// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Google LLC */ /* * Refer to Documentation/block/inline-encryption.rst for detailed explanation. */ #define pr_fmt(fmt) "blk-crypto-fallback: " fmt #include <crypto/skcipher.h> #include <linux/blk-crypto.h> #include <linux/blk-crypto-profile.h> #include <linux/blkdev.h> #include <linux/crypto.h> #include <linux/mempool.h> #include <linux/module.h> #include <linux/random.h> #include <linux/scatterlist.h> #include "blk-cgroup.h" #include "blk-crypto-internal.h" static unsigned int num_prealloc_bounce_pg = 32; module_param(num_prealloc_bounce_pg, uint, 0); MODULE_PARM_DESC(num_prealloc_bounce_pg, "Number of preallocated bounce pages for the blk-crypto crypto API fallback"); static unsigned int blk_crypto_num_keyslots = 100; module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0); MODULE_PARM_DESC(num_keyslots, "Number of keyslots for the blk-crypto crypto API fallback"); static unsigned int num_prealloc_fallback_crypt_ctxs = 128; module_param(num_prealloc_fallback_crypt_ctxs, uint, 0); MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs, "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback"); struct bio_fallback_crypt_ctx { struct bio_crypt_ctx crypt_ctx; /* * Copy of the bvec_iter when this bio was submitted. * We only want to en/decrypt the part of the bio as described by the * bvec_iter upon submission because bio might be split before being * resubmitted */ struct bvec_iter crypt_iter; union { struct { struct work_struct work; struct bio *bio; }; struct { void *bi_private_orig; bio_end_io_t *bi_end_io_orig; }; }; }; static struct kmem_cache *bio_fallback_crypt_ctx_cache; static mempool_t *bio_fallback_crypt_ctx_pool; /* * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate * all of a mode's tfms when that mode starts being used. Since each mode may * need all the keyslots at some point, each mode needs its own tfm for each * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to * match the behavior of real inline encryption hardware (which only supports a * single encryption context per keyslot), we only allow one tfm per keyslot to * be used at a time - the rest of the unused tfms have their keys cleared. */ static DEFINE_MUTEX(tfms_init_lock); static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX]; static struct blk_crypto_fallback_keyslot { enum blk_crypto_mode_num crypto_mode; struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX]; } *blk_crypto_keyslots; static struct blk_crypto_profile blk_crypto_fallback_profile; static struct workqueue_struct *blk_crypto_wq; static mempool_t *blk_crypto_bounce_page_pool; static struct bio_set crypto_bio_split; /* * This is the key we set when evicting a keyslot. This *should* be the all 0's * key, but AES-XTS rejects that key, so we use some random bytes instead. */ static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE]; static void blk_crypto_fallback_evict_keyslot(unsigned int slot) { struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot]; enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; int err; WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); /* Clear the key in the skcipher */ err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, blk_crypto_modes[crypto_mode].keysize); WARN_ON(err); slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; } static int blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, unsigned int slot) { struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot]; const enum blk_crypto_mode_num crypto_mode = key->crypto_cfg.crypto_mode; int err; if (crypto_mode != slotp->crypto_mode && slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) blk_crypto_fallback_evict_keyslot(slot); slotp->crypto_mode = crypto_mode; err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw, key->size); if (err) { blk_crypto_fallback_evict_keyslot(slot); return err; } return 0; } static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, unsigned int slot) { blk_crypto_fallback_evict_keyslot(slot); return 0; } static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = { .keyslot_program = blk_crypto_fallback_keyslot_program, .keyslot_evict = blk_crypto_fallback_keyslot_evict, }; static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio) { struct bio *src_bio = enc_bio->bi_private; int i; for (i = 0; i < enc_bio->bi_vcnt; i++) mempool_free(enc_bio->bi_io_vec[i].bv_page, blk_crypto_bounce_page_pool); src_bio->bi_status = enc_bio->bi_status; bio_uninit(enc_bio); kfree(enc_bio); bio_endio(src_bio); } static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src) { unsigned int nr_segs = bio_segments(bio_src); struct bvec_iter iter; struct bio_vec bv; struct bio *bio; bio = bio_kmalloc(nr_segs, GFP_NOIO); if (!bio) return NULL; bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs, bio_src->bi_opf); if (bio_flagged(bio_src, BIO_REMAPPED)) bio_set_flag(bio, BIO_REMAPPED); bio->bi_ioprio = bio_src->bi_ioprio; bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; bio_for_each_segment(bv, bio_src, iter) bio->bi_io_vec[bio->bi_vcnt++] = bv; bio_clone_blkg_association(bio, bio_src); return bio; } static bool blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot, struct skcipher_request **ciph_req_ret, struct crypto_wait *wait) { struct skcipher_request *ciph_req; const struct blk_crypto_fallback_keyslot *slotp; int keyslot_idx = blk_crypto_keyslot_index(slot); slotp = &blk_crypto_keyslots[keyslot_idx]; ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode], GFP_NOIO); if (!ciph_req) return false; skcipher_request_set_callback(ciph_req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, wait); *ciph_req_ret = ciph_req; return true; } static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr) { struct bio *bio = *bio_ptr; unsigned int i = 0; unsigned int num_sectors = 0; struct bio_vec bv; struct bvec_iter iter; bio_for_each_segment(bv, bio, iter) { num_sectors += bv.bv_len >> SECTOR_SHIFT; if (++i == BIO_MAX_VECS) break; } if (num_sectors < bio_sectors(bio)) { struct bio *split_bio; split_bio = bio_split(bio, num_sectors, GFP_NOIO, &crypto_bio_split); if (!split_bio) { bio->bi_status = BLK_STS_RESOURCE; return false; } bio_chain(split_bio, bio); submit_bio_noacct(bio); *bio_ptr = split_bio; } return true; } union blk_crypto_iv { __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; u8 bytes[BLK_CRYPTO_MAX_IV_SIZE]; }; static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], union blk_crypto_iv *iv) { int i; for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) iv->dun[i] = cpu_to_le64(dun[i]); } /* * The crypto API fallback's encryption routine. * Allocate a bounce bio for encryption, encrypt the input bio using crypto API, * and replace *bio_ptr with the bounce bio. May split input bio if it's too * large. Returns true on success. Returns false and sets bio->bi_status on * error. */ static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr) { struct bio *src_bio, *enc_bio; struct bio_crypt_ctx *bc; struct blk_crypto_keyslot *slot; int data_unit_size; struct skcipher_request *ciph_req = NULL; DECLARE_CRYPTO_WAIT(wait); u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; struct scatterlist src, dst; union blk_crypto_iv iv; unsigned int i, j; bool ret = false; blk_status_t blk_st; /* Split the bio if it's too big for single page bvec */ if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr)) return false; src_bio = *bio_ptr; bc = src_bio->bi_crypt_context; data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; /* Allocate bounce bio for encryption */ enc_bio = blk_crypto_fallback_clone_bio(src_bio); if (!enc_bio) { src_bio->bi_status = BLK_STS_RESOURCE; return false; } /* * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for * this bio's algorithm and key. */ blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile, bc->bc_key, &slot); if (blk_st != BLK_STS_OK) { src_bio->bi_status = blk_st; goto out_put_enc_bio; } /* and then allocate an skcipher_request for it */ if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) { src_bio->bi_status = BLK_STS_RESOURCE; goto out_release_keyslot; } memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); sg_init_table(&src, 1); sg_init_table(&dst, 1); skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size, iv.bytes); /* Encrypt each page in the bounce bio */ for (i = 0; i < enc_bio->bi_vcnt; i++) { struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i]; struct page *plaintext_page = enc_bvec->bv_page; struct page *ciphertext_page = mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO); enc_bvec->bv_page = ciphertext_page; if (!ciphertext_page) { src_bio->bi_status = BLK_STS_RESOURCE; goto out_free_bounce_pages; } sg_set_page(&src, plaintext_page, data_unit_size, enc_bvec->bv_offset); sg_set_page(&dst, ciphertext_page, data_unit_size, enc_bvec->bv_offset); /* Encrypt each data unit in