/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __KVM_X86_VMX_H #define __KVM_X86_VMX_H #include #include #include #include #include #include "capabilities.h" #include "../kvm_cache_regs.h" #include "vmcs.h" #include "vmx_ops.h" #include "../cpuid.h" #include "run_flags.h" #define MSR_TYPE_R 1 #define MSR_TYPE_W 2 #define MSR_TYPE_RW 3 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4)) #ifdef CONFIG_X86_64 #define MAX_NR_USER_RETURN_MSRS 7 #else #define MAX_NR_USER_RETURN_MSRS 4 #endif #define MAX_NR_LOADSTORE_MSRS 8 struct vmx_msrs { unsigned int nr; struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS]; }; struct vmx_uret_msr { bool load_into_hardware; u64 data; u64 mask; }; enum segment_cache_field { SEG_FIELD_SEL = 0, SEG_FIELD_BASE = 1, SEG_FIELD_LIMIT = 2, SEG_FIELD_AR = 3, SEG_FIELD_NR = 4 }; #define RTIT_ADDR_RANGE 4 struct pt_ctx { u64 ctl; u64 status; u64 output_base; u64 output_mask; u64 cr3_match; u64 addr_a[RTIT_ADDR_RANGE]; u64 addr_b[RTIT_ADDR_RANGE]; }; struct pt_desc { u64 ctl_bitmask; u32 num_address_ranges; u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES]; struct pt_ctx host; struct pt_ctx guest; }; union vmx_exit_reason { struct { u32 basic : 16; u32 reserved16 : 1; u32 reserved17 : 1; u32 reserved18 : 1; u32 reserved19 : 1; u32 reserved20 : 1; u32 reserved21 : 1; u32 reserved22 : 1; u32 reserved23 : 1; u32 reserved24 : 1; u32 reserved25 : 1; u32 bus_lock_detected : 1; u32 enclave_mode : 1; u32 smi_pending_mtf : 1; u32 smi_from_vmx_root : 1; u32 reserved30 : 1; u32 failed_vmentry : 1; }; u32 full; }; struct lbr_desc { /* Basic info about guest LBR records. */ struct x86_pmu_lbr records; /* * Emulate LBR feature via passthrough LBR registers when the * per-vcpu guest LBR event is scheduled on the current pcpu. * * The records may be inaccurate if the host reclaims the LBR. */ struct perf_event *event; /* True if LBRs are marked as not intercepted in the MSR bitmap */ bool msr_passthrough; }; /* * The nested_vmx structure is part of vcpu_vmx, and holds information we need * for correct emulation of VMX (i.e., nested VMX) on this vcpu. */ struct nested_vmx { /* Has the level1 guest done vmxon? */ bool vmxon; gpa_t vmxon_ptr; bool pml_full; /* The guest-physical address of the current VMCS L1 keeps for L2 */ gpa_t current_vmptr; /* * Cache of the guest's VMCS, existing outside of guest memory. * Loaded from guest memory during VMPTRLD. Flushed to guest * memory during VMCLEAR and VMPTRLD. */ struct vmcs12 *cached_vmcs12; /* * Cache of the guest's shadow VMCS, existing outside of guest * memory. Loaded from guest memory during VM entry. Flushed * to guest memory during VM exit. */ struct vmcs12 *cached_shadow_vmcs12; /* * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer */ struct gfn_to_hva_cache shadow_vmcs12_cache; /* * GPA to HVA cache for VMCS12 */ struct gfn_to_hva_cache vmcs12_cache; /* * Indicates if the shadow vmcs or enlightened vmcs must be updated * with the data held by struct vmcs12. */ bool need_vmcs12_to_shadow_sync; bool dirty_vmcs12; /* * Indicates whether MSR bitmap for L2 needs to be rebuilt due to * changes in MSR bitmap for L1 or switching to a different L2. Note, * this flag can only be used reliably in conjunction with a paravirt L1 * which informs L0 whether any changes to MSR bitmap for L2 were done * on its side. */ bool force_msr_bitmap_recalc; /* * Indicates lazily loaded guest state has not yet been decached from * vmcs02. */ bool need_sync_vmcs02_to_vmcs12_rare; /* * vmcs02 has been initialized, i.e. state that is constant for * vmcs02 has been written to the backing VMCS. Initialization * is delayed until L1 actually attempts to run a nested VM. */ bool vmcs02_initialized; bool change_vmcs01_virtual_apic_mode; bool reload_vmcs01_apic_access_page; bool update_vmcs01_cpu_dirty_logging; bool update_vmcs01_apicv_status; /* * Enlightened VMCS has been enabled. It does not mean that L1 has to * use it. However, VMX features available to L1 will be limited based * on what the enlightened VMCS supports. */ bool enlightened_vmcs_enabled; /* L2 must run next, and mustn't decide to exit to L1. */ bool nested_run_pending; /* Pending MTF VM-exit into L1. */ bool mtf_pending; struct loaded_vmcs vmcs02; /* * Guest pages referred to in the vmcs02 with host-physical * pointers, so we must keep them pinned while L2 runs. */ struct kvm_host_map apic_access_page_map; struct kvm_host_map virtual_apic_map; struct kvm_host_map pi_desc_map; struct kvm_host_map msr_bitmap_map; struct pi_desc *pi_desc; bool pi_pending; u16 posted_intr_nv; struct hrtimer preemption_timer; u64 preemption_timer_deadline; bool has_preemption_timer_deadline; bool preemption_timer_expired; /* * Used to snapshot MSRs that are conditionally loaded on VM-Enter in * order to propagate the guest's pre-VM-Enter value into vmcs02. For * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value. * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_ * userspace restores MSRs before nested state. If userspace restores * MSRs after nested state, the snapshot holds garbage, but KVM can't * detect that, and