// SPDX-License-Identifier: GPL-2.0-only /****************************************************************************** * emulate.c * * Generic x86 (32-bit and 64-bit) instruction decoder and emulator. * * Copyright (c) 2005 Keir Fraser * * Linux coding style, mod r/m decoder, segment base fixes, real-mode * privileged instructions: * * Copyright (C) 2006 Qumranet * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Avi Kivity <avi@qumranet.com> * Yaniv Kamay <yaniv@qumranet.com> * * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kvm_host.h> #include "kvm_cache_regs.h" #include "kvm_emulate.h" #include <linux/stringify.h> #include <asm/debugreg.h> #include <asm/nospec-branch.h> #include <asm/ibt.h> #include "x86.h" #include "tss.h" #include "mmu.h" #include "pmu.h" /* * Operand types */ #define OpNone 0ull #define OpImplicit 1ull /* No generic decode */ #define OpReg 2ull /* Register */ #define OpMem 3ull /* Memory */ #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */ #define OpDI 5ull /* ES:DI/EDI/RDI */ #define OpMem64 6ull /* Memory, 64-bit */ #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */ #define OpDX 8ull /* DX register */ #define OpCL 9ull /* CL register (for shifts) */ #define OpImmByte 10ull /* 8-bit sign extended immediate */ #define OpOne 11ull /* Implied 1 */ #define OpImm 12ull /* Sign extended up to 32-bit immediate */ #define OpMem16 13ull /* Memory operand (16-bit). */ #define OpMem32 14ull /* Memory operand (32-bit). */ #define OpImmU 15ull /* Immediate operand, zero extended */ #define OpSI 16ull /* SI/ESI/RSI */ #define OpImmFAddr 17ull /* Immediate far address */ #define OpMemFAddr 18ull /* Far address in memory */ #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */ #define OpES 20ull /* ES */ #define OpCS 21ull /* CS */ #define OpSS 22ull /* SS */ #define OpDS 23ull /* DS */ #define OpFS 24ull /* FS */ #define OpGS 25ull /* GS */ #define OpMem8 26ull /* 8-bit zero extended memory operand */ #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */ #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */ #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */ #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */ #define OpBits 5 /* Width of operand field */ #define OpMask ((1ull << OpBits) - 1) /* * Opcode effective-address decode tables. * Note that we only emulate instructions that have at least one memory * operand (excluding implicit stack references). We assume that stack * references and instruction fetches will never occur in special memory * areas that require emulation. So, for example, 'mov <imm>,<reg>' need * not be handled. */ /* Operand sizes: 8-bit operands or specified/overridden size. */ #define ByteOp (1<<0) /* 8-bit operands. */ /* Destination operand type. */ #define DstShift 1 #define ImplicitOps (OpImplicit << DstShift) #define DstReg (OpReg << DstShift) #define DstMem (OpMem << DstShift) #define DstAcc (OpAcc << DstShift) #define DstDI (OpDI << DstShift) #define DstMem64 (OpMem64 << DstShift) #define DstMem16 (OpMem16 << DstShift) #define DstImmUByte (OpImmUByte << DstShift) #define DstDX (OpDX << DstShift) #define DstAccLo (OpAccLo << DstShift) #define DstMask (OpMask << DstShift) /* Source operand type. */ #define SrcShift 6 #define SrcNone (OpNone << SrcShift) #define SrcReg (OpReg << SrcShift) #define SrcMem (OpMem << SrcShift) #define SrcMem16 (OpMem16 << SrcShift) #define SrcMem32 (OpMem32 << SrcShift) #define SrcImm (OpImm << SrcShift) #define SrcImmByte (OpImmByte << SrcShift) #define SrcOne (OpOne << SrcShift) #define SrcImmUByte (OpImmUByte << SrcShift) #define SrcImmU (OpImmU << SrcShift) #define SrcSI (OpSI << SrcShift) #define SrcXLat (OpXLat << SrcShift) #define SrcImmFAddr (OpImmFAddr << SrcShift) #define SrcMemFAddr (OpMemFAddr << SrcShift) #define SrcAcc (OpAcc << SrcShift) #define SrcImmU16 (OpImmU16 << SrcShift) #define SrcImm64 (OpImm64 << SrcShift) #define SrcDX (OpDX << SrcShift) #define SrcMem8 (OpMem8 << SrcShift) #define SrcAccHi (OpAccHi << SrcShift) #define SrcMask (OpMask << SrcShift) #define BitOp (1<<11) #define MemAbs (1<<12) /* Memory operand is absolute displacement */ #define String (1<<13) /* String instruction (rep capable) */ #define Stack (1<<14) /* Stack instruction (push/pop) */ #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */ #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */ #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */ #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */ #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */ #define Escape (5<<15) /* Escape to coprocessor instruction */ #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */ #define ModeDual (7<<15) /* Different instruction for 32/64 bit */ #define Sse (1<<18) /* SSE Vector instruction */ /* Generic ModRM decode. */ #define ModRM (1<<19) /* Destination is only written; never read. */ #define Mov (1<<20) /* Misc flags */ #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */ #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */ #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */ #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */ #define Undefined (1<<25) /* No Such Instruction */ #define Lock (1<<26) /* lock prefix is allowed for the instruction */ #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */ #define No64 (1<<28) #define PageTable (1 << 29) /* instruction used to write page table */ #define NotImpl (1 << 30) /* instruction is not implemented */ /* Source 2 operand type */ #define Src2Shift (31) #define Src2None (OpNone << Src2Shift) #define Src2Mem (OpMem << Src2Shift) #define Src2CL (OpCL << Src2Shift) #define Src2ImmByte (OpImmByte << Src2Shift) #define Src2One (OpOne << Src2Shift) #define Src2Imm (OpImm << Src2Shift) #define Src2ES (OpES << Src2Shift) #define Src2CS (OpCS << Src2Shift) #define Src2SS (OpSS << Src2Shift) #define Src2DS (OpDS << Src2Shift) #define Src2FS (OpFS << Src2Shift) #define Src2GS (OpGS << Src2Shift) #define Src2Mask (OpMask << Src2Shift) #define Mmx ((u64)1 << 40) /* MMX Vector instruction */ #define AlignMask ((u64)7 << 41) #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */ #define Unaligned ((u64)2 << 41) /* Explicitly unaligned (e.g. MOVDQU) */ #define Avx ((u64)3 << 41) /* Advanced Vector Extensions */ #define Aligned16 ((u64)4 << 41) /* Aligned to 16 byte boundary (e.g. FXSAVE) */ #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */ #define NoWrite ((u64)1 << 45) /* No writeback */ #define SrcWrite ((u64)1 << 46) /* Write back src operand */ #define NoMod ((u64)1 << 47) /* Mod field is ignored */ #define Intercept ((u64)1 << 48) /* Has valid intercept field */ #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */ #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */ #define NearBranch ((u64)1 << 52) /* Near branches */ #define No16 ((u64)1 << 53) /* No 16 bit operand */ #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */ #define TwoMemOp ((u64)1 << 55) /* Instruction has two memory operand */ #define IsBranch ((u64)1 << 56) /* Instruction is considered a branch. */ #define DstXacc (DstAccLo | SrcAccHi | SrcWrite) #define X2(x...) x, x #define X3(x...) X2(x), x #define X4(x...) X2(x), X2(x) #define X5(x...) X4(x), x #define X6(x...) X4(x), X2(x) #define X7(x...) X4(x), X3(x) #define X8(x...) X4(x), X4(x) #define X16(x...) X8(x), X8(x) struct opcode { u64 flags; u8 