release_mem_regions(pdev); return ret; } static int qm_clear_device(struct hisi_qm *qm) { acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); int ret; if (qm->fun_type == QM_HW_VF) return 0; /* Device does not support reset, return */ if (!qm->err_ini->err_info_init) return 0; qm->err_ini->err_info_init(qm); if (!handle) return 0; /* No reset method, return */ if (!acpi_has_method(handle, qm->err_info.acpi_rst)) return 0; ret = qm_master_ooo_check(qm); if (ret) { writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); return ret; } return qm_reset_device(qm); } static int hisi_qm_pci_init(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; unsigned int num_vec; int ret; ret = pci_enable_device_mem(pdev); if (ret < 0) { dev_err(dev, "Failed to enable device mem!\n"); return ret; } ret = qm_get_pci_res(qm); if (ret) goto err_disable_pcidev; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret < 0) goto err_get_pci_res; pci_set_master(pdev); num_vec = qm_get_irq_num(qm); ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); if (ret < 0) { dev_err(dev, "Failed to enable MSI vectors!\n"); goto err_get_pci_res; } ret = qm_clear_device(qm); if (ret) goto err_free_vectors; return 0; err_free_vectors: pci_free_irq_vectors(pdev); err_get_pci_res: qm_put_pci_res(qm); err_disable_pcidev: pci_disable_device(pdev); return ret; } static int hisi_qm_init_work(struct hisi_qm *qm) { int i; for (i = 0; i < qm->qp_num; i++) INIT_WORK(&qm->poll_data[i].work, qm_work_process); if (qm->fun_type == QM_HW_PF) INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); if (qm->ver > QM_HW_V2) INIT_WORK(&qm->cmd_process, qm_cmd_process); qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus(), pci_name(qm->pdev)); if (!qm->wq) { pci_err(qm->pdev, "failed to alloc workqueue!\n"); return -ENOMEM; } return 0; } static int hisi_qp_alloc_memory(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; u16 sq_depth, cq_depth; size_t qp_dma_size; int i, ret; qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); if (!qm->qp_array) return -ENOMEM; qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); if (!qm->poll_data) { kfree(qm->qp_array); return -ENOMEM; } qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); /* one more page for device or qp statuses */ qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; for (i = 0; i < qm->qp_num; i++) { qm->poll_data[i].qm = qm; ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); if (ret) goto err_init_qp_mem; dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); } return 0; err_init_qp_mem: hisi_qp_memory_uninit(qm, i); return ret; } static int hisi_qm_memory_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret, total_func; size_t off = 0; if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); if (!qm->factor) return -ENOMEM; /* Only the PF value needs to be initialized */ qm->factor[0].func_qos = QM_QOS_MAX_VAL; } #define QM_INIT_BUF(qm, type, num) do { \ (qm)->type = ((qm)->qdma.va + (off)); \ (qm)->type##_dma = (qm)->qdma.dma + (off); \ off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ } while (0) idr_init(&qm->qp_idr); qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, GFP_ATOMIC); dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); if (!qm->qdma.va) { ret = -ENOMEM; goto err_destroy_idr; } QM_INIT_BUF(qm, eqe, qm->eq_depth); QM_INIT_BUF(qm, aeqe, qm->aeq_depth); QM_INIT_BUF(qm, sqc, qm->qp_num); QM_INIT_BUF(qm, cqc, qm->qp_num); ret = hisi_qp_alloc_memory(qm); if (ret) goto err_alloc_qp_array; return 0; err_alloc_qp_array: dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); err_destroy_idr: idr_destroy(&qm->qp_idr); if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) kfree(qm->factor); return ret; } /** * hisi_qm_init() - Initialize configures about qm. * @qm: The qm needing init. * * This function init qm, then we can call hisi_qm_start to put qm into work. */ int hisi_qm_init(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; struct device *dev = &pdev->dev; int ret; hisi_qm_pre_init(qm); ret = hisi_qm_pci_init(qm); if (ret) return ret; ret = qm_irqs_register(qm); if (ret) goto err_pci_init; if (qm->fun_type == QM_HW_PF) { /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); qm_disable_clock_gate(qm); ret = qm_dev_mem_reset(qm); if (ret) { dev_err(dev, "failed to reset device