the garbage value in vmcs02 will be overwritten by * MSR restoration in any case. */ u64 pre_vmenter_debugctl; u64 pre_vmenter_bndcfgs; /* to migrate it to L1 if L2 writes to L1's CR8 directly */ int l1_tpr_threshold; u16 vpid02; u16 last_vpid; struct nested_vmx_msrs msrs; /* SMM related state */ struct { /* in VMX operation on SMM entry? */ bool vmxon; /* in guest mode on SMM entry? */ bool guest_mode; } smm; gpa_t hv_evmcs_vmptr; struct kvm_host_map hv_evmcs_map; struct hv_enlightened_vmcs *hv_evmcs; }; struct vcpu_vmx { struct kvm_vcpu vcpu; u8 fail; u8 x2apic_msr_bitmap_mode; /* * If true, host state has been stored in vmx->loaded_vmcs for * the CPU registers that only need to be switched when transitioning * to/from the kernel, and the registers have been loaded with guest * values. If false, host state is loaded in the CPU registers * and vmx->loaded_vmcs->host_state is invalid. */ bool guest_state_loaded; unsigned long exit_qualification; u32 exit_intr_info; u32 idt_vectoring_info; ulong rflags; /* * User return MSRs are always emulated when enabled in the guest, but * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to * be loaded into hardware if those conditions aren't met. */ struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS]; bool guest_uret_msrs_loaded; #ifdef CONFIG_X86_64 u64 msr_host_kernel_gs_base; u64 msr_guest_kernel_gs_base; #endif u64 spec_ctrl; u32 msr_ia32_umwait_control; /* * loaded_vmcs points to the VMCS currently used in this vcpu. For a * non-nested (L1) guest, it always points to vmcs01. For a nested * guest (L2), it points to a different VMCS. */ struct loaded_vmcs vmcs01; struct loaded_vmcs *loaded_vmcs; struct msr_autoload { struct vmx_msrs guest; struct vmx_msrs host; } msr_autoload; struct msr_autostore { struct vmx_msrs guest; } msr_autostore; struct { int vm86_active; ulong save_rflags; struct kvm_segment segs[8]; } rmode; struct { u32 bitmask; /* 4 bits per segment (1 bit per field) */ struct kvm_save_segment { u16 selector; unsigned long base; u32 limit; u32 ar; } seg[8]; } segment_cache; int vpid; bool emulation_required; union vmx_exit_reason exit_reason; /* Posted interrupt descriptor */ struct pi_desc pi_desc; /* Used if this vCPU is waiting for PI notification wakeup. */ struct list_head pi_wakeup_list; /* Support for a guest hypervisor (nested VMX) */ struct nested_vmx nested; /* Dynamic PLE window. */ unsigned int ple_window; bool ple_window_dirty; bool req_immediate_exit; /* Support for PML */ #define PML_ENTITY_NUM 512 struct page *pml_pg; /* apic deadline value in host tsc */ u64 hv_deadline_tsc; unsigned long host_debugctlmsr; /* * Only bits masked by msr_ia32_feature_control_valid_bits can be set in * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included * in msr_ia32_feature_control_valid_bits. */ u64 msr_ia32_feature_control; u64 msr_ia32_feature_control_valid_bits; /* SGX Launch Control public key hash */ u64 msr_ia32_sgxlepubkeyhash[4]; u64 msr_ia32_mcu_opt_ctrl; bool disable_fb_clear; struct pt_desc pt_desc; struct lbr_desc lbr_desc; /* Save desired MSR intercept (read: pass-through) state */ #define MAX_POSSIBLE_PASSTHROUGH_MSRS 16 struct { DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS); DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS); } shadow_msr_intercept; }; struct kvm_vmx { struct kvm kvm; unsigned int tss_addr; bool ept_identity_pagetable_done; gpa_t ept_identity_map_addr; /* Posted Interrupt Descriptor (PID) table for IPI virtualization */ u64 *pid_table; }; void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, struct loaded_vmcs *buddy); int allocate_vpid(void); void free_vpid(int vpid); void vmx_set_constant_host_state(struct vcpu_vmx *vmx); void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu); void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, unsigned long fs_base, unsigned long gs_base); int vmx_get_cpl(struct kvm_vcpu *vcpu); bool vmx_emulation_required(struct kvm_vcpu *vcpu); unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu); void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu); void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask); int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer); void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); void set_cr4_guest_host_mask(struct vcpu_vmx *vmx); void ept_save_pdptrs(struct kvm_vcpu *vcpu); void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level); bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu); void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu); bool vmx_nmi_blocked(struct kvm_vcpu *vcpu); bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu); bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu); bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu); void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked); void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu); struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr); void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu); void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp); void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags); unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx); bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, unsigned