intercept; u8 pad[7]; union { int (*execute)(struct x86_emulate_ctxt *ctxt); const struct opcode *group; const struct group_dual *gdual; const struct gprefix *gprefix; const struct escape *esc; const struct instr_dual *idual; const struct mode_dual *mdual; void (*fastop)(struct fastop *fake); } u; int (*check_perm)(struct x86_emulate_ctxt *ctxt); }; struct group_dual { struct opcode mod012[8]; struct opcode mod3[8]; }; struct gprefix { struct opcode pfx_no; struct opcode pfx_66; struct opcode pfx_f2; struct opcode pfx_f3; }; struct escape { struct opcode op[8]; struct opcode high[64]; }; struct instr_dual { struct opcode mod012; struct opcode mod3; }; struct mode_dual { struct opcode mode32; struct opcode mode64; }; #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a enum x86_transfer_type { X86_TRANSFER_NONE, X86_TRANSFER_CALL_JMP, X86_TRANSFER_RET, X86_TRANSFER_TASK_SWITCH, }; static void writeback_registers(struct x86_emulate_ctxt *ctxt) { unsigned long dirty = ctxt->regs_dirty; unsigned reg; for_each_set_bit(reg, &dirty, NR_EMULATOR_GPRS) ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]); } static void invalidate_registers(struct x86_emulate_ctxt *ctxt) { ctxt->regs_dirty = 0; ctxt->regs_valid = 0; } /* * These EFLAGS bits are restored from saved value during emulation, and * any changes are written back to the saved value after emulation. */ #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\ X86_EFLAGS_PF|X86_EFLAGS_CF) #ifdef CONFIG_X86_64 #define ON64(x) x #else #define ON64(x) #endif /* * fastop functions have a special calling convention: * * dst: rax (in/out) * src: rdx (in/out) * src2: rcx (in) * flags: rflags (in/out) * ex: rsi (in:fastop pointer, out:zero if exception) * * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for * different operand sizes can be reached by calculation, rather than a jump * table (which would be bigger than the code). * * The 16 byte alignment, considering 5 bytes for the RET thunk, 3 for ENDBR * and 1 for the straight line speculation INT3, leaves 7 bytes for the * body of the function. Currently none is larger than 4. */ static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop); #define FASTOP_SIZE 16 #define __FOP_FUNC(name) \ ".align " __stringify(FASTOP_SIZE) " \n\t" \ ".type " name ", @function \n\t" \ name ":\n\t" \ ASM_ENDBR \ IBT_NOSEAL(name) #define FOP_FUNC(name) \ __FOP_FUNC(#name) #define __FOP_RET(name) \ "11: " ASM_RET \ ".size " name ", .-" name "\n\t" #define FOP_RET(name) \ __FOP_RET(#name) #define __FOP_START(op, align) \ extern void em_##op(struct fastop *fake); \ asm(".pushsection .text, \"ax\" \n\t" \ ".global em_" #op " \n\t" \ ".align " __stringify(align) " \n\t" \ "em_" #op ":\n\t" #define FOP_START(op) __FOP_START(op, FASTOP_SIZE) #define FOP_END \ ".popsection") #define __FOPNOP(name) \ __FOP_FUNC(name) \ __FOP_RET(name) #define FOPNOP() \ __FOPNOP(__stringify(__UNIQUE_ID(nop))) #define FOP1E(op, dst) \ __FOP_FUNC(#op "_" #dst) \ "10: " #op " %" #dst " \n\t" \ __FOP_RET(#op "_" #dst) #define FOP1EEX(op, dst) \ FOP1E(op, dst) _ASM_EXTABLE_TYPE_REG(10b, 11b, EX_TYPE_ZERO_REG, %%esi) #define FASTOP1(op) \ FOP_START(op) \ FOP1E(op##b, al) \ FOP1E(op##w, ax) \ FOP1E(op##l, eax) \ ON64(FOP1E(op##q, rax)) \ FOP_END /* 1-operand, using src2 (for MUL/DIV r/m) */ #define FASTOP1SRC2(op, name) \ FOP_START(name) \ FOP1E(op, cl) \ FOP1E(op, cx) \ FOP1E(op, ecx) \ ON64(FOP1E(op, rcx)) \ FOP_END /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */ #define FASTOP1SRC2EX(op, name) \ FOP_START(name) \ FOP1EEX(op, cl) \ FOP1EEX(op, cx) \ FOP1EEX(op, ecx) \ ON64(FOP1EEX(op, rcx)) \ FOP_END #define FOP2E(op, dst, src) \ __FOP_FUNC(#op "_" #dst "_" #src) \ #op " %" #src ", %" #dst " \n\t" \ __FOP_RET(#op "_" #dst "_" #src) #define FASTOP2(op) \ FOP_START(op) \ FOP2E(op##b, al, dl) \ FOP2E(op##w, ax, dx) \ FOP2E(op##l, eax, edx) \ ON64(FOP2E(op##q, rax, rdx)) \ FOP_END /* 2 operand, word only */ #define FASTOP2W(op) \ FOP_START(op) \ FOPNOP() \ FOP2E(op##w, ax, dx) \ FOP2E(op##l, eax, edx) \ ON64(FOP2E(op##q, rax, rdx)) \ FOP_END /* 2 operand, src is CL */ #define FASTOP2CL(op) \ FOP_START(op) \ FOP2E(op##b, al, cl) \ FOP2E(op##w, ax, cl) \ FOP2E(op##l, eax, cl) \ ON64(FOP2E(op##q, rax, cl)) \ FOP_END /* 2 operand, src and dest are reversed */ #define FASTOP2R(op, name) \ FOP_START(name) \ FOP2E(op##b, dl, al) \ FOP2E(op##w, dx, ax) \ FOP2E(op##l, edx, eax) \ ON64(FOP2E(op##q, rdx, rax)) \ FOP_END #define FOP3E(op, dst, src, src2) \ __FOP_FUNC(#op "_" #dst "_" #src "_" #src2) \ #op " %" #src2 ", %" #src ", %" #dst " \n\t"\ __FOP_RET(#op "_" #dst "_" #src "_" #src2) /* 3-operand, word-only, src2=cl */ #define FASTOP3WCL(op) \ FOP_START(op) \ FOPNOP() \ FOP3E(op##w, ax, dx, cl) \ FOP3E(op##l, eax, edx, cl) \ ON64(FOP3E(op##q, rax, rdx, cl)) \ FOP_END /* Special case for SETcc - 1 instruction per cc */ #define FOP_SETCC(op) \ FOP_FUNC(op) \ #op " %al \n\t" \ FOP_RET(op) FOP_START(setcc) FOP_SETCC(seto) FOP_SETCC(setno) FOP_SETCC(setc) FOP_SETCC(setnc) FOP_SETCC(setz) FOP_SETCC(setnz) FOP_SETCC(setbe) FOP_SETCC(setnbe) FOP_SETCC(sets) FOP_SETCC(setns) FOP_SETCC(setp) FOP_SETCC(setnp) FOP_SETCC(setl) FOP_SETCC(setnl) FOP_SETCC(setle) FOP_SETCC(setnle) FOP_END; FOP_START(salc) FOP_FUNC(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET(salc) FOP_END; /* * XXX: inoutclob user must know where the argument is being expanded. * Using asm goto would allow us to remove _fault. */ #define asm_safe(insn, inoutclob...) \ ({ \ int _fault = 0; \ \ asm volatile("1:" insn "\n" \ "2:\n" \ _ASM_EXTABLE_TYPE_REG(1b, 2b, EX_TYPE_ONE_REG, %[_fault]) \ : [_fault] "+r"(_fault) inoutclob ); \ \ _fault ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; \ }) static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt, enum x86_intercept intercept, enum x86_intercept_stage stage) { struct x86_instruction_info info = { .intercept = intercept, .rep_prefix = ctxt->rep_prefix, .modrm_mod = ctxt->modrm_mod, .modrm_reg = ctxt->modrm_reg, .modrm_rm = ctxt->modrm_rm, .src_val = ctxt->src.val64, .dst_val = ctxt->dst.val64, .src_bytes = ctxt->src.bytes, .dst_bytes = ctxt->dst.bytes, .ad_bytes = ctxt->ad_bytes, .next_rip = ctxt->eip, }; return ctxt->ops->intercept(ctxt, &info, stage); } static void assign_masked(ulong *dest, ulong src, ulong mask) { *dest = (*dest & ~mask) | (src & mask); } static void assign_register(unsigned long *reg, u64 val, int bytes) { /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */ switch (bytes) { case 1: *(u8 *)reg = (u8)val; break; case 2: *(u16 *)reg = (u16)val; break; case 4: *reg = (u32)val; break; /* 64b: zero-extend */ case 8: *reg = val; break; } } static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt) { return (1UL << (ctxt->ad_bytes << 3)) - 1; } static ulong stack_mask(struct x86_emulate_ctxt *ctxt) { u16 sel; struct desc_struct ss; if (ctxt->mode == X86EMUL_MODE_PROT64) return ~0UL; ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS); return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */ } static int stack_size(struct x86_emulate_ctxt *ctxt) { return (__fls(stack_mask(ctxt)) + 1) >> 3; } /* Access/update address held in a register, based on addressing mode. */ static inline unsigned long address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg) { if (ctxt->ad_bytes == sizeof(unsigned long)) return reg; else return reg & ad_mask(ctxt); } static