// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. * */ #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-direction.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/mhi.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/wait.h> #include "internal.h" /* * Not all MHI state transitions are synchronous. Transitions like Linkdown, * SYS_ERR, and shutdown can happen anytime asynchronously. This function will * transition to a new state only if we're allowed to. * * Priority increases as we go down. For instance, from any state in L0, the * transition can be made to states in L1, L2 and L3. A notable exception to * this rule is state DISABLE. From DISABLE state we can only transition to * POR state. Also, while in L2 state, user cannot jump back to previous * L1 or L0 states. * * Valid transitions: * L0: DISABLE <--> POR * POR <--> POR * POR -> M0 -> M2 --> M0 * POR -> FW_DL_ERR * FW_DL_ERR <--> FW_DL_ERR * M0 <--> M0 * M0 -> FW_DL_ERR * M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0 * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR * L2: SHUTDOWN_PROCESS -> LD_ERR_FATAL_DETECT * SHUTDOWN_PROCESS -> DISABLE * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT * LD_ERR_FATAL_DETECT -> DISABLE */ static const struct mhi_pm_transitions dev_state_transitions[] = { /* L0 States */ { MHI_PM_DISABLE, MHI_PM_POR }, { MHI_PM_POR, MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR }, { MHI_PM_M0, MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR }, { MHI_PM_M2, MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_M3_ENTER, MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_M3, MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_M3_EXIT, MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_FW_DL_ERR, MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, /* L1 States */ { MHI_PM_SYS_ERR_DETECT, MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, { MHI_PM_SYS_ERR_PROCESS, MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT }, /* L2 States */ { MHI_PM_SHUTDOWN_PROCESS, MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT }, /* L3 States */ { MHI_PM_LD_ERR_FATAL_DETECT, MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_DISABLE }, }; enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl, enum mhi_pm_state state) { unsigned long cur_state = mhi_cntrl->pm_state; int index = find_last_bit(&cur_state, 32); if (unlikely(index >= ARRAY_SIZE(dev_state_transitions))) return cur_state; if (unlikely(dev_state_transitions[index].from_state != cur_state)) return cur_state; if (unlikely(!(dev_state_transitions[index].to_states & state))) return cur_state; mhi_cntrl->pm_state = state; return mhi_cntrl->pm_state; } void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state) { struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret; if (state == MHI_STATE_RESET) { ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, 1); } else { ret = mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_MHISTATE_MASK, state); } if (ret) dev_err(dev, "Failed to set MHI state to: %s\n", mhi_state_str(state)); } /* NOP for backward compatibility, host allowed to ring DB in M2 state */ static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl) { } static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl) { mhi_cntrl->wake_get(mhi_cntrl, false); mhi_cntrl->wake_put(mhi_cntrl, true); } /* Handle device ready state transition */ int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl) { struct mhi_event *mhi_event; enum mhi_pm_state cur_state; struct device *dev = &mhi_cntrl->mhi_dev->dev; u32 interval_us = 25000; /* poll register field every 25 milliseconds */ int ret, i; /* Check if device entered error state */ if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { dev_err(dev, "Device link is not accessible\n"); return -EIO; } /* Wait for RESET to be cleared and READY bit to be set by the device */ ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, 0, interval_us); if (ret) { dev_err(dev, "Device failed to