this page */ for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) { blk_crypto_dun_to_iv(curr_dun, &iv); if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req), &wait)) { i++; src_bio->bi_status = BLK_STS_IOERR; goto out_free_bounce_pages; } bio_crypt_dun_increment(curr_dun, 1); src.offset += data_unit_size; dst.offset += data_unit_size; } } enc_bio->bi_private = src_bio; enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio; *bio_ptr = enc_bio; ret = true; enc_bio = NULL; goto out_free_ciph_req; out_free_bounce_pages: while (i > 0) mempool_free(enc_bio->bi_io_vec[--i].bv_page, blk_crypto_bounce_page_pool); out_free_ciph_req: skcipher_request_free(ciph_req); out_release_keyslot: blk_crypto_put_keyslot(slot); out_put_enc_bio: if (enc_bio) bio_uninit(enc_bio); kfree(enc_bio); return ret; } /* * The crypto API fallback's main decryption routine. * Decrypts input bio in place, and calls bio_endio on the bio. */ static void blk_crypto_fallback_decrypt_bio(struct work_struct *work) { struct bio_fallback_crypt_ctx *f_ctx = container_of(work, struct bio_fallback_crypt_ctx, work); struct bio *bio = f_ctx->bio; struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx; struct blk_crypto_keyslot *slot; struct skcipher_request *ciph_req = NULL; DECLARE_CRYPTO_WAIT(wait); u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; union blk_crypto_iv iv; struct scatterlist sg; struct bio_vec bv; struct bvec_iter iter; const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; unsigned int i; blk_status_t blk_st; /* * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for * this bio's algorithm and key. */ blk_st = blk_crypto_get_keyslot(&blk_crypto_fallback_profile, bc->bc_key, &slot); if (blk_st != BLK_STS_OK) { bio->bi_status = blk_st; goto out_no_keyslot; } /* and then allocate an skcipher_request for it */ if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) { bio->bi_status = BLK_STS_RESOURCE; goto out; } memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); sg_init_table(&sg, 1); skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, iv.bytes); /* Decrypt each segment in the bio */ __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) { struct page *page = bv.bv_page; sg_set_page(&sg, page, data_unit_size, bv.bv_offset); /* Decrypt each data unit in the segment */ for (i = 0; i < bv.bv_len; i += data_unit_size) { blk_crypto_dun_to_iv(curr_dun, &iv); if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req), &wait)) { bio->bi_status = BLK_STS_IOERR; goto out; } bio_crypt_dun_increment(curr_dun, 1); sg.offset += data_unit_size; } } out: skcipher_request_free(ciph_req); blk_crypto_put_keyslot(slot); out_no_keyslot: mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); bio_endio(bio); } /** * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption * * @bio: the bio to queue * * Restore bi_private and bi_end_io, and queue the bio for decryption into a * workqueue, since this function will be called from an atomic context. */ static void blk_crypto_fallback_decrypt_endio(struct bio *bio) { struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private; bio->bi_private = f_ctx->bi_private_orig; bio->bi_end_io = f_ctx->bi_end_io_orig; /* If there was an IO error, don't queue for decrypt. */ if (bio->bi_status) { mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); bio_endio(bio); return; } INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio); f_ctx->bio = bio; queue_work(blk_crypto_wq, &f_ctx->work); } /** * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption * * @bio_ptr: pointer to the bio to prepare * * If bio is doing a WRITE operation, this splits the bio into two parts if it's * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a * bounce bio for the first part, encrypts it, and updates bio_ptr to point to * the bounce bio. * * For a READ operation, we mark the bio for decryption by using bi_private and * bi_end_io. * * In either case, this function will make the bio look like a regular bio (i.e. * as if no encryption context was ever specified) for the purposes of the rest * of the stack except for blk-integrity (blk-integrity and blk-crypto are not * currently supported together). * * Return: true on success. Sets bio->bi_status and returns false on error. */ bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr) { struct bio *bio = *bio_ptr; struct bio_crypt_ctx *bc = bio->bi_crypt_context; struct bio_fallback_crypt_ctx *f_ctx; if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) { /* User didn't call blk_crypto_start_using_key() first */ bio->bi_status = BLK_STS_IOERR; return false; } if (!