int flags); int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr); void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu); void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type); u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu); u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu); static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool value) { if (value) vmx_enable_intercept_for_msr(vcpu, msr, type); else vmx_disable_intercept_for_msr(vcpu, msr, type); } void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu); /* * Note, early Intel manuals have the write-low and read-high bitmap offsets * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always * VM-Exit. */ #define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \ static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \ u32 msr) \ { \ int f = sizeof(unsigned long); \ \ if (msr <= 0x1fff) \ return bitop##_bit(msr, bitmap + base / f); \ else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \ return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \ return (rtype)true; \ } #define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \ __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \ __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800) BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test) BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear) BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set) static inline u8 vmx_get_rvi(void) { return vmcs_read16(GUEST_INTR_STATUS) & 0xff; } #define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ (VM_ENTRY_LOAD_DEBUG_CONTROLS) #ifdef CONFIG_X86_64 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \ VM_ENTRY_IA32E_MODE) #else #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \ __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS #endif #define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \ (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \ VM_ENTRY_LOAD_IA32_PAT | \ VM_ENTRY_LOAD_IA32_EFER | \ VM_ENTRY_LOAD_BNDCFGS | \ VM_ENTRY_PT_CONCEAL_PIP | \ VM_ENTRY_LOAD_IA32_RTIT_CTL) #define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ (VM_EXIT_SAVE_DEBUG_CONTROLS | \ VM_EXIT_ACK_INTR_ON_EXIT) #ifdef CONFIG_X86_64 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \ VM_EXIT_HOST_ADDR_SPACE_SIZE) #else #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \ __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS #endif #define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \ (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \ VM_EXIT_SAVE_IA32_PAT | \ VM_EXIT_LOAD_IA32_PAT | \ VM_EXIT_SAVE_IA32_EFER | \ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \ VM_EXIT_LOAD_IA32_EFER | \ VM_EXIT_CLEAR_BNDCFGS | \ VM_EXIT_PT_CONCEAL_PIP | \ VM_EXIT_CLEAR_IA32_RTIT_CTL) #define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \ (PIN_BASED_EXT_INTR_MASK | \ PIN_BASED_NMI_EXITING) #define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \ (PIN_BASED_VIRTUAL_NMIS | \ PIN_BASED_POSTED_INTR | \ PIN_BASED_VMX_PREEMPTION_TIMER) #define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ (CPU_BASED_HLT_EXITING | \ CPU_BASED_CR3_LOAD_EXITING | \ CPU_BASED_CR3_STORE_EXITING | \ CPU_BASED_UNCOND_IO_EXITING | \ CPU_BASED_MOV_DR_EXITING | \ CPU_BASED_USE_TSC_OFFSETTING | \ CPU_BASED_MWAIT_EXITING | \ CPU_BASED_MONITOR_EXITING | \ CPU_BASED_INVLPG_EXITING | \ CPU_BASED_RDPMC_EXITING | \ CPU_BASED_INTR_WINDOW_EXITING) #ifdef CONFIG_X86_64 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \ CPU_BASED_CR8_LOAD_EXITING | \ CPU_BASED_CR8_STORE_EXITING) #else #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \ __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL #endif #define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \ (CPU_BASED_RDTSC_EXITING | \ CPU_BASED_TPR_SHADOW | \ CPU_BASED_USE_IO_BITMAPS | \ CPU_BASED_MONITOR_TRAP_FLAG | \ CPU_BASED_USE_MSR_BITMAPS | \ CPU_BASED_NMI_WINDOW_EXITING | \ CPU_BASED_PAUSE_EXITING | \ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \ CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) #define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0 #define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \ (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \ SECONDARY_EXEC_WBINVD_EXITING | \ SECONDARY_EXEC_ENABLE_VPID | \ SECONDARY_EXEC_ENABLE_EPT | \ SECONDARY_EXEC_UNRESTRICTED_GUEST | \ SECONDARY_EXEC_PAUSE_LOOP_EXITING | \ SECONDARY_EXEC_DESC | \ SECONDARY_EXEC_ENABLE_RDTSCP | \ SECONDARY_EXEC_ENABLE_INVPCID | \ SECONDARY_EXEC_APIC_REGISTER_VIRT | \ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \ SECONDARY_EXEC_SHADOW_VMCS | \ SECONDARY_EXEC_ENABLE_XSAVES | \ SECONDARY_EXEC_RDSEED_EXITING | \ SECONDARY_EXEC_RDRAND_EXITING | \ SECONDARY_EXEC_ENABLE_PML | \ SECONDARY_EXEC_TSC_SCALING | \ SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \ SECONDARY_EXEC_PT_USE_GPA | \ SECONDARY_EXEC_PT_CONCEAL_VMX | \ SECONDARY_EXEC_ENABLE_VMFUNC | \ SECONDARY_EXEC_BUS_LOCK_DETECTION | \ SECONDARY_EXEC_NOTIFY_VM_EXITING | \ SECONDARY_EXEC_ENCLS_EXITING) #define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0 #define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \ (TERTIARY_EXEC_IPI_VIRT) #define BUILD_CONTROLS_SHADOW(lname, uname, bits) \ static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \ { \ if (vmx->loaded_vmcs->controls_shadow.lname != val) { \ vmcs_write##bits(uname, val); \ vmx->loaded_vmcs->controls_shadow.lname = val; \ } \ } \ static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \ { \ return vmcs->controls_shadow.lname; \ } \ static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \ { \ return __##lname##_controls_get(vmx->loaded_vmcs); \ } \ static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \ { \ BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \ lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \ } \ static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \ { \ BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \ lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \ } BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32) BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32) BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32) BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32) BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32) BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64) /* * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the * cache on demand. Other registers not listed here are synced to * the cache immediately after VM-Exit. */ #define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \ (1 << VCPU_REGS_RSP) | \ (1 << VCPU_EXREG_RFLAGS) | \ (1 << VCPU_EXREG_PDPTR) | \ (1 << VCPU_EXREG_SEGMENTS) | \ (1 << VCPU_EXREG_CR0) | \ (1 << VCPU_EXREG_CR3) | \ (1 << VCPU_EXREG_CR4) | \ (1 << VCPU_EXREG_EXIT_INFO_1) | \ (1 << VCPU_EXREG_EXIT_INFO_2)) static inline unsigned long vmx_l1_guest_owned_cr0_bits(void) { unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS; /* * CR0.WP needs to be intercepted when KVM is shadowing legacy paging * in order to construct shadow PTEs with the correct protections. * Note! CR0.WP technically can be passed through to the guest if * paging is disabled, but checking CR0.PG would generate a cyclical * dependency of sorts due to forcing the caller to ensure CR0 holds * the correct value prior to determining which CR0 bits can be owned * by L1. Keep it simple and limit the optimization to EPT. */ if (!enable_ept) bits &= ~X86_CR0_WP; return bits; } static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm) { return container_of(kvm, struct kvm_vmx, kvm); } static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_vmx, vcpu); } static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu) { return &to_vmx(vcpu)->lbr_desc; } static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu) { return &vcpu_to_lbr_desc(vcpu)->records; } static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu) { return !!vcpu_to_lbr_records(vcpu)->nr; } void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu); int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu); void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu); static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); return vmx->exit_qualification; } static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); return vmx->exit_intr_info; } struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags); void free_vmcs(struct vmcs *vmcs); int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs); void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs); static inline struct vmcs *alloc_vmcs(bool shadow) { return alloc_vmcs_cpu(shadow, raw_smp_processor_id(), GFP_KERNEL_ACCOUNT); } static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx) { return secondary_exec_controls_get(vmx) & SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE; } static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu) { if (!enable_ept) return true; return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits; } static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu) { return enable_unrestricted_guest && (!is_guest_mode(vcpu) || (secondary_exec_controls_get(to_vmx(vcpu)) & SECONDARY_EXEC_UNRESTRICTED_GUEST)); } bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu); static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu) { return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu); } void dump_vmcs(struct kvm_vcpu *vcpu); static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info) { return (vmx_instr_info >> 28) & 0xf; } static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu) { return lapic_in_kernel(vcpu) && enable_ipiv; } static inline bool guest_cpuid_has_evmcs(struct kvm_vcpu *vcpu) { /* * eVMCS is exposed to the guest if Hyper-V is enabled in CPUID and * eVMCS has been explicitly enabled by userspace. */ return vcpu->arch.hyperv_enabled && to_vmx(vcpu)->nested.enlightened_vmcs_enabled; } #endif /* __KVM_X86_VMX_H */