clear MHI Reset\n"); return ret; } ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, MHISTATUS_READY_MASK, 1, interval_us); if (ret) { dev_err(dev, "Device failed to enter MHI Ready\n"); return ret; } dev_dbg(dev, "Device in READY State\n"); write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); mhi_cntrl->dev_state = MHI_STATE_READY; write_unlock_irq(&mhi_cntrl->pm_lock); if (cur_state != MHI_PM_POR) { dev_err(dev, "Error moving to state %s from %s\n", to_mhi_pm_state_str(MHI_PM_POR), to_mhi_pm_state_str(cur_state)); return -EIO; } read_lock_bh(&mhi_cntrl->pm_lock); if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) { dev_err(dev, "Device registers not accessible\n"); goto error_mmio; } /* Configure MMIO registers */ ret = mhi_init_mmio(mhi_cntrl); if (ret) { dev_err(dev, "Error configuring MMIO registers\n"); goto error_mmio; } /* Add elements to all SW event rings */ mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; /* Skip if this is an offload or HW event */ if (mhi_event->offload_ev || mhi_event->hw_ring) continue; ring->wp = ring->base + ring->len - ring->el_size; *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); /* Update all cores */ smp_wmb(); /* Ring the event ring db */ spin_lock_irq(&mhi_event->lock); mhi_ring_er_db(mhi_event); spin_unlock_irq(&mhi_event->lock); } /* Set MHI to M0 state */ mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); read_unlock_bh(&mhi_cntrl->pm_lock); return 0; error_mmio: read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl) { enum mhi_pm_state cur_state; struct mhi_chan *mhi_chan; struct device *dev = &mhi_cntrl->mhi_dev->dev; int i; write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->dev_state = MHI_STATE_M0; cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0); write_unlock_irq(&mhi_cntrl->pm_lock); if (unlikely(cur_state != MHI_PM_M0)) { dev_err(dev, "Unable to transition to M0 state\n"); return -EIO; } mhi_cntrl->M0++; /* Wake up the device */ read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, true); /* Ring all event rings and CMD ring only if we're in mission mode */ if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) { struct mhi_event *mhi_event = mhi_cntrl->mhi_event; struct mhi_cmd *mhi_cmd = &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING]; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; spin_lock_irq(&mhi_event->lock); mhi_ring_er_db(mhi_event); spin_unlock_irq(&mhi_event->lock); } /* Only ring primary cmd ring if ring is not empty */ spin_lock_irq(&mhi_cmd->lock); if (mhi_cmd->ring.rp != mhi_cmd->ring.wp) mhi_ring_cmd_db(mhi_cntrl, mhi_cmd); spin_unlock_irq(&mhi_cmd->lock); } /* Ring channel DB registers */ mhi_chan = mhi_cntrl->mhi_chan; for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) { struct mhi_ring *tre_ring = &mhi_chan->tre_ring; if (mhi_chan->db_cfg.reset_req) { write_lock_irq(&mhi_chan->lock); mhi_chan->db_cfg.db_mode = true; write_unlock_irq(&mhi_chan->lock); } read_lock_irq(&mhi_chan->lock); /* Only ring DB if ring is not empty */ if (tre_ring->base && tre_ring->wp != tre_ring->rp && mhi_chan->ch_state == MHI_CH_STATE_ENABLED) mhi_ring_chan_db(mhi_cntrl, mhi_chan); read_unlock_irq(&mhi_chan->lock); } mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); return 0; } /* * After receiving the MHI state change event from the device indicating the * transition to M1 state, the host can transition the device to M2 state * for keeping it in low power state. */ void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl) { enum mhi_pm_state state; struct device *dev = &mhi_cntrl->mhi_dev->dev; write_lock_irq(&mhi_cntrl->pm_lock); state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2); if (state == MHI_PM_M2) { mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2); mhi_cntrl->dev_state = MHI_STATE_M2; write_unlock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->M2++; wake_up_all(&mhi_cntrl->state_event); /* If there are any pending resources, exit M2 immediately */ if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) || atomic_read(&mhi_cntrl->dev_wake))) { dev_dbg(dev, "Exiting M2, pending_pkts: %d dev_wake: %d\n", atomic_read(&mhi_cntrl->pending_pkts), atomic_read(&mhi_cntrl->dev_wake)); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, true); mhi_cntrl->wake_put(mhi_cntrl, true); read_unlock_bh(&mhi_cntrl->pm_lock); } else { mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE); } } else { write_unlock_irq(&mhi_cntrl->pm_lock); } } /* MHI M3 completion handler */ int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl) { enum mhi_pm_state state; struct device *dev = &mhi_cntrl->mhi_dev->dev; write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->dev_state = MHI_STATE_M3; state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3); write_unlock_irq(&mhi_cntrl->pm_lock); if (state != MHI_PM_M3) { dev_err(dev, "Unable to transition to M3 state\n"); return -EIO; } mhi_cntrl->M3++; wake_up_all(&mhi_cntrl->state_event); return 0; } /* Handle device Mission Mode transition */ static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl) { struct mhi_event *mhi_event; struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_ee_type ee = MHI_EE_MAX, current_ee = mhi_cntrl->ee; int i, ret; dev_dbg(dev, "Processing Mission Mode transition\n"); write_lock_irq(&mhi_cntrl->pm_lock); if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) ee = mhi_get_exec_env(mhi_cntrl); if (!MHI_IN_MISSION_MODE(ee)) { mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; write_unlock_irq(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); return -EIO; } mhi_cntrl->ee = ee; write_unlock_irq(&mhi_cntrl->pm_lock); wake_up_all(&mhi_cntrl->state_event); device_for_each_child(&mhi_cntrl->mhi_dev->dev, ¤t_ee, mhi_destroy_device); mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE); /* Force MHI to be in M0 state before continuing */ ret = __mhi_device_get_sync(mhi_cntrl); if (ret) return ret; read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { ret = -EIO; goto error_mission_mode; } /* Add elements to all HW event rings */ mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; if (mhi_event->offload_ev || !mhi_event->hw_ring) continue; ring->wp = ring->base + ring->len - ring->el_size; *ring->ctxt_wp = cpu_to_le64(ring->iommu_base + ring->len - ring->el_size); /* Update to all cores */ smp_wmb(); spin_lock_irq(&mhi_event->lock); if (MHI_DB_ACCESS_VALID(mhi_cntrl)) mhi_ring_er_db(mhi_event); spin_unlock_irq(&mhi_event->lock); } read_unlock_bh(&mhi_cntrl->pm_lock); /* * The MHI devices are only created when the client device switches its * Execution Environment (EE) to either SBL or AMSS states */ mhi_create_devices(mhi_cntrl); read_lock_bh(&mhi_cntrl->pm_lock); error_mission_mode: mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); return ret; } /* Handle shutdown transitions */ static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl) { enum mhi_pm_state cur_state; struct mhi_event *mhi_event; struct mhi_cmd_ctxt *cmd_ctxt; struct mhi_cmd *mhi_cmd; struct mhi_event_ctxt *er_ctxt; struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret, i; dev_dbg(dev, "Processing disable transition with PM state: %s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state)); mutex_lock(&mhi_cntrl->pm_mutex); /* Trigger MHI RESET so that the device will not access host memory */ if (!MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) { dev_dbg(dev, "Triggering MHI Reset in device\n"); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); /* Wait for the reset bit to be cleared by the device */ ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, 0, 25000); if (ret) dev_err(dev, "Device failed to clear MHI Reset\n"); /* * Device will clear BHI_INTVEC as a part of RESET processing, * hence re-program it */ mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); if (!MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { /* wait for ready to be set */ ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHISTATUS, MHISTATUS_READY_MASK, 1, 