// SPDX-License-Identifier: GPL-2.0-only /* * AMD Memory Encryption Support * * Copyright (C) 2016 Advanced Micro Devices, Inc. * * Author: Tom Lendacky */ #define DISABLE_BRANCH_PROFILING /* * Since we're dealing with identity mappings, physical and virtual * addresses are the same, so override these defines which are ultimately * used by the headers in misc.h. */ #define __pa(x) ((unsigned long)(x)) #define __va(x) ((void *)((unsigned long)(x))) /* * Special hack: we have to be careful, because no indirections are * allowed here, and paravirt_ops is a kind of one. As it will only run in * baremetal anyway, we just keep it from happening. (This list needs to * be extended when new paravirt and debugging variants are added.) */ #undef CONFIG_PARAVIRT #undef CONFIG_PARAVIRT_XXL #undef CONFIG_PARAVIRT_SPINLOCKS /* * This code runs before CPU feature bits are set. By default, the * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 * is provided to handle this situation and, instead, use a variable that * has been set by the early boot code. */ #define USE_EARLY_PGTABLE_L5 #include #include #include #include #include #include #include #include #include "mm_internal.h" #define PGD_FLAGS _KERNPG_TABLE_NOENC #define P4D_FLAGS _KERNPG_TABLE_NOENC #define PUD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) #define PMD_FLAGS_DEC PMD_FLAGS_LARGE #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ (_PAGE_PAT_LARGE | _PAGE_PWT)) #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) #define PTE_FLAGS_DEC PTE_FLAGS #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ (_PAGE_PAT | _PAGE_PWT)) #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) struct sme_populate_pgd_data { void *pgtable_area; pgd_t *pgd; pmdval_t pmd_flags; pteval_t pte_flags; unsigned long paddr; unsigned long vaddr; unsigned long vaddr_end; }; /* * This work area lives in the .init.scratch section, which lives outside of * the kernel proper. It is sized to hold the intermediate copy buffer and * more than enough pagetable pages. * * By using this section, the kernel can be encrypted in place and it * avoids any possibility of boot parameters or initramfs images being * placed such that the in-place encryption logic overwrites them. This * section is 2MB aligned to allow for simple pagetable setup using only * PMD entries (see vmlinux.lds.S). */ static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch"); static char sme_cmdline_arg[] __initdata = "mem_encrypt"; static char sme_cmdline_on[] __initdata = "on"; static char sme_cmdline_off[] __initdata = "off"; static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) { unsigned long pgd_start, pgd_end, pgd_size; pgd_t *pgd_p; pgd_start = ppd->vaddr & PGDIR_MASK; pgd_end = ppd->vaddr_end & PGDIR_MASK; pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); pgd_p = ppd->pgd + pgd_index(ppd->vaddr); memset(pgd_p, 0, pgd_size); } static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pgd = ppd->pgd + pgd_index(ppd->vaddr); if (pgd_none(*pgd)) { p4d = ppd->pgtable_area; memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); } p4d = p4d_offset(pgd, ppd->vaddr); if (p4d_none(*p4d)) { pud = ppd->pgtable_area; memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); } pud = pud_offset(p4d, ppd->vaddr); if (pud_none(*pud)) { pmd = ppd->pgtable_area; memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); } if (pud_large(*pud)) return NULL; return pud; } static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) { pud_t *pud; pmd_t *pmd; pud = sme_prepare_pgd(ppd); if (!pud) return; pmd = pmd_offset(pud, ppd->vaddr); if (pmd_large(*pmd)) return; set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); } static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) { pud_t *pud; pmd_t *pmd; pte_t *pte; pud = sme_prepare_pgd(ppd); if (!pud) return; pmd = pmd_offset(pud, ppd->vaddr); if (pmd_none(*pmd)) { pte = ppd->pgtable_area; memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); } if (pmd_large(*pmd)) return; pte = pte_offset_map(pmd, ppd->vaddr); if (pte_none(*pte)) set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); } static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) { while (ppd->vaddr < ppd->vaddr_end) { sme_populate_pgd_large(ppd); ppd->vaddr += PMD_PAGE_SIZE; ppd->paddr += PMD_PAGE_SIZE; } } static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) { while (ppd->vaddr < ppd->vaddr_end) { sme_populate_pgd(ppd); ppd->vaddr += PAGE_SIZE; ppd->paddr += PAGE_SIZE; } } static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, pmdval_t pmd_flags, pteval_t pte_flags) { unsigned long vaddr_end; ppd->pmd_flags = pmd_flags; ppd->pte_flags = pte_flags; /* Save original end value since we modify the struct value */ vaddr_end = ppd->vaddr_end; /* If start is not 2MB aligned, create PTE entries */ ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); __sme_map_range_pte(ppd); /* Create PMD entries */ ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; __sme_map_range_pmd(ppd); /* If end is not 2MB aligned, create PTE entries */ ppd->vaddr_end = vaddr_end; __sme_map_range_pte(ppd); } static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); } static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); } static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); } static