inline unsigned long register_address(struct x86_emulate_ctxt *ctxt, int reg) { return address_mask(ctxt, reg_read(ctxt, reg)); } static void masked_increment(ulong *reg, ulong mask, int inc) { assign_masked(reg, *reg + inc, mask); } static inline void register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc) { ulong *preg = reg_rmw(ctxt, reg); assign_register(preg, *preg + inc, ctxt->ad_bytes); } static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc) { masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc); } static u32 desc_limit_scaled(struct desc_struct *desc) { u32 limit = get_desc_limit(desc); return desc->g ? (limit << 12) | 0xfff : limit; } static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg) { if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS) return 0; return ctxt->ops->get_cached_segment_base(ctxt, seg); } static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec, u32 error, bool valid) { if (KVM_EMULATOR_BUG_ON(vec > 0x1f, ctxt)) return X86EMUL_UNHANDLEABLE; ctxt->exception.vector = vec; ctxt->exception.error_code = error; ctxt->exception.error_code_valid = valid; return X86EMUL_PROPAGATE_FAULT; } static int emulate_db(struct x86_emulate_ctxt *ctxt) { return emulate_exception(ctxt, DB_VECTOR, 0, false); } static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err) { return emulate_exception(ctxt, GP_VECTOR, err, true); } static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err) { return emulate_exception(ctxt, SS_VECTOR, err, true); } static int emulate_ud(struct x86_emulate_ctxt *ctxt) { return emulate_exception(ctxt, UD_VECTOR, 0, false); } static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err) { return emulate_exception(ctxt, TS_VECTOR, err, true); } static int emulate_de(struct x86_emulate_ctxt *ctxt) { return emulate_exception(ctxt, DE_VECTOR, 0, false); } static int emulate_nm(struct x86_emulate_ctxt *ctxt) { return emulate_exception(ctxt, NM_VECTOR, 0, false); } static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg) { u16 selector; struct desc_struct desc; ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg); return selector; } static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector, unsigned seg) { u16 dummy; u32 base3; struct desc_struct desc; ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg); ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg); } static inline u8 ctxt_virt_addr_bits(struct x86_emulate_ctxt *ctxt) { return (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_LA57) ? 57 : 48; } static inline bool emul_is_noncanonical_address(u64 la, struct x86_emulate_ctxt *ctxt) { return !__is_canonical_address(la, ctxt_virt_addr_bits(ctxt)); } /* * x86 defines three classes of vector instructions: explicitly * aligned, explicitly unaligned, and the rest, which change behaviour * depending on whether they're AVX encoded or not. * * Also included is CMPXCHG16B which is not a vector instruction, yet it is * subject to the same check. FXSAVE and FXRSTOR are checked here too as their * 512 bytes of data must be aligned to a 16 byte boundary. */ static unsigned insn_alignment(struct x86_emulate_ctxt *ctxt, unsigned size) { u64 alignment = ctxt->d & AlignMask; if (likely(size < 16)) return 1; switch (alignment) { case Unaligned: case Avx: return 1; case Aligned16: return 16; case Aligned: default: return size; } } static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, unsigned *max_size, unsigned size, bool write, bool fetch, enum x86emul_mode mode, ulong *linear) { struct desc_struct desc; bool usable; ulong la; u32 lim; u16 sel; u8 va_bits; la = seg_base(ctxt, addr.seg) + addr.ea; *max_size = 0; switch (mode) { case X86EMUL_MODE_PROT64: *linear = la; va_bits = ctxt_virt_addr_bits(ctxt); if (!