25000); if (ret) dev_err(dev, "Device failed to enter READY state\n"); } } dev_dbg(dev, "Waiting for all pending event ring processing to complete\n"); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; disable_irq(mhi_cntrl->irq[mhi_event->irq]); tasklet_kill(&mhi_event->task); } /* Release lock and wait for all pending threads to complete */ mutex_unlock(&mhi_cntrl->pm_mutex); dev_dbg(dev, "Waiting for all pending threads to complete\n"); wake_up_all(&mhi_cntrl->state_event); dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); mutex_lock(&mhi_cntrl->pm_mutex); WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); /* Reset the ev rings and cmd rings */ dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); mhi_cmd = mhi_cntrl->mhi_cmd; cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { struct mhi_ring *ring = &mhi_cmd->ring; ring->rp = ring->base; ring->wp = ring->base; cmd_ctxt->rp = cmd_ctxt->rbase; cmd_ctxt->wp = cmd_ctxt->rbase; } mhi_event = mhi_cntrl->mhi_event; er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; /* Skip offload events */ if (mhi_event->offload_ev) continue; ring->rp = ring->base; ring->wp = ring->base; er_ctxt->rp = er_ctxt->rbase; er_ctxt->wp = er_ctxt->rbase; } /* Move to disable state */ write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE); write_unlock_irq(&mhi_cntrl->pm_lock); if (unlikely(cur_state != MHI_PM_DISABLE)) dev_err(dev, "Error moving from PM state: %s to: %s\n", to_mhi_pm_state_str(cur_state), to_mhi_pm_state_str(MHI_PM_DISABLE)); dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), mhi_state_str(mhi_cntrl->dev_state)); mutex_unlock(&mhi_cntrl->pm_mutex); } /* Handle system error transitions */ static void mhi_pm_sys_error_transition(struct mhi_controller *mhi_cntrl) { enum mhi_pm_state cur_state, prev_state; enum dev_st_transition next_state; struct mhi_event *mhi_event; struct mhi_cmd_ctxt *cmd_ctxt; struct mhi_cmd *mhi_cmd; struct mhi_event_ctxt *er_ctxt; struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret, i; dev_dbg(dev, "Transitioning from PM state: %s to: %s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); /* We must notify MHI control driver so it can clean up first */ mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR); mutex_lock(&mhi_cntrl->pm_mutex); write_lock_irq(&mhi_cntrl->pm_lock); prev_state = mhi_cntrl->pm_state; cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS); write_unlock_irq(&mhi_cntrl->pm_lock); if (cur_state != MHI_PM_SYS_ERR_PROCESS) { dev_err(dev, "Failed to transition from PM state: %s to: %s\n", to_mhi_pm_state_str(cur_state), to_mhi_pm_state_str(MHI_PM_SYS_ERR_PROCESS)); goto exit_sys_error_transition; } mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; mhi_cntrl->dev_state = MHI_STATE_RESET; /* Wake up threads waiting for state transition */ wake_up_all(&mhi_cntrl->state_event); /* Trigger MHI RESET so that the device will not access host memory */ if (MHI_REG_ACCESS_VALID(prev_state)) { u32 in_reset = -1; unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms); dev_dbg(dev, "Triggering MHI Reset in device\n"); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); /* Wait for the reset bit to be cleared by the device */ ret = wait_event_timeout(mhi_cntrl->state_event, mhi_read_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, &in_reset) || !in_reset, timeout); if (!ret || in_reset) { dev_err(dev, "Device failed to exit MHI Reset state\n"); goto exit_sys_error_transition; } /* * Device will clear BHI_INTVEC as a part of RESET processing, * hence re-program it */ mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); } dev_dbg(dev, "Waiting for all pending event ring processing to complete\n"); mhi_event = mhi_cntrl->mhi_event; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; tasklet_kill(&mhi_event->task); } /* Release lock and wait for all pending threads to complete */ mutex_unlock(&mhi_cntrl->pm_mutex); dev_dbg(dev, "Waiting for all pending threads to complete\n"); wake_up_all(&mhi_cntrl->state_event); dev_dbg(dev, "Reset