unsigned long __init sme_pgtable_calc(unsigned long len) { unsigned long entries = 0, tables = 0; /* * Perform a relatively simplistic calculation of the pagetable * entries that are needed. Those mappings will be covered mostly * by 2MB PMD entries so we can conservatively calculate the required * number of P4D, PUD and PMD structures needed to perform the * mappings. For mappings that are not 2MB aligned, PTE mappings * would be needed for the start and end portion of the address range * that fall outside of the 2MB alignment. This results in, at most, * two extra pages to hold PTE entries for each range that is mapped. * Incrementing the count for each covers the case where the addresses * cross entries. */ /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ if (PTRS_PER_P4D > 1) entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; /* * Now calculate the added pagetable structures needed to populate * the new pagetables. */ if (PTRS_PER_P4D > 1) tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; return entries + tables; } void __init sme_encrypt_kernel(struct boot_params *bp) { unsigned long workarea_start, workarea_end, workarea_len; unsigned long execute_start, execute_end, execute_len; unsigned long kernel_start, kernel_end, kernel_len; unsigned long initrd_start, initrd_end, initrd_len; struct sme_populate_pgd_data ppd; unsigned long pgtable_area_len; unsigned long decrypted_base; /* * This is early code, use an open coded check for SME instead of * using cc_platform_has(). This eliminates worries about removing * instrumentation or checking boot_cpu_data in the cc_platform_has() * function. */ if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED) return; /* * Prepare for encrypting the kernel and initrd by building new * pagetables with the necessary attributes needed to encrypt the * kernel in place. * * One range of virtual addresses will map the memory occupied * by the kernel and initrd as encrypted. * * Another range of virtual addresses will map the memory occupied * by the kernel and initrd as decrypted and write-protected. * * The use of write-protect attribute will prevent any of the * memory from being cached. */ /* Physical addresses gives us the identity mapped virtual addresses */ kernel_start = __pa_symbol(_text); kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); kernel_len = kernel_end - kernel_start; initrd_start = 0; initrd_end = 0; initrd_len = 0; #ifdef CONFIG_BLK_DEV_INITRD initrd_len = (unsigned long)bp->hdr.ramdisk_size | ((unsigned long)bp->ext_ramdisk_size << 32); if (initrd_len) { initrd_start = (unsigned long)bp->hdr.ramdisk_image | ((unsigned long)bp->ext_ramdisk_image << 32); initrd_end = PAGE_ALIGN(initrd_start + initrd_len); initrd_len = initrd_end - initrd_start; } #endif /* * We're running identity mapped, so we must obtain the address to the * SME encryption workarea using rip-relative addressing. */ asm ("lea sme_workarea(%%rip), %0" : "=r" (workarea_start) : "p" (sme_workarea)); /* * Calculate required number of workarea bytes needed: * executable encryption area size: * stack page (PAGE_SIZE) * encryption routine page (PAGE_SIZE) * intermediate copy buffer (PMD_PAGE_SIZE) * pagetable structures for the encryption of the kernel * pagetable structures for workarea (in case not currently mapped) */ execute_start = workarea_start; execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; execute_len = execute_end - execute_start; /* * One PGD for both encrypted and decrypted mappings and a set of * PUDs and PMDs for each of the encrypted and decrypted mappings. */ pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; if (initrd_len) pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; /* PUDs and PMDs needed in the current pagetables for the workarea */ pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); /* * The total workarea includes the executable encryption area and * the pagetable area. The start of the workarea is already 2MB * aligned, align the end of the workarea on a 2MB boundary so that * we don't try to create/allocate PTE entries from the workarea * before it is mapped. */ workarea_len = execute_len + pgtable_area_len; workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); /* * Set the address to the start of where newly created pagetable * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable * structures are created when the workarea is added to the current * pagetables and when the new encrypted and decrypted kernel * mappings are populated. */ ppd.pgtable_area = (void *)execute_end; /* * Make sure the current pagetable structure has entries for * addressing the workarea. */ ppd.pgd = (pgd_t *)native_read_cr3_pa(); ppd.paddr = workarea_start; ppd.vaddr = workarea_start; ppd.vaddr_end = workarea_end; sme_map_range_decrypted(&ppd); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); /* * A new pagetable structure is being built to allow for the kernel * and initrd to be encrypted. It starts with an empty PGD that will * then be populated with new PUDs and PMDs as the encrypted and * decrypted kernel mappings are created. */ ppd.pgd = ppd.pgtable_area; memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; /* * A