__blk_crypto_cfg_supported(&blk_crypto_fallback_profile, &bc->bc_key->crypto_cfg)) { bio->bi_status = BLK_STS_NOTSUPP; return false; } if (bio_data_dir(bio) == WRITE) return blk_crypto_fallback_encrypt_bio(bio_ptr); /* * bio READ case: Set up a f_ctx in the bio's bi_private and set the * bi_end_io appropriately to trigger decryption when the bio is ended. */ f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO); f_ctx->crypt_ctx = *bc; f_ctx->crypt_iter = bio->bi_iter; f_ctx->bi_private_orig = bio->bi_private; f_ctx->bi_end_io_orig = bio->bi_end_io; bio->bi_private = (void *)f_ctx; bio->bi_end_io = blk_crypto_fallback_decrypt_endio; bio_crypt_free_ctx(bio); return true; } int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) { return __blk_crypto_evict_key(&blk_crypto_fallback_profile, key); } static bool blk_crypto_fallback_inited; static int blk_crypto_fallback_init(void) { int i; int err; struct blk_crypto_profile *profile = &blk_crypto_fallback_profile; if (blk_crypto_fallback_inited) return 0; get_random_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE); err = bioset_init(&crypto_bio_split, 64, 0, 0); if (err) goto out; err = blk_crypto_profile_init(profile, blk_crypto_num_keyslots); if (err) goto fail_free_bioset; err = -ENOMEM; profile->ll_ops = blk_crypto_fallback_ll_ops; profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; /* All blk-crypto modes have a crypto API fallback. */ for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) profile->modes_supported[i] = 0xFFFFFFFF; profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0; blk_crypto_wq = alloc_workqueue("blk_crypto_wq", WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, num_online_cpus()); if (!blk_crypto_wq) goto fail_destroy_profile; blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, sizeof(blk_crypto_keyslots[0]), GFP_KERNEL); if (!blk_crypto_keyslots) goto fail_free_wq; blk_crypto_bounce_page_pool = mempool_create_page_pool(num_prealloc_bounce_pg, 0); if (!blk_crypto_bounce_page_pool) goto fail_free_keyslots; bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0); if (!bio_fallback_crypt_ctx_cache) goto fail_free_bounce_page_pool; bio_fallback_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs, bio_fallback_crypt_ctx_cache); if (!bio_fallback_crypt_ctx_pool) goto fail_free_crypt_ctx_cache; blk_crypto_fallback_inited = true; return 0; fail_free_crypt_ctx_cache: kmem_cache_destroy(bio_fallback_crypt_ctx_cache); fail_free_bounce_page_pool: mempool_destroy(blk_crypto_bounce_page_pool); fail_free_keyslots: kfree(blk_crypto_keyslots); fail_free_wq: destroy_workqueue(blk_crypto_wq); fail_destroy_profile: blk_crypto_profile_destroy(profile); fail_free_bioset: bioset_exit(&crypto_bio_split); out: return err; } /* * Prepare blk-crypto-fallback for the specified crypto mode. * Returns -ENOPKG if the needed crypto API support is missing. */ int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num) { const char *cipher_str = blk_crypto_modes[mode_num].cipher_str; struct blk_crypto_fallback_keyslot *slotp; unsigned int i; int err = 0; /* * Fast path * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] * for each i are visible before we try to access them. */ if (likely(smp_load_acquire(&tfms_inited[mode_num]))) return 0; mutex_lock(&tfms_init_lock); if (tfms_inited[mode_num]) goto out; err = blk_crypto_fallback_init(); if (err) goto out; for (i = 0; i < blk_crypto_num_keyslots; i++) { slotp = &blk_crypto_keyslots[i]; slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0); if (IS_ERR(slotp->tfms[mode_num])) { err = PTR_ERR(slotp->tfms[mode_num]); if (err == -ENOENT) { pr_warn_once("Missing crypto API support for \"%s\"\n", cipher_str); err = -ENOPKG; } slotp->tfms[mode_num] = NULL; goto out_free_tfms; } crypto_skcipher_set_flags(slotp->tfms[mode_num], CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); } /* * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] * for each i are visible before we set tfms_inited[mode_num]. */ smp_store_release(&tfms_inited[mode_num], true); goto out; out_free_tfms: for (i = 0; i < blk_crypto_num_keyslots; i++) { slotp = &blk_crypto_keyslots[i]; crypto_free_skcipher(slotp->tfms[mode_num]); slotp->tfms[mode_num] = NULL; } out: mutex_unlock(&tfms_init_lock); return err; }