all active channels and remove MHI devices\n"); device_for_each_child(&mhi_cntrl->mhi_dev->dev, NULL, mhi_destroy_device); mutex_lock(&mhi_cntrl->pm_mutex); WARN_ON(atomic_read(&mhi_cntrl->dev_wake)); WARN_ON(atomic_read(&mhi_cntrl->pending_pkts)); /* Reset the ev rings and cmd rings */ dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n"); mhi_cmd = mhi_cntrl->mhi_cmd; cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt; for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) { struct mhi_ring *ring = &mhi_cmd->ring; ring->rp = ring->base; ring->wp = ring->base; cmd_ctxt->rp = cmd_ctxt->rbase; cmd_ctxt->wp = cmd_ctxt->rbase; } mhi_event = mhi_cntrl->mhi_event; er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt; for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++, mhi_event++) { struct mhi_ring *ring = &mhi_event->ring; /* Skip offload events */ if (mhi_event->offload_ev) continue; ring->rp = ring->base; ring->wp = ring->base; er_ctxt->rp = er_ctxt->rbase; er_ctxt->wp = er_ctxt->rbase; } /* Transition to next state */ if (MHI_IN_PBL(mhi_get_exec_env(mhi_cntrl))) { write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR); write_unlock_irq(&mhi_cntrl->pm_lock); if (cur_state != MHI_PM_POR) { dev_err(dev, "Error moving to state %s from %s\n", to_mhi_pm_state_str(MHI_PM_POR), to_mhi_pm_state_str(cur_state)); goto exit_sys_error_transition; } next_state = DEV_ST_TRANSITION_PBL; } else { next_state = DEV_ST_TRANSITION_READY; } mhi_queue_state_transition(mhi_cntrl, next_state); exit_sys_error_transition: dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), mhi_state_str(mhi_cntrl->dev_state)); mutex_unlock(&mhi_cntrl->pm_mutex); } /* Queue a new work item and schedule work */ int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl, enum dev_st_transition state) { struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC); unsigned long flags; if (!item) return -ENOMEM; item->state = state; spin_lock_irqsave(&mhi_cntrl->transition_lock, flags); list_add_tail(&item->node, &mhi_cntrl->transition_list); spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags); queue_work(mhi_cntrl->hiprio_wq, &mhi_cntrl->st_worker); return 0; } /* SYS_ERR worker */ void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl) { struct device *dev = &mhi_cntrl->mhi_dev->dev; /* skip if controller supports RDDM */ if (mhi_cntrl->rddm_image) { dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n"); return; } mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR); } /* Device State Transition worker */ void mhi_pm_st_worker(struct work_struct *work) { struct state_transition *itr, *tmp; LIST_HEAD(head); struct mhi_controller *mhi_cntrl = container_of(work, struct mhi_controller, st_worker); struct device *dev = &mhi_cntrl->mhi_dev->dev; spin_lock_irq(&mhi_cntrl->transition_lock); list_splice_tail_init(&mhi_cntrl->transition_list, &head); spin_unlock_irq(&mhi_cntrl->transition_lock); list_for_each_entry_safe(itr, tmp, &head, node) { list_del(&itr->node); dev_dbg(dev, "Handling state transition: %s\n", TO_DEV_STATE_TRANS_STR(itr->state)); switch (itr->state) { case DEV_ST_TRANSITION_PBL: write_lock_irq(&mhi_cntrl->pm_lock); if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl); write_unlock_irq(&mhi_cntrl->pm_lock); mhi_fw_load_handler(mhi_cntrl); break; case DEV_ST_TRANSITION_SBL: write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->ee = MHI_EE_SBL; write_unlock_irq(&mhi_cntrl->pm_lock); /* * The MHI devices are only created when the client * device switches its Execution Environment (EE) to * either SBL or AMSS states */ mhi_create_devices(mhi_cntrl); if (mhi_cntrl->fbc_download) mhi_download_amss_image(mhi_cntrl); break; case DEV_ST_TRANSITION_MISSION_MODE: mhi_pm_mission_mode_transition(mhi_cntrl); break; case DEV_ST_TRANSITION_FP: write_lock_irq(&mhi_cntrl->pm_lock); mhi_cntrl->ee = MHI_EE_FP; write_unlock_irq(&mhi_cntrl->pm_lock); mhi_create_devices(mhi_cntrl); break; case DEV_ST_TRANSITION_READY: mhi_ready_state_transition(mhi_cntrl); break; case DEV_ST_TRANSITION_SYS_ERR: mhi_pm_sys_error_transition(mhi_cntrl); break; case DEV_ST_TRANSITION_DISABLE: mhi_pm_disable_transition(mhi_cntrl); break; default: break; } kfree(itr); } } int mhi_pm_suspend(struct mhi_controller *mhi_cntrl) { struct mhi_chan *itr, *tmp; struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_pm_state new_state; int ret; if (mhi_cntrl->pm_state == MHI_PM_DISABLE) return -EINVAL; if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) return -EIO; /* Return busy if there are any pending resources */ if (atomic_read(&mhi_cntrl->dev_wake) || atomic_read(&mhi_cntrl->pending_pkts)) return -EBUSY; /* Take MHI out of M2 state */ read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_get(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M0 || mhi_cntrl->dev_state == MHI_STATE_M1 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { dev_err(dev, "Could not enter M0/M1 state"); return -EIO; } write_lock_irq(&mhi_cntrl->pm_lock); if (atomic_read(&mhi_cntrl->dev_wake) || atomic_read(&mhi_cntrl->pending_pkts)) { write_unlock_irq(&mhi_cntrl->pm_lock); return -EBUSY; } dev_dbg(dev, "Allowing M3 transition\n"); new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER); if (new_state != MHI_PM_M3_ENTER) { write_unlock_irq(&mhi_cntrl->pm_lock); dev_err(dev, "Error setting to PM state: %s from: %s\n", to_mhi_pm_state_str(MHI_PM_M3_ENTER), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } /* Set MHI to M3 and wait for completion */ mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3); write_unlock_irq(&mhi_cntrl->pm_lock); dev_dbg(dev, "Waiting for M3 completion\n"); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M3 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { dev_err(dev, "Did not enter M3 state, MHI state: %s, PM state: %s\n", mhi_state_str(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } /* Notify clients about entering LPM */ list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { mutex_lock(&itr->mutex); if (itr->mhi_dev) mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER); mutex_unlock(&itr->mutex); } return 0; } EXPORT_SYMBOL_GPL(mhi_pm_suspend); static int __mhi_pm_resume(struct mhi_controller *mhi_cntrl, bool force) { struct mhi_chan *itr, *tmp; struct device *dev = &mhi_cntrl->mhi_dev->dev; enum mhi_pm_state cur_state; int ret; dev_dbg(dev, "Entered with PM state: %s, MHI state: %s\n", to_mhi_pm_state_str(mhi_cntrl->pm_state), mhi_state_str(mhi_cntrl->dev_state)); if (mhi_cntrl->pm_state == MHI_PM_DISABLE) return 0; if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) return -EIO; if (mhi_get_mhi_state(mhi_cntrl) != MHI_STATE_M3) { dev_warn(dev, "Resuming from non M3 state (%s)\n", mhi_state_str(mhi_get_mhi_state(mhi_cntrl))); if (!force) return -EINVAL; } /* Notify clients about exiting LPM */ list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) { mutex_lock(&itr->mutex); if (itr->mhi_dev) mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT); mutex_unlock(&itr->mutex); } write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT); if (cur_state != MHI_PM_M3_EXIT) { write_unlock_irq(&mhi_cntrl->pm_lock); dev_info(dev, "Error setting to PM state: %s from: %s\n", to_mhi_pm_state_str(MHI_PM_M3_EXIT), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } /* Set MHI to M0 and wait for completion */ mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0); write_unlock_irq(&mhi_cntrl->pm_lock); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->dev_state == MHI_STATE_M0 || mhi_cntrl->dev_state == MHI_STATE_M2 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { dev_err(dev, "Did not enter M0 state, MHI state: %s, PM state: %s\n", mhi_state_str(mhi_cntrl->dev_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); return -EIO; } return 0; } int mhi_pm_resume(struct mhi_controller *mhi_cntrl) { return __mhi_pm_resume(mhi_cntrl, false); } EXPORT_SYMBOL_GPL(mhi_pm_resume); int mhi_pm_resume_force(struct mhi_controller *mhi_cntrl) { return __mhi_pm_resume(mhi_cntrl, true); } EXPORT_SYMBOL_GPL(mhi_pm_resume_force); int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl) { int ret; /* Wake up the device */ read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } mhi_cntrl->wake_get(mhi_cntrl, true); if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) mhi_trigger_resume(mhi_cntrl); read_unlock_bh(&mhi_cntrl->pm_lock); ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->pm_state == MHI_PM_M0 || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) { read_lock_bh(&mhi_cntrl->pm_lock); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); return -EIO; } return 0; } /* Assert device wake db */ static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force) { unsigned long flags; /* * If force flag is set, then increment the wake count value and * ring wake db */ if (unlikely(force)) { spin_lock_irqsave(&mhi_cntrl->wlock, flags); atomic_inc(&mhi_cntrl->dev_wake); if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) && !mhi_cntrl->wake_set) { mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); mhi_cntrl->wake_set = true; } spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); } else { /* * If resources are already requested, then just increment * the wake count value and return */ if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0))) return; spin_lock_irqsave(&mhi_cntrl->wlock, flags); if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) && MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) && !mhi_cntrl->wake_set) { mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1); mhi_cntrl->wake_set = true; } spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); } } /* De-assert device wake db */ static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl, bool override) { unsigned long flags; /* * Only continue if there is a single resource, else just decrement * and return */ if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1))) return; spin_lock_irqsave(&mhi_cntrl->wlock, flags); if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) && MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override && mhi_cntrl->wake_set) { mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0); mhi_cntrl->wake_set = false; } spin_unlock_irqrestore(&mhi_cntrl->wlock, flags); } int mhi_async_power_up(struct mhi_controller *mhi_cntrl) { struct mhi_event *mhi_event = mhi_cntrl->mhi_event; enum mhi_state state; enum mhi_ee_type current_ee; enum dev_st_transition next_state; struct device *dev = &mhi_cntrl->mhi_dev->dev; u32 interval_us = 25000; /* poll register field every 25 milliseconds */ int ret, i; dev_info(dev, "Requested to power ON\n"); /* Supply default wake routines if not provided by controller driver */ if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put || !mhi_cntrl->wake_toggle) { mhi_cntrl->wake_get = mhi_assert_dev_wake; mhi_cntrl->wake_put = mhi_deassert_dev_wake; mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ? mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake; } mutex_lock(&mhi_cntrl->pm_mutex); mhi_cntrl->pm_state = MHI_PM_DISABLE; /* Setup BHI INTVEC */ write_lock_irq(&mhi_cntrl->pm_lock); mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); mhi_cntrl->pm_state = MHI_PM_POR; mhi_cntrl->ee = MHI_EE_MAX; current_ee = mhi_get_exec_env(mhi_cntrl); write_unlock_irq(&mhi_cntrl->pm_lock); /* Confirm that the device is in valid exec env */ if (!MHI_POWER_UP_CAPABLE(current_ee)) { dev_err(dev, "%s is not a valid EE for power on\n", TO_MHI_EXEC_STR(current_ee)); ret = -EIO; goto error_exit; } state = mhi_get_mhi_state(mhi_cntrl); dev_dbg(dev, "Attempting power on with EE: %s, state: %s\n", TO_MHI_EXEC_STR(current_ee), mhi_state_str(state)); if (state == MHI_STATE_SYS_ERR) { mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET); ret = mhi_poll_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL, MHICTRL_RESET_MASK, 0, interval_us); if (ret) { dev_info(dev, "Failed to reset MHI due to syserr state\n"); goto error_exit; } /* * device