__is_canonical_address(la, va_bits)) goto bad; *max_size = min_t(u64, ~0u, (1ull << va_bits) - la); if (size > *max_size) goto bad; break; default: *linear = la = (u32)la; usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL, addr.seg); if (!usable) goto bad; /* code segment in protected mode or read-only data segment */ if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8)) || !(desc.type & 2)) && write) goto bad; /* unreadable code segment */ if (!fetch && (desc.type & 8) && !(desc.type & 2)) goto bad; lim = desc_limit_scaled(&desc); if (!(desc.type & 8) && (desc.type & 4)) { /* expand-down segment */ if (addr.ea <= lim) goto bad; lim = desc.d ? 0xffffffff : 0xffff; } if (addr.ea > lim) goto bad; if (lim == 0xffffffff) *max_size = ~0u; else { *max_size = (u64)lim + 1 - addr.ea; if (size > *max_size) goto bad; } break; } if (la & (insn_alignment(ctxt, size) - 1)) return emulate_gp(ctxt, 0); return X86EMUL_CONTINUE; bad: if (addr.seg == VCPU_SREG_SS) return emulate_ss(ctxt, 0); else return emulate_gp(ctxt, 0); } static int linearize(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, unsigned size, bool write, ulong *linear) { unsigned max_size; return __linearize(ctxt, addr, &max_size, size, write, false, ctxt->mode, linear); } static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst) { ulong linear; int rc; unsigned max_size; struct segmented_address addr = { .seg = VCPU_SREG_CS, .ea = dst }; if (ctxt->op_bytes != sizeof(unsigned long)) addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1); rc = __linearize(ctxt, addr, &max_size, 1, false, true, ctxt->mode, &linear); if (rc == X86EMUL_CONTINUE) ctxt->_eip = addr.ea; return rc; } static inline int emulator_recalc_and_set_mode(struct x86_emulate_ctxt *ctxt) { u64 efer; struct desc_struct cs; u16 selector; u32 base3; ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); if (!(ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PE)) { /* Real mode. cpu must not have long mode active */ if (efer & EFER_LMA) return X86EMUL_UNHANDLEABLE; ctxt->mode = X86EMUL_MODE_REAL; return X86EMUL_CONTINUE; } if (ctxt->eflags & X86_EFLAGS_VM) { /* Protected/VM86 mode. cpu must not have long mode active */ if (efer & EFER_LMA) return X86EMUL_UNHANDLEABLE; ctxt->mode = X86EMUL_MODE_VM86; return X86EMUL_CONTINUE; } if (!ctxt->ops->get_segment(ctxt, &selector, &cs, &base3, VCPU_SREG_CS)) return X86EMUL_UNHANDLEABLE; if (efer & EFER_LMA) { if (cs.l) { /* Proper long mode */ ctxt->mode = X86EMUL_MODE_PROT64; } else if (cs.d) { /* 32 bit compatibility mode*/ ctxt->mode = X86EMUL_MODE_PROT32; } else { ctxt->mode = X86EMUL_MODE_PROT16; } } else { /* Legacy 32 bit / 16 bit mode */ ctxt->mode = cs.d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; } return X86EMUL_CONTINUE; } static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst) { return assign_eip(ctxt, dst); } static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst) { int rc = emulator_recalc_and_set_mode(ctxt); if (rc != X86EMUL_CONTINUE) return rc; return assign_eip(ctxt, dst); } static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel) { return assign_eip_near(ctxt, ctxt->_eip + rel); } static int linear_read_system(struct x86_emulate_ctxt *ctxt, ulong linear, void *data, unsigned size) { return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, true); } static int linear_write_system(struct x86_emulate_ctxt *ctxt, ulong linear, void *data, unsigned int size) { return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, true); } static int segmented_read_std(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, void *data, unsigned size) { int rc; ulong linear; rc = linearize(ctxt, addr, size, false, &linear); if (rc != X86EMUL_CONTINUE) return rc; return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception, false); } static int segmented_write_std(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, void *data, unsigned int size) { int rc; ulong linear; rc = linearize(ctxt, addr, size, true, &linear); if (rc != X86EMUL_CONTINUE) return rc; return ctxt->ops->write_std(ctxt, linear, data, size, &ctxt->exception, false); } /* * Prefetch the remaining bytes of the instruction without crossing page * boundary if they are not in fetch_cache yet. */ static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size) { int rc; unsigned size, max_size; unsigned long linear; int cur_size = ctxt->fetch.end - ctxt->fetch.data; struct segmented_address addr = { .seg = VCPU_SREG_CS, .ea = ctxt->eip + cur_size }; /* * We do not know exactly how many bytes will be needed, and * __linearize is expensive, so fetch as much as possible. We * just have to avoid going beyond the 15 byte limit, the end * of the segment, or the end of the page. * * __linearize is called with size 0 so that it does not do any * boundary check itself. Instead, we use max_size to check * against op_size. */ rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode, &linear); if (unlikely(rc != X86EMUL_CONTINUE)) return rc; size = min_t(unsigned, 15UL ^ cur_size, max_size); size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear)); /* * One instruction can only straddle two pages, * and one has been loaded at the beginning of * x86_decode_insn. So, if not enough bytes * still, we must have hit the 15-byte boundary. */ if (unlikely(size < op_size)) return emulate_gp(ctxt, 0); rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end, size, &ctxt->exception); if (unlikely(rc != X86EMUL_CONTINUE)) return rc; ctxt->fetch.end += size; return X86EMUL_CONTINUE; } static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, unsigned size) { unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr; if (unlikely(done_size < size)) return __do_insn_fetch_bytes(ctxt, size - done_size); else return X86EMUL_CONTINUE; } /* Fetch next part of the instruction being emulated. */ #define insn_fetch(_type, _ctxt) \ ({ _type _x; \ \ rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \ if (rc != X86EMUL_CONTINUE) \ goto done; \ ctxt->_eip += sizeof(_type); \ memcpy(&_x, ctxt->fetch.ptr, sizeof(_type)); \ ctxt->fetch.ptr += sizeof(_type); \ _x; \ }) #define insn_fetch_arr(_arr, _size, _ctxt) \ ({ \ rc = do_insn_fetch_bytes(_ctxt, _size); \ if (rc != X86EMUL_CONTINUE) \ goto done; \ ctxt->_eip += (_size); \ memcpy(_arr, ctxt->fetch.ptr, _size); \ ctxt->fetch.ptr += (_size); \ }) /* * Given the 'reg' portion of a ModRM byte, and a register block, return a * pointer into the block that addresses the relevant register. * @highbyte_regs specifies whether to decode AH,CH,DH,BH. */ static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg, int byteop) { void *p; int highbyte_regs = (ctxt->rex_prefix == 0) && byteop; if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8) p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1; else p = reg_rmw(ctxt, modrm_reg); return p; } static int read_descriptor(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, u16 *size, unsigned long *address, int op_bytes) { int rc; if (op_bytes == 2) op_bytes = 3; *address = 0; rc = segmented_read_std(ctxt, addr, size, 2); if (rc != X86EMUL_CONTINUE) return rc; addr.ea += 2; rc = segmented_read_std(ctxt, addr, address, op_bytes); return