// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020-2023 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include "ivpu_drv.h" #include "ivpu_gem.h" #include "ivpu_hw.h" #include "ivpu_mmu.h" #include "ivpu_mmu_context.h" MODULE_IMPORT_NS(DMA_BUF); static const struct drm_gem_object_funcs ivpu_gem_funcs; static struct lock_class_key prime_bo_lock_class_key; static int __must_check prime_alloc_pages_locked(struct ivpu_bo *bo) { /* Pages are managed by the underlying dma-buf */ return 0; } static void prime_free_pages_locked(struct ivpu_bo *bo) { /* Pages are managed by the underlying dma-buf */ } static int prime_map_pages_locked(struct ivpu_bo *bo) { struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); struct sg_table *sgt; sgt = dma_buf_map_attachment_unlocked(bo->base.import_attach, DMA_BIDIRECTIONAL); if (IS_ERR(sgt)) { ivpu_err(vdev, "Failed to map attachment: %ld\n", PTR_ERR(sgt)); return PTR_ERR(sgt); } bo->sgt = sgt; return 0; } static void prime_unmap_pages_locked(struct ivpu_bo *bo) { dma_buf_unmap_attachment_unlocked(bo->base.import_attach, bo->sgt, DMA_BIDIRECTIONAL); bo->sgt = NULL; } static const struct ivpu_bo_ops prime_ops = { .type = IVPU_BO_TYPE_PRIME, .name = "prime", .alloc_pages = prime_alloc_pages_locked, .free_pages = prime_free_pages_locked, .map_pages = prime_map_pages_locked, .unmap_pages = prime_unmap_pages_locked, }; static int __must_check shmem_alloc_pages_locked(struct ivpu_bo *bo) { int npages = bo->base.size >> PAGE_SHIFT; struct page **pages; pages = drm_gem_get_pages(&bo->base); if (IS_ERR(pages)) return PTR_ERR(pages); if (bo->flags & DRM_IVPU_BO_WC) set_pages_array_wc(pages, npages); else if (bo->flags & DRM_IVPU_BO_UNCACHED) set_pages_array_uc(pages, npages); bo->pages = pages; return 0; } static void shmem_free_pages_locked(struct ivpu_bo *bo) { if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED) set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT); drm_gem_put_pages(&bo->base, bo->pages, true, false); bo->pages = NULL; } static int ivpu_bo_map_pages_locked(struct ivpu_bo *bo) { int npages = bo->base.size >> PAGE_SHIFT; struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); struct sg_table *sgt; int ret; sgt = drm_prime_pages_to_sg(&vdev->drm, bo->pages, npages); if (IS_ERR(sgt)) { ivpu_err(vdev, "Failed to allocate sgtable\n"); return PTR_ERR(sgt); } ret = dma_map_sgtable(vdev->drm.dev, sgt, DMA_BIDIRECTIONAL, 0); if (ret) { ivpu_err(vdev, "Failed to map BO in IOMMU: %d\n", ret); goto err_free_sgt; } bo->sgt = sgt; return 0; err_free_sgt: kfree(sgt); return ret; } static void ivpu_bo_unmap_pages_locked(struct ivpu_bo *bo) { struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); dma_unmap_sgtable(vdev->drm.dev, bo->sgt, DMA_BIDIRECTIONAL, 0); sg_free_table(bo->sgt); kfree(bo->sgt); bo->sgt = NULL; } static const struct ivpu_bo_ops shmem_ops = { .type = IVPU_BO_TYPE_SHMEM, .name = "shmem", .alloc_pages = shmem_alloc_pages_locked, .free_pages = shmem_free_pages_locked, .map_pages = ivpu_bo_map_pages_locked, .unmap_pages = ivpu_bo_unmap_pages_locked, }; static int __must_check internal_alloc_pages_locked(struct ivpu_bo *bo) { unsigned int i, npages = bo->base.size >> PAGE_SHIFT; struct page **pages; int ret; pages = kvmalloc_array(npages, sizeof(*bo->pages), GFP_KERNEL); if (!pages) return -ENOMEM; for (i = 0; i < npages; i++) { pages[i] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); if (!pages[i]) { ret = -ENOMEM; goto err_free_pages; } cond_resched(); } bo->pages = pages; return 0; err_free_pages: while (i--) put_page(pages[i]); kvfree(pages); return ret; } static void internal_free_pages_locked(struct ivpu_bo *bo) { unsigned int i, npages = bo->base.size >> PAGE_SHIFT; if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED) set_pages_array_wb(bo->pages, bo->base.size >> PAGE_SHIFT); for (i = 0; i < npages; i++) put_page(bo->pages[i]); kvfree(bo->pages); bo->pages = NULL; } static const struct ivpu_bo_ops internal_ops = { .type = IVPU_BO_TYPE_INTERNAL, .name = "internal", .alloc_pages = internal_alloc_pages_locked, .free_pages = internal_free_pages_locked, .map_pages = ivpu_bo_map_pages_locked, .unmap_pages = ivpu_bo_unmap_pages_locked, }; static int __must_check ivpu_bo_alloc_and_map_pages_locked(struct ivpu_bo *bo) { struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); int ret; lockdep_assert_held(&bo->lock); drm_WARN_ON(&vdev->drm, bo->sgt); ret = bo->ops->alloc_pages(bo); if (ret) { ivpu_err(vdev, "Failed to allocate pages for BO: %d", ret); return ret; } ret = bo->ops->map_pages(bo); if (ret) { ivpu_err(vdev, "Failed to map pages for BO: %d", ret); goto err_free_pages; } return ret; err_free_pages: bo->ops->free_pages(bo); return ret; } static void ivpu_bo_unmap_and_free_pages(struct ivpu_bo *bo) { mutex_lock(&bo->lock); WARN_ON(!bo->sgt); bo->ops->unmap_pages(bo); WARN_ON(bo->sgt); bo->ops->free_pages(bo); WARN_ON(bo->pages); mutex_unlock(&bo->lock); } /* * ivpu_bo_pin() - pin the backing physical pages and map them to VPU. * * This function pins physical memory pages, then maps the physical pages * to IOMMU address space and finally updates the VPU MMU page tables * to allow the VPU to translate VPU address to IOMMU address. */ int __must_check ivpu_bo_pin(struct ivpu_bo *bo) { struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); int ret = 0; mutex_lock(&bo->lock); if (!bo->vpu_addr) { ivpu_err(vdev, "vpu_addr not set for BO ctx_id: %d handle: %d\n", bo->ctx->id, bo->handle); ret = -EINVAL; goto unlock; } if (!bo->sgt) { ret = ivpu_bo_alloc_and_map_pages_locked(bo); if (ret) goto unlock; } if (!bo->mmu_mapped) { ret = ivpu_mmu_context_map_sgt(vdev, bo->ctx, bo->vpu_addr, bo->sgt, ivpu_bo_is_snooped(bo)); if (ret) { ivpu_err(vdev, "Failed to map BO in MMU: %d\n", ret); goto unlock; } bo->mmu_mapped = true; } unlock: mutex_unlock(&bo->lock); return ret; } static int ivpu_bo_alloc_vpu_addr(struct ivpu_bo *bo, struct ivpu_mmu_context *ctx, const struct ivpu_addr_range *range) { struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); int ret; if (!range) { if (bo->flags & DRM_IVPU_BO_HIGH_MEM) range = &vdev->hw->ranges.user_high; else range = &vdev->hw->ranges.user_low; } mutex_lock(&ctx->lock); ret = ivpu_mmu_context_insert_node_locked(ctx, range, bo->base.size, &bo->mm_node); if (!ret) { bo->ctx = ctx; bo->vpu_addr = bo->mm_node.start; list_add_tail(&bo->ctx_node, &ctx->bo_list); } mutex_unlock(&ctx->lock); return ret; } static void ivpu_bo_free_vpu_addr(struct ivpu_bo *bo) { struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); struct ivpu_mmu_context *ctx = bo->ctx; ivpu_dbg(vdev, BO, "remove from ctx: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n", ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped); mutex_lock(&bo->lock); if (bo->mmu_mapped) { drm_WARN_ON(&vdev->drm, !bo->sgt); ivpu_mmu_context_unmap_sgt(vdev, ctx, bo->vpu_addr, bo->sgt); bo->mmu_mapped = false; } mutex_lock(&ctx->lock); list_del(&bo->ctx_node); bo->vpu_addr = 0; bo->ctx = NULL; ivpu_mmu_context_remove_node_locked(ctx, &bo->mm_node); mutex_unlock(&ctx->lock); mutex_unlock(&bo->lock); } void ivpu_bo_remove_all_bos_from_context(struct ivpu_mmu_context *ctx) { struct ivpu_bo *bo, *tmp; list_for_each_entry_safe(bo, tmp, &ctx->bo_list, ctx_node) ivpu_bo_free_vpu_addr(bo); } static struct ivpu_bo * ivpu_bo_alloc(struct ivpu_device *vdev, struct ivpu_mmu_context *mmu_context, u64 size, u32 flags, const struct ivpu_bo_ops *ops, const struct ivpu_addr_range *range, u64 user_ptr) { struct ivpu_bo *bo; int ret = 0; if (drm_WARN_ON(&vdev->drm, size == 0 || !PAGE_ALIGNED(size))) return ERR_PTR(-EINVAL); switch (flags & DRM_IVPU_BO_CACHE_MASK) { case DRM_IVPU_BO_CACHED: case DRM_IVPU_BO_UNCACHED: case DRM_IVPU_BO_WC: break; default: return ERR_PTR(-EINVAL); } bo = kzalloc(sizeof(*bo), GFP_KERNEL); if (!bo) return ERR_PTR(-ENOMEM); mutex_init(&bo->lock); bo->base.funcs = &ivpu_gem_funcs; bo->flags = flags; bo->ops = ops; bo->user_ptr = user_ptr; if (ops->type == IVPU_BO_TYPE_SHMEM) ret = drm_gem_object_init(&vdev->drm, &bo->base, size); else drm_gem_private_object_init(&vdev->drm, &bo->base, size); if (ret) { ivpu_err(vdev, "Failed to initialize drm object\n"); goto err_free; } if (flags & DRM_IVPU_BO_MAPPABLE) { ret = drm_gem_create_mmap_offset(&bo->base); if (ret) { ivpu_err(vdev, "Failed to allocate mmap offset\n"); goto err_release; } } if (mmu_context) { ret = ivpu_bo_alloc_vpu_addr(bo, mmu_context, range); if (ret) { ivpu_err(vdev, "Failed to add BO to context: %d\n", ret); goto err_release; } } return bo; err_release: drm_gem_object_release(&bo->base); err_free: kfree(bo); return ERR_PTR(ret); } static void ivpu_bo_free(struct drm_gem_object *obj) { struct ivpu_bo *bo = to_ivpu_bo(obj); struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); if (bo->ctx) ivpu_dbg(vdev, BO, "free: ctx %d vpu_addr 0x%llx allocated %d mmu_mapped %d\n", bo->ctx->id, bo->vpu_addr, (bool)bo->sgt, bo->mmu_mapped); else ivpu_dbg(vdev, BO, "free: ctx (released) allocated %d mmu_mapped %d\n", (bool)bo->sgt, bo->mmu_mapped); drm_WARN_ON(&vdev->drm, !dma_resv_test_signaled(obj->resv, DMA_RESV_USAGE_READ)); vunmap(bo->kvaddr); if (bo->ctx) ivpu_bo_free_vpu_addr(bo); if (bo->sgt) ivpu_bo_unmap_and_free_pages(bo); if (bo->base.import_attach) drm_prime_gem_destroy(&bo->base, bo->sgt); drm_gem_object_release(&bo->base); mutex_destroy(&bo->lock); kfree(bo); } static int ivpu_bo_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma) { struct ivpu_bo *bo = to_ivpu_bo(obj); struct ivpu_device *vdev = ivpu_bo_to_vdev(bo); ivpu_dbg(vdev, BO, "mmap: ctx %u handle %u vpu_addr 0x%llx size %zu type %s", bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size, bo->ops->name); if (obj->import_attach) { /* Drop the reference drm_gem_mmap_obj() acquired.