cleares INTVEC as part of RESET processing, * re-program it */ mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0); } /* IRQs have been requested during probe, so we just need to enable them. */ enable_irq(mhi_cntrl->irq[0]); for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) { if (mhi_event->offload_ev) continue; enable_irq(mhi_cntrl->irq[mhi_event->irq]); } /* Transition to next state */ next_state = MHI_IN_PBL(current_ee) ? DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY; mhi_queue_state_transition(mhi_cntrl, next_state); mutex_unlock(&mhi_cntrl->pm_mutex); dev_info(dev, "Power on setup success\n"); return 0; error_exit: mhi_cntrl->pm_state = MHI_PM_DISABLE; mutex_unlock(&mhi_cntrl->pm_mutex); return ret; } EXPORT_SYMBOL_GPL(mhi_async_power_up); void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful) { enum mhi_pm_state cur_state, transition_state; struct device *dev = &mhi_cntrl->mhi_dev->dev; mutex_lock(&mhi_cntrl->pm_mutex); write_lock_irq(&mhi_cntrl->pm_lock); cur_state = mhi_cntrl->pm_state; if (cur_state == MHI_PM_DISABLE) { write_unlock_irq(&mhi_cntrl->pm_lock); mutex_unlock(&mhi_cntrl->pm_mutex); return; /* Already powered down */ } /* If it's not a graceful shutdown, force MHI to linkdown state */ transition_state = (graceful) ? MHI_PM_SHUTDOWN_PROCESS : MHI_PM_LD_ERR_FATAL_DETECT; cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state); if (cur_state != transition_state) { dev_err(dev, "Failed to move to state: %s from: %s\n", to_mhi_pm_state_str(transition_state), to_mhi_pm_state_str(mhi_cntrl->pm_state)); /* Force link down or error fatal detected state */ mhi_cntrl->pm_state = MHI_PM_LD_ERR_FATAL_DETECT; } /* mark device inactive to avoid any further host processing */ mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION; mhi_cntrl->dev_state = MHI_STATE_RESET; wake_up_all(&mhi_cntrl->state_event); write_unlock_irq(&mhi_cntrl->pm_lock); mutex_unlock(&mhi_cntrl->pm_mutex); mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE); /* Wait for shutdown to complete */ flush_work(&mhi_cntrl->st_worker); disable_irq(mhi_cntrl->irq[0]); } EXPORT_SYMBOL_GPL(mhi_power_down); int mhi_sync_power_up(struct mhi_controller *mhi_cntrl) { int ret = mhi_async_power_up(mhi_cntrl); if (ret) return ret; wait_event_timeout(mhi_cntrl->state_event, MHI_IN_MISSION_MODE(mhi_cntrl->ee) || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state), msecs_to_jiffies(mhi_cntrl->timeout_ms)); ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT; if (ret) mhi_power_down(mhi_cntrl, false); return ret; } EXPORT_SYMBOL(mhi_sync_power_up); int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl) { struct device *dev = &mhi_cntrl->mhi_dev->dev; int ret; /* Check if device is already in RDDM */ if (mhi_cntrl->ee == MHI_EE_RDDM) return 0; dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n"); mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR); /* Wait for RDDM event */ ret = wait_event_timeout(mhi_cntrl->state_event, mhi_cntrl->ee == MHI_EE_RDDM, msecs_to_jiffies(mhi_cntrl->timeout_ms)); ret = ret ? 0 : -EIO; return ret; } EXPORT_SYMBOL_GPL(mhi_force_rddm_mode); void mhi_device_get(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; mhi_dev->dev_wake++; read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) mhi_trigger_resume(mhi_cntrl); mhi_cntrl->wake_get(mhi_cntrl, true); read_unlock_bh(&mhi_cntrl->pm_lock); } EXPORT_SYMBOL_GPL(mhi_device_get); int mhi_device_get_sync(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; int ret; ret = __mhi_device_get_sync(mhi_cntrl); if (!ret) mhi_dev->dev_wake++; return ret; } EXPORT_SYMBOL_GPL(mhi_device_get_sync); void mhi_device_put(struct mhi_device *mhi_dev) { struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl; mhi_dev->dev_wake--; read_lock_bh(&mhi_cntrl->pm_lock); if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state)) mhi_trigger_resume(mhi_cntrl); mhi_cntrl->wake_put(mhi_cntrl, false); read_unlock_bh(&mhi_cntrl->pm_lock); } EXPORT_SYMBOL_GPL(mhi_device_put);