// SPDX-License-Identifier: GPL-2.0-or-later /* * Integrator/AP timer driver * Copyright (C) 2000-2003 Deep Blue Solutions Ltd * Copyright (c) 2014, Linaro Limited */ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/sched_clock.h> #include "timer-sp.h" static void __iomem * sched_clk_base; static u64 notrace integrator_read_sched_clock(void) { return -readl(sched_clk_base + TIMER_VALUE); } static int __init integrator_clocksource_init(unsigned long inrate, void __iomem *base) { u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC; unsigned long rate = inrate; int ret; if (rate >= 1500000) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } writel(0xffff, base + TIMER_LOAD); writel(ctrl, base + TIMER_CTRL); ret = clocksource_mmio_init(base + TIMER_VALUE, "timer2", rate, 200, 16, clocksource_mmio_readl_down); if (ret) return ret; sched_clk_base = base; sched_clock_register(integrator_read_sched_clock, 16, rate); return 0; } static unsigned long timer_reload; static void __iomem * clkevt_base; /* * IRQ handler for the timer */ static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* clear the interrupt */ writel(1, clkevt_base + TIMER_INTCLR); evt->event_handler(evt); return IRQ_HANDLED; } static int clkevt_shutdown(struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE; /* Disable timer */ writel(ctrl, clkevt_base + TIMER_CTRL); return 0; } static int clkevt_set_oneshot(struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~(TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC); /* Leave the timer disabled, .set_next_event will enable it */ writel(ctrl, clkevt_base + TIMER_CTRL); return 0; } static int clkevt_set_periodic(struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE; /* Disable timer */ writel(ctrl, clkevt_base + TIMER_CTRL); /* Enable the timer and start the periodic tick */ writel(timer_reload, clkevt_base + TIMER_LOAD); ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE; writel(ctrl, clkevt_base + TIMER_CTRL); return 0; } static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt) { unsigned long ctrl = readl(clkevt_base + TIMER_CTRL); writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); writel(next, clkevt_base + TIMER_LOAD); writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); return 0; } static struct clock_event_device integrator_clockevent = { .name = "timer1", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = clkevt_shutdown, .set_state_periodic = clkevt_set_periodic, .set_state_oneshot = clkevt_set_oneshot, .tick_resume = clkevt_shutdown, .set_next_event = clkevt_set_next_event, .rating = 300, }; static int integrator_clockevent_init(unsigned long inrate, void __iomem *base, int irq) { unsigned long rate = inrate; unsigned int ctrl = 0; int ret; clkevt_base = base; /* Calculate and program a divisor */ if (rate > 0x100000 * HZ) { rate /= 256; ctrl |= TIMER_CTRL_DIV256; } else if (rate > 0x10000 * HZ) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } timer_reload = rate / HZ; writel(ctrl, clkevt_base + TIMER_CTRL); ret = request_irq(irq, integrator_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "timer", &integrator_clockevent); if (ret) return ret; clockevents_config_and_register(&integrator_clockevent, rate, 1, 0xffffU); return 0; } static int __init integrator_ap_timer_init_of(struct device_node *node) { const char *path; void __iomem *base; int err; int irq; struct clk *clk; unsigned long rate; struct device_node *alias_node; base = of_io_request_and_map(node, 0, "integrator-timer"); if (IS_ERR(base)) return PTR_ERR(base); clk = of_clk_get(node, 0); if (IS_ERR(clk)) { pr_err("No clock for %pOFn\n", node); return PTR_ERR(clk); } clk_prepare_enable(clk); rate = clk_get_rate(clk); writel(0, base + TIMER_CTRL); err = of_property_read_string(of_aliases, "arm,timer-primary", &path); if (err) { pr_warn("Failed to read property\n"); return err; } alias_node = of_find_node_by_path(path); /* * The pointer is used as an identifier not as a pointer, we * can drop the refcount on the of__node immediately after * getting it. */ of_node_put(alias_node); if (node == alias_node) /* The primary timer lacks IRQ, use as clocksource */ return integrator_clocksource_init(rate, base); err = of_property_read_string(of_aliases, "arm,timer-secondary", &path); if (err) { pr_warn("Failed to read property\n"); return err; } alias_node = of_find_node_by_path(path); of_node_put(alias_node); if (node == alias_node) { /* The secondary timer will drive the clock event */ irq = irq_of_parse_and_map(node, 0); return integrator_clockevent_init(rate, base, irq); } pr_info("Timer @%p unused\n", base); clk_disable_unprepare(clk); return 0; } TIMER_OF_DECLARE(integrator_ap_timer, "arm,integrator-timer", integrator_ap_timer_init_of);