*/ drm_gem_object_put(obj); vma->vm_private_data = NULL; return dma_buf_mmap(obj->dma_buf, vma, 0); } vm_flags_set(vma, VM_PFNMAP | VM_DONTEXPAND); vma->vm_page_prot = ivpu_bo_pgprot(bo, vm_get_page_prot(vma->vm_flags)); return 0; } static struct sg_table *ivpu_bo_get_sg_table(struct drm_gem_object *obj) { struct ivpu_bo *bo = to_ivpu_bo(obj); loff_t npages = obj->size >> PAGE_SHIFT; int ret = 0; mutex_lock(&bo->lock); if (!bo->sgt) ret = ivpu_bo_alloc_and_map_pages_locked(bo); mutex_unlock(&bo->lock); if (ret) return ERR_PTR(ret); return drm_prime_pages_to_sg(obj->dev, bo->pages, npages); } static vm_fault_t ivpu_vm_fault(struct vm_fault *vmf) { struct vm_area_struct *vma = vmf->vma; struct drm_gem_object *obj = vma->vm_private_data; struct ivpu_bo *bo = to_ivpu_bo(obj); loff_t npages = obj->size >> PAGE_SHIFT; pgoff_t page_offset; struct page *page; vm_fault_t ret; int err; mutex_lock(&bo->lock); if (!bo->sgt) { err = ivpu_bo_alloc_and_map_pages_locked(bo); if (err) { ret = vmf_error(err); goto unlock; } } /* We don't use vmf->pgoff since that has the fake offset */ page_offset = (vmf->address - vma->vm_start) >> PAGE_SHIFT; if (page_offset >= npages) { ret = VM_FAULT_SIGBUS; } else { page = bo->pages[page_offset]; ret = vmf_insert_pfn(vma, vmf->address, page_to_pfn(page)); } unlock: mutex_unlock(&bo->lock); return ret; } static const struct vm_operations_struct ivpu_vm_ops = { .fault = ivpu_vm_fault, .open = drm_gem_vm_open, .close = drm_gem_vm_close, }; static const struct drm_gem_object_funcs ivpu_gem_funcs = { .free = ivpu_bo_free, .mmap = ivpu_bo_mmap, .vm_ops = &ivpu_vm_ops, .get_sg_table = ivpu_bo_get_sg_table, }; int ivpu_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct ivpu_file_priv *file_priv = file->driver_priv; struct ivpu_device *vdev = file_priv->vdev; struct drm_ivpu_bo_create *args = data; u64 size = PAGE_ALIGN(args->size); struct ivpu_bo *bo; int ret; if (args->flags & ~DRM_IVPU_BO_FLAGS) return -EINVAL; if (size == 0) return -EINVAL; bo = ivpu_bo_alloc(vdev, &file_priv->ctx, size, args->flags, &shmem_ops, NULL, 0); if (IS_ERR(bo)) { ivpu_err(vdev, "Failed to create BO: %pe (ctx %u size %llu flags 0x%x)", bo, file_priv->ctx.id, args->size, args->flags); return PTR_ERR(bo); } ret = drm_gem_handle_create(file, &bo->base, &bo->handle); if (!ret) { args->vpu_addr = bo->vpu_addr; args->handle = bo->handle; } drm_gem_object_put(&bo->base); ivpu_dbg(vdev, BO, "alloc shmem: ctx %u vpu_addr 0x%llx size %zu flags 0x%x\n", file_priv->ctx.id, bo->vpu_addr, bo->base.size, bo->flags); return ret; } struct ivpu_bo * ivpu_bo_alloc_internal(struct ivpu_device *vdev, u64 vpu_addr, u64 size, u32 flags) { const struct ivpu_addr_range *range; struct ivpu_addr_range fixed_range; struct ivpu_bo *bo; pgprot_t prot; int ret; drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(vpu_addr)); drm_WARN_ON(&vdev->drm, !PAGE_ALIGNED(size)); if (vpu_addr) { fixed_range.start = vpu_addr; fixed_range.end = vpu_addr + size; range = &fixed_range; } else { range = &vdev->hw->ranges.global_low; } bo = ivpu_bo_alloc(vdev, &vdev->gctx, size, flags, &internal_ops, range, 0); if (IS_ERR(bo)) { ivpu_err(vdev, "Failed to create BO: %pe (vpu_addr 0x%llx size %llu flags 0x%x)", bo, vpu_addr, size, flags); return NULL; } ret = ivpu_bo_pin(bo); if (ret) goto err_put; if (ivpu_bo_cache_mode(bo) != DRM_IVPU_BO_CACHED) drm_clflush_pages(bo->pages, bo->base.size >> PAGE_SHIFT); if (bo->flags & DRM_IVPU_BO_WC) set_pages_array_wc(bo->pages, bo->base.size >> PAGE_SHIFT); else if (bo->flags & DRM_IVPU_BO_UNCACHED) set_pages_array_uc(bo->pages, bo->base.size >> PAGE_SHIFT); prot = ivpu_bo_pgprot(bo, PAGE_KERNEL); bo->kvaddr = vmap(bo->pages, bo->base.size >> PAGE_SHIFT, VM_MAP, prot); if (!bo->kvaddr) { ivpu_err(vdev, "Failed to map BO into kernel virtual memory\n"); goto err_put; } ivpu_dbg(vdev, BO, "alloc internal: ctx 0 vpu_addr 0x%llx size %zu flags 0x%x\n", bo->vpu_addr, bo->base.size, flags); return bo; err_put: drm_gem_object_put(&bo->base); return NULL; } void ivpu_bo_free_internal(struct ivpu_bo *bo) { drm_gem_object_put(&bo->base); } struct drm_gem_object *ivpu_gem_prime_import(struct drm_device *dev, struct dma_buf *buf) { struct ivpu_device *vdev = to_ivpu_device(dev); struct dma_buf_attachment *attach; struct ivpu_bo *bo; attach = dma_buf_attach(buf, dev->dev); if (IS_ERR(attach)) return ERR_CAST(attach); get_dma_buf(buf); bo = ivpu_bo_alloc(vdev, NULL, buf->size, DRM_IVPU_BO_MAPPABLE, &prime_ops, NULL, 0); if (IS_ERR(bo)) { ivpu_err(vdev, "Failed to import BO: %pe (size %lu)", bo, buf->size); goto err_detach; } lockdep_set_class(&bo->lock, &prime_bo_lock_class_key); bo->base.import_attach = attach; return &bo->base; err_detach: dma_buf_detach(buf, attach); dma_buf_put(buf); return ERR_CAST(bo); } int ivpu_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct ivpu_file_priv *file_priv = file->driver_priv; struct ivpu_device *vdev = to_ivpu_device(dev); struct drm_ivpu_bo_info *args = data; struct drm_gem_object *obj; struct ivpu_bo *bo; int ret = 0; obj = drm_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; bo = to_ivpu_bo(obj); mutex_lock(&bo->lock); if (!bo->ctx) { ret = ivpu_bo_alloc_vpu_addr(bo, &file_priv->ctx, NULL); if (ret) { ivpu_err(vdev, "Failed to allocate vpu_addr: %d\n", ret); goto unlock; } } args->flags = bo->flags; args->mmap_offset = drm_vma_node_offset_addr(&obj->vma_node); args->vpu_addr = bo->vpu_addr; args->size = obj->size; unlock: mutex_unlock(&bo->lock); drm_gem_object_put(obj); return ret; } int ivpu_bo_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_ivpu_bo_wait *args = data; struct drm_gem_object *obj; unsigned long timeout; long ret; timeout = drm_timeout_abs_to_jiffies(args->timeout_ns); obj = drm_gem_object_lookup(file, args->handle); if (!obj) return -EINVAL; ret = dma_resv_wait_timeout(obj->resv, DMA_RESV_USAGE_READ, true, timeout); if (ret == 0) { ret = -ETIMEDOUT; } else if (ret > 0) { ret = 0; args->job_status = to_ivpu_bo(obj)->job_status; } drm_gem_object_put(obj); return ret; } static void ivpu_bo_print_info(struct ivpu_bo *bo, struct drm_printer *p) { unsigned long dma_refcount = 0; if (bo->base.dma_buf && bo->base.dma_buf->file) dma_refcount = atomic_long_read(&bo->base.dma_buf->file->f_count); drm_printf(p, "%5u %6d %16llx %10lu %10u %12lu %14s\n", bo->ctx->id, bo->handle, bo->vpu_addr, bo->base.size, kref_read(&bo->base.refcount), dma_refcount, bo->ops->name); } void ivpu_bo_list(struct drm_device *dev, struct drm_printer *p) { struct ivpu_device *vdev = to_ivpu_device(dev); struct ivpu_file_priv *file_priv; unsigned long ctx_id; struct ivpu_bo *bo; drm_printf(p, "%5s %6s %16s %10s %10s %12s %14s\n", "ctx", "handle", "vpu_addr", "size", "refcount", "dma_refcount", "type"); mutex_lock(&vdev->gctx.lock); list_for_each_entry(bo, &vdev->gctx.bo_list, ctx_node) ivpu_bo_print_info(bo, p); mutex_unlock(&vdev->gctx.lock); xa_for_each(&vdev->context_xa, ctx_id, file_priv) { file_priv = ivpu_file_priv_get_by_ctx_id(vdev, ctx_id); if (!file_priv) continue; mutex_lock(&file_priv->ctx.lock); list_for_each_entry(bo, &file_priv->ctx.bo_list, ctx_node) ivpu_bo_print_info(bo, p); mutex_unlock(&file_priv->ctx.lock); ivpu_file_priv_put(&file_priv); } } void ivpu_bo_list_print(struct drm_device *dev) { struct drm_printer p = drm_info_printer(dev->dev); ivpu_bo_list(dev, &p); }