different PGD index/entry must be used to get different * pagetable entries for the decrypted mapping. Choose the next * PGD index and convert it to a virtual address to be used as * the base of the mapping. */ decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); if (initrd_len) { unsigned long check_base; check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); decrypted_base = max(decrypted_base, check_base); } decrypted_base <<= PGDIR_SHIFT; /* Add encrypted kernel (identity) mappings */ ppd.paddr = kernel_start; ppd.vaddr = kernel_start; ppd.vaddr_end = kernel_end; sme_map_range_encrypted(&ppd); /* Add decrypted, write-protected kernel (non-identity) mappings */ ppd.paddr = kernel_start; ppd.vaddr = kernel_start + decrypted_base; ppd.vaddr_end = kernel_end + decrypted_base; sme_map_range_decrypted_wp(&ppd); if (initrd_len) { /* Add encrypted initrd (identity) mappings */ ppd.paddr = initrd_start; ppd.vaddr = initrd_start; ppd.vaddr_end = initrd_end; sme_map_range_encrypted(&ppd); /* * Add decrypted, write-protected initrd (non-identity) mappings */ ppd.paddr = initrd_start; ppd.vaddr = initrd_start + decrypted_base; ppd.vaddr_end = initrd_end + decrypted_base; sme_map_range_decrypted_wp(&ppd); } /* Add decrypted workarea mappings to both kernel mappings */ ppd.paddr = workarea_start; ppd.vaddr = workarea_start; ppd.vaddr_end = workarea_end; sme_map_range_decrypted(&ppd); ppd.paddr = workarea_start; ppd.vaddr = workarea_start + decrypted_base; ppd.vaddr_end = workarea_end + decrypted_base; sme_map_range_decrypted(&ppd); /* Perform the encryption */ sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, kernel_len, workarea_start, (unsigned long)ppd.pgd); if (initrd_len) sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, initrd_len, workarea_start, (unsigned long)ppd.pgd); /* * At this point we are running encrypted. Remove the mappings for * the decrypted areas - all that is needed for this is to remove * the PGD entry/entries. */ ppd.vaddr = kernel_start + decrypted_base; ppd.vaddr_end = kernel_end + decrypted_base; sme_clear_pgd(&ppd); if (initrd_len) { ppd.vaddr = initrd_start + decrypted_base; ppd.vaddr_end = initrd_end + decrypted_base; sme_clear_pgd(&ppd); } ppd.vaddr = workarea_start + decrypted_base; ppd.vaddr_end = workarea_end + decrypted_base; sme_clear_pgd(&ppd); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); } void __init sme_enable(struct boot_params *bp) { const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; unsigned int eax, ebx, ecx, edx; unsigned long feature_mask; bool active_by_default; unsigned long me_mask; char buffer[16]; u64 msr; /* Check for the SME/SEV support leaf */ eax = 0x80000000; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (eax < 0x8000001f) return; #define AMD_SME_BIT BIT(0) #define AMD_SEV_BIT BIT(1) /* * Check for the SME/SEV feature: * CPUID Fn8000_001F[EAX] * - Bit 0 - Secure Memory Encryption support * - Bit 1 - Secure Encrypted Virtualization support * CPUID Fn8000_001F[EBX] * - Bits 5:0 - Pagetable bit position used to indicate encryption */ eax = 0x8000001f; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); /* Check whether SEV or SME is supported */ if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) return; me_mask = 1UL << (ebx & 0x3f); /* Check the SEV MSR whether SEV or SME is enabled */ sev_status = __rdmsr(MSR_AMD64_SEV); feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; /* Check if memory encryption is enabled */ if (feature_mask == AMD_SME_BIT) { /* * No SME if Hypervisor bit is set. This check is here to * prevent a guest from trying to enable SME. For running as a * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there * might be other hypervisors which emulate that MSR as non-zero * or even pass it through to the guest. * A malicious hypervisor can still trick a guest into this * path, but there is no way to protect against that. */ eax = 1; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (ecx & BIT(31)) return; /* For SME, check the SYSCFG MSR */ msr = __rdmsr(MSR_AMD64_SYSCFG); if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) return; } else { /* SEV state cannot be controlled by a command line option */ sme_me_mask = me_mask; goto out; } /* * Fixups have not been applied to phys_base yet and we're running * identity mapped, so we must obtain the address to the SME command * line argument data using rip-relative addressing. */ asm ("lea sme_cmdline_arg(%%rip), %0" : "=r" (cmdline_arg) : "p" (sme_cmdline_arg)); asm ("lea sme_cmdline_on(%%rip), %0" : "=r" (cmdline_on) : "p" (sme_cmdline_on)); asm ("lea sme_cmdline_off(%%rip), %0" : "=r" (cmdline_off) : "p" (sme_cmdline_off)); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) active_by_default = true; else active_by_default = false; cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | ((u64)bp->ext_cmd_line_ptr << 32)); cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)); if (!strncmp(buffer, cmdline_on, sizeof(buffer))) sme_me_mask = me_mask; else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) sme_me_mask = 0; else sme_me_mask = active_by_default ? me_mask : 0; out: if (sme_me_mask) { physical_mask &= ~sme_me_mask; cc_set_vendor(CC_VENDOR_AMD); cc_set_mask(sme_me_mask); } }