rc; } FASTOP2(add); FASTOP2(or); FASTOP2(adc); FASTOP2(sbb); FASTOP2(and); FASTOP2(sub); FASTOP2(xor); FASTOP2(cmp); FASTOP2(test); FASTOP1SRC2(mul, mul_ex); FASTOP1SRC2(imul, imul_ex); FASTOP1SRC2EX(div, div_ex); FASTOP1SRC2EX(idiv, idiv_ex); FASTOP3WCL(shld); FASTOP3WCL(shrd); FASTOP2W(imul); FASTOP1(not); FASTOP1(neg); FASTOP1(inc); FASTOP1(dec); FASTOP2CL(rol); FASTOP2CL(ror); FASTOP2CL(rcl); FASTOP2CL(rcr); FASTOP2CL(shl); FASTOP2CL(shr); FASTOP2CL(sar); FASTOP2W(bsf); FASTOP2W(bsr); FASTOP2W(bt); FASTOP2W(bts); FASTOP2W(btr); FASTOP2W(btc); FASTOP2(xadd); FASTOP2R(cmp, cmp_r); static int em_bsf_c(struct x86_emulate_ctxt *ctxt) { /* If src is zero, do not writeback, but update flags */ if (ctxt->src.val == 0) ctxt->dst.type = OP_NONE; return fastop(ctxt, em_bsf); } static int em_bsr_c(struct x86_emulate_ctxt *ctxt) { /* If src is zero, do not writeback, but update flags */ if (ctxt->src.val == 0) ctxt->dst.type = OP_NONE; return fastop(ctxt, em_bsr); } static __always_inline u8 test_cc(unsigned int condition, unsigned long flags) { u8 rc; void (*fop)(void) = (void *)em_setcc + FASTOP_SIZE * (condition & 0xf); flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF; asm("push %[flags]; popf; " CALL_NOSPEC : "=a"(rc) : [thunk_target]"r"(fop), [flags]"r"(flags)); return rc; } static void fetch_register_operand(struct operand *op) { switch (op->bytes) { case 1: op->val = *(u8 *)op->addr.reg; break; case 2: op->val = *(u16 *)op->addr.reg; break; case 4: op->val = *(u32 *)op->addr.reg; break; case 8: op->val = *(u64 *)op->addr.reg; break; } } static int em_fninit(struct x86_emulate_ctxt *ctxt) { if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) return emulate_nm(ctxt); kvm_fpu_get(); asm volatile("fninit"); kvm_fpu_put(); return X86EMUL_CONTINUE; } static int em_fnstcw(struct x86_emulate_ctxt *ctxt) { u16 fcw; if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) return emulate_nm(ctxt); kvm_fpu_get(); asm volatile("fnstcw %0": "+m"(fcw)); kvm_fpu_put(); ctxt->dst.val = fcw; return X86EMUL_CONTINUE; } static int em_fnstsw(struct x86_emulate_ctxt *ctxt) { u16 fsw; if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) return emulate_nm(ctxt); kvm_fpu_get(); asm volatile("fnstsw %0": "+m"(fsw)); kvm_fpu_put(); ctxt->dst.val = fsw; return X86EMUL_CONTINUE; } static void decode_register_operand(struct x86_emulate_ctxt *ctxt, struct operand *op) { unsigned int reg; if (ctxt->d & ModRM) reg = ctxt->modrm_reg; else reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3); if (ctxt->d & Sse) { op->type = OP_XMM; op->bytes = 16; op->addr.xmm = reg; kvm_read_sse_reg(reg, &op->vec_val); return; } if (ctxt->d & Mmx) { reg &= 7; op->type = OP_MM; op->bytes = 8; op->addr.mm = reg; return; } op->type = OP_REG; op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp); fetch_register_operand(op); op->orig_val = op->val; } static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg) { if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP) ctxt->modrm_seg = VCPU_SREG_SS; } static int decode_modrm(struct x86_emulate_ctxt *ctxt, struct operand *op) { u8 sib; int index_reg, base_reg, scale; int rc = X86EMUL_CONTINUE; ulong modrm_ea = 0; ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */ index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */ base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */ ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6; ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3; ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07); ctxt->modrm_seg = VCPU_SREG_DS; if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) { op->type = OP_REG; op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; op->addr.reg = decode_register(ctxt, ctxt->modrm_rm, ctxt->d & ByteOