// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include #include "habanalabs.h" #include #include #include #define CB_VA_POOL_SIZE (4UL * SZ_1G) static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; u32 page_size = prop->pmmu.page_size; int rc; if (!hdev->supports_cb_mapping) { dev_err_ratelimited(hdev->dev, "Mapping a CB to the device's MMU is not supported\n"); return -EINVAL; } if (!hdev->mmu_enable) { dev_err_ratelimited(hdev->dev, "Cannot map CB because MMU is disabled\n"); return -EINVAL; } if (cb->is_mmu_mapped) return 0; cb->roundup_size = roundup(cb->size, page_size); cb->virtual_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, cb->roundup_size); if (!cb->virtual_addr) { dev_err(hdev->dev, "Failed to allocate device virtual address for CB\n"); return -ENOMEM; } mutex_lock(&hdev->mmu_lock); rc = hl_mmu_map_contiguous(ctx, cb->virtual_addr, cb->bus_address, cb->roundup_size); if (rc) { dev_err(hdev->dev, "Failed to map VA %#llx to CB\n", cb->virtual_addr); goto err_va_umap; } rc = hl_mmu_invalidate_cache(hdev, false, MMU_OP_USERPTR | MMU_OP_SKIP_LOW_CACHE_INV); mutex_unlock(&hdev->mmu_lock); cb->is_mmu_mapped = true; return rc; err_va_umap: mutex_unlock(&hdev->mmu_lock); gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size); return rc; } static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb) { struct hl_device *hdev = ctx->hdev; mutex_lock(&hdev->mmu_lock); hl_mmu_unmap_contiguous(ctx, cb->virtual_addr, cb->roundup_size); hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR); mutex_unlock(&hdev->mmu_lock); gen_pool_free(ctx->cb_va_pool, cb->virtual_addr, cb->roundup_size); } static void cb_fini(struct hl_device *hdev, struct hl_cb *cb) { if (cb->is_internal) gen_pool_free(hdev->internal_cb_pool, (uintptr_t)cb->kernel_address, cb->size); else hl_asic_dma_free_coherent(hdev, cb->size, cb->kernel_address, cb->bus_address); kfree(cb); } static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb) { if (cb->is_pool) { atomic_set(&cb->is_handle_destroyed, 0); spin_lock(&hdev->cb_pool_lock); list_add(&cb->pool_list, &hdev->cb_pool); spin_unlock(&hdev->cb_pool_lock); } else { cb_fini(hdev, cb); } } static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size, int ctx_id, bool internal_cb) { struct hl_cb *cb = NULL; u32 cb_offset; void *p; /* * We use of GFP_ATOMIC here because this function can be called from * the latency-sensitive code path for command submission. Due to H/W * limitations in some of the ASICs, the kernel must copy the user CB * that is designated for an external queue and actually enqueue * the kernel's copy. Hence, we must never sleep in this code section * and must use GFP_ATOMIC for all memory allocations. */ if (ctx_id == HL_KERNEL_ASID_ID && !hdev->disabled) cb = kzalloc(sizeof(*cb), GFP_ATOMIC); if (!cb) cb = kzalloc(sizeof(*cb), GFP_KERNEL); if (!cb) return NULL; if (internal_cb) { p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size); if (!p) { kfree(cb); return NULL; } cb_offset = p - hdev->internal_cb_pool_virt_addr; cb->is_internal = true; cb->bus_address = hdev->internal_cb_va_base + cb_offset; } else if (ctx_id == HL_KERNEL_ASID_ID) { p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_ATOMIC); if (!p) p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_KERNEL); } else { p = hl_asic_dma_alloc_coherent(hdev, cb_size, &cb->bus_address, GFP_USER | __GFP_ZERO); } if (!p) { dev_err(hdev->dev, "failed to allocate %d of dma memory for CB\n", cb_size); kfree(cb); return NULL; } cb->kernel_address = p; cb->size = cb_size; return cb; } struct hl_cb_mmap_mem_alloc_args { struct hl_device *hdev; struct hl_ctx *ctx; u32 cb_size; bool internal_cb; bool map_cb; }; static void hl_cb_mmap_mem_release(struct hl_mmap_mem_buf *buf) { struct hl_cb *cb = buf->private; hl_debugfs_remove_cb(cb); if (cb->is_mmu_mapped) cb_unmap_mem(cb->ctx, cb); hl_ctx_put(cb->ctx); cb_do_release(cb->hdev, cb); } static int hl_cb_mmap_mem_alloc(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args) { struct hl_cb_mmap_mem_alloc_args *cb_args = args; struct hl_cb *cb; int rc, ctx_id = cb_args->ctx->asid; bool alloc_new_cb = true; if (!cb_args->internal_cb) { /* Minimum allocation must be PAGE SIZE */ if (cb_args->cb_size < PAGE_SIZE) cb_args->cb_size = PAGE_SIZE; if (ctx_id == HL_KERNEL_ASID_ID && cb_args->cb_size <= cb_args->hdev->asic_prop.cb_pool_cb_size) { spin_lock(&cb_args->hdev->cb_pool_lock); if (!list_empty(&cb_args->hdev->cb_pool)) { cb = list_first_entry(&cb_args->hdev->cb_pool, typeof(*cb), pool_list); list_del(&cb->pool_list); spin_unlock(&cb_args->hdev->cb_pool_lock); alloc_new_cb = false; } else { spin_unlock(&cb_args->hdev->cb_pool_lock); dev_dbg(cb_args->hdev->dev, "CB pool is empty\n"); } } } if (alloc_new_cb) { cb = hl_cb_alloc(cb_args->hdev, cb_args->cb_size, ctx_id, cb_args->internal_cb); if (!cb) return -ENOMEM; } cb->hdev = cb_args->hdev; cb->ctx = cb_args->ctx; cb->buf = buf; cb->buf->mappable_size = cb->size; cb->buf->private = cb; hl_ctx_get(cb->ctx); if (cb_args->map_cb) { if (ctx_id == HL_KERNEL_ASID_ID) { dev_err(cb_args->hdev->dev, "CB mapping is not supported for kernel context\n"); rc = -EINVAL; goto release_cb; } rc = cb_map_mem(cb_args->ctx, cb); if (rc) goto release_cb; } hl_debugfs_add_cb(cb); return 0; release_cb: hl_ctx_put(cb->ctx); cb_do_release(cb_args->hdev, cb); return rc; } static int hl_cb_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args) { struct hl_cb *cb = buf->private; return cb->hdev->asic_funcs->mmap(cb->hdev, vma, cb->kernel_address, cb->bus_address, cb->size); } static struct hl_mmap_mem_buf_behavior cb_behavior = { .topic = "CB", .mem_id = HL_MMAP_TYPE_CB, .alloc = hl_cb_mmap_mem_alloc, .release = hl_cb_mmap_mem_release, .mmap = hl_cb_mmap, }; int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg, struct hl_ctx *ctx, u32 cb_size, bool internal_cb, bool map_cb, u64 *handle) { struct hl_cb_mmap_mem_alloc_args args = { .hdev = hdev, .ctx = ctx, .cb_size = cb_size, .internal_cb = internal_cb, .map_cb = map_cb, }; struct hl_mmap_mem_buf *buf; int ctx_id = ctx->asid; if ((hdev->disabled) || (hdev->reset_info.in_reset && (ctx_id != HL_KERNEL_ASID_ID))) { dev_warn_ratelimited(hdev->dev, "Device is disabled or in reset. Can't create new CBs\n"); return -EBUSY; } if (cb_size > SZ_2M) { dev_err(hdev->dev, "CB size %d must be less than %d\n", cb_size, SZ_2M); return -EINVAL; } buf = hl_mmap_mem_buf_alloc( mmg, &cb_behavior, ctx_id == HL_KERNEL_ASID_ID ? GFP_ATOMIC : GFP_KERNEL, &args); if (!buf) return -ENOMEM; *handle = buf->handle; return 0; } int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle) { struct hl_cb *cb; int rc; cb = hl_cb_get(mmg, cb_handle); if (!cb) { dev_dbg(mmg->dev, "CB destroy failed, no CB was found for handle %#llx\n", cb_handle); return -EINVAL; } /* Make sure that CB handle isn't destroyed more than once */ rc = atomic_cmpxchg(&cb->is_handle_destroyed, 0, 1); hl_cb_put(cb); if (rc) { dev_dbg(mmg->dev, "CB destroy failed, handle %#llx was already destroyed\n", cb_handle); return -EINVAL; } rc = hl_mmap_mem_buf_put_handle(mmg, cb_handle); if (rc < 0) return rc; /* Invalid handle */ if (rc == 0) dev_dbg(mmg->dev, "CB 0x%llx is destroyed while still in use\n", cb_handle); return 0; } static int hl_cb_info(struct hl_mem_mgr *mmg, u64 handle, u32 flags, u32 *usage_cnt, u64 *device_va) { struct hl_cb *cb; int rc = 0; cb = hl_cb_get(mmg, handle); if (!cb) { dev_err(mmg->dev, "CB info failed, no match to handle 0x%llx\n", handle); return -EINVAL; } if (flags & HL_CB_FLAGS_GET_DEVICE_VA) { if (cb->is_mmu_mapped) { *device_va = cb->virtual_addr; } else { dev_err(mmg->dev, "CB is not mapped to the device's MMU\n"); rc = -EINVAL; goto out; } } else { *usage_cnt = atomic_read(&cb->cs_cnt); } out: hl_cb_put(cb); return rc; } int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data) { union hl_cb_args *args = data; struct hl_device *hdev = hpriv->hdev; u64 handle = 0, device_va = 0; enum hl_device_status status; u32 usage_cnt = 0; int rc; if (!hl_device_operational(hdev, &status)) { dev_dbg_ratelimited(hdev->dev, "Device is %s. Can't execute CB IOCTL\n", hdev->status[status]); return -EBUSY; } switch (args->in.op) { case HL_CB_OP_CREATE: if (args->in.cb_size > HL_MAX_CB_SIZE) { dev_err(hdev->dev, "User requested CB size %d must be less than %d\n", args->in.cb_size, HL_MAX_CB_SIZE); rc = -EINVAL; } else { rc = hl_cb_create(hdev, &hpriv->mem_mgr, hpriv->ctx, args->in.cb_size, false, !!(args->in.flags & HL_CB_FLAGS_MAP), &handle); } memset(args, 0, sizeof(*args)); args->out.cb_handle = handle; break; case HL_CB_OP_DESTROY: rc = hl_cb_destroy(&hpriv->mem_mgr, args->in.cb_handle); break; case HL_CB_OP_INFO: rc = hl_cb_info(&hpriv->mem_mgr, args->in.cb_handle, args->in.flags, &usage_cnt, &device_va); if (rc) break; memset(&args->out, 0, sizeof(args->out)); if (args->in.flags & HL_CB_FLAGS_GET_DEVICE_VA) args->out.device_va = device_va; else args->out.usage_cnt = usage_cnt; break; default: rc = -EINVAL; break; } return rc; } struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle) { struct hl_mmap_mem_buf *buf; buf = hl_mmap_mem_buf_get(mmg, handle); if (!buf) return NULL; return buf->private; } void hl_cb_put(struct hl_cb *cb) { hl_mmap_mem_buf_put(cb->buf); } struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size, bool internal_cb) { u64 cb_handle; struct hl_cb *cb; int rc; rc = hl_cb_create(hdev, &hdev->kernel_mem_mgr, hdev->kernel_ctx, cb_size, internal_cb, false, &cb_handle); if (rc) { dev_err(hdev->dev, "Failed to allocate CB for the kernel driver %d\n", rc); return NULL; } cb = hl_cb_get(&hdev->kernel_mem_mgr, cb_handle); /* hl_cb_get should never fail here */ if (!cb) { dev_crit(hdev->dev, "Kernel CB handle invalid 0x%x\n", (u32) cb_handle); goto destroy_cb; } return cb; destroy_cb: hl_cb_destroy(&hdev->kernel_mem_mgr, cb_handle); return NULL; } int hl_cb_pool_init(struct hl_device *hdev) { struct hl_cb *cb; int i; INIT_LIST_HEAD(&hdev->cb_pool); spin_lock_init(&hdev->cb_pool_lock); for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) { cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size, HL_KERNEL_ASID_ID, false); if (cb) { cb->is_pool = true; list_add(&cb->pool_list, &hdev->cb_pool); } else { hl_cb_pool_fini(hdev); return -ENOMEM; } } return 0; } int hl_cb_pool_fini(struct hl_device *hdev) { struct hl_cb *cb, *tmp; list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) { list_del(&cb->pool_list); cb_fini(hdev, cb); } return 0; } int hl_cb_va_pool_init(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; struct asic_fixed_properties *prop = &hdev->asic_prop; int rc; if (!hdev->supports_cb_mapping) return 0; ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1); if (!ctx->cb_va_pool) { dev_err(hdev->dev, "Failed to create VA gen pool for CB mapping\n"); return -ENOMEM; } ctx->cb_va_pool_base = hl_reserve_va_block(hdev, ctx, HL_VA_RANGE_TYPE_HOST, CB_VA_POOL_SIZE, HL_MMU_VA_ALIGNMENT_NOT_NEEDED); if (!ctx->cb_va_pool_base) { rc = -ENOMEM; goto err_pool_destroy; } rc = gen_pool_add(ctx->cb_va_pool, ctx->cb_va_pool_base, CB_VA_POOL_SIZE, -1); if (rc) { dev_err(hdev->dev, "Failed to add memory to VA gen pool for CB mapping\n"); goto err_unreserve_va_block; } return 0; err_unreserve_va_block: hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE); err_pool_destroy: gen_pool_destroy(ctx->cb_va_pool); return rc; } void hl_cb_va_pool_fini(struct hl_ctx *ctx) { struct hl_device *hdev = ctx->hdev; if (!hdev->supports_cb_mapping) return; gen_pool_destroy(ctx->cb_va_pool); hl_unreserve_va_block(hdev, ctx, ctx->cb_va_pool_base, CB_VA_POOL_SIZE); }