memory\n"); goto err_irq_register; } } if (qm->mode == UACCE_MODE_SVA) { ret = qm_alloc_uacce(qm); if (ret < 0) dev_warn(dev, "fail to alloc uacce (%d)\n", ret); } ret = hisi_qm_memory_init(qm); if (ret) goto err_alloc_uacce; ret = hisi_qm_init_work(qm); if (ret) goto err_free_qm_memory; qm_cmd_init(qm); atomic_set(&qm->status.flags, QM_INIT); return 0; err_free_qm_memory: hisi_qm_memory_uninit(qm); err_alloc_uacce: qm_remove_uacce(qm); err_irq_register: qm_irqs_unregister(qm); err_pci_init: hisi_qm_pci_uninit(qm); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_init); /** * hisi_qm_get_dfx_access() - Try to get dfx access. * @qm: pointer to accelerator device. * * Try to get dfx access, then user can get message. * * If device is in suspended, return failure, otherwise * bump up the runtime PM usage counter. */ int hisi_qm_get_dfx_access(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; if (pm_runtime_suspended(dev)) { dev_info(dev, "can not read/write - device in suspended.\n"); return -EAGAIN; } return qm_pm_get_sync(qm); } EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); /** * hisi_qm_put_dfx_access() - Put dfx access. * @qm: pointer to accelerator device. * * Put dfx access, drop runtime PM usage counter. */ void hisi_qm_put_dfx_access(struct hisi_qm *qm) { qm_pm_put_sync(qm); } EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); /** * hisi_qm_pm_init() - Initialize qm runtime PM. * @qm: pointer to accelerator device. * * Function that initialize qm runtime PM. */ void hisi_qm_pm_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) return; pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_put_noidle(dev); } EXPORT_SYMBOL_GPL(hisi_qm_pm_init); /** * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. * @qm: pointer to accelerator device. * * Function that uninitialize qm runtime PM. */ void hisi_qm_pm_uninit(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) return; pm_runtime_get_noresume(dev); pm_runtime_dont_use_autosuspend(dev); } EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); static int qm_prepare_for_suspend(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = qm->ops->set_msi(qm, false); if (ret) { pci_err(pdev, "failed to disable MSI before suspending!\n"); return ret; } ret = qm_master_ooo_check(qm); if (ret) return ret; ret = qm_set_pf_mse(qm, false); if (ret) pci_err(pdev, "failed to disable MSE before suspending!\n"); return ret; } static int qm_rebuild_for_resume(struct hisi_qm *qm) { struct pci_dev *pdev = qm->pdev; int ret; ret = qm_set_pf_mse(qm, true); if (ret) { pci_err(pdev, "failed to enable MSE after resuming!\n"); return ret; } ret = qm->ops->set_msi(qm, true); if (ret) { pci_err(pdev, "failed to enable MSI after resuming!\n"); return ret; } ret = qm_dev_hw_init(qm); if (ret) { pci_err(pdev, "failed to init device after resuming\n"); return ret; } qm_cmd_init(qm); hisi_qm_dev_err_init(qm); /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); qm_disable_clock_gate(qm); ret = qm_dev_mem_reset(qm); if (ret) pci_err(pdev, "failed to reset device memory\n"); return ret; } /** * hisi_qm_suspend() - Runtime suspend of given device. * @dev: device to suspend. * * Function that suspend the device. */ int hisi_qm_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; pci_info(pdev, "entering suspended state\n"); ret = hisi_qm_stop(qm, QM_NORMAL); if (ret) { pci_err(pdev, "failed to stop qm(%d)\n", ret); return ret; } ret = qm_prepare_for_suspend(qm); if (ret) pci_err(pdev, "failed to prepare suspended(%d)\n", ret); return ret; } EXPORT_SYMBOL_GPL(hisi_qm_suspend); /** * hisi_qm_resume() - Runtime resume of given device. * @dev: device to resume. * * Function that resume the device. */ int hisi_qm_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct hisi_qm *qm = pci_get_drvdata(pdev); int ret; pci_info(pdev, "resuming from suspend state\n"); ret = qm_rebuild_for_resume(qm); if (ret) { pci_err(pdev, "failed to rebuild resume(%d)\n", ret); return ret; } ret = hisi_qm_start(qm); if (ret) { if (qm_check_dev_error(qm)) { pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); return 0; } pci_err(pdev, "failed to start qm(%d)!\n", ret); } return ret; } EXPORT_SYMBOL_GPL(hisi_qm_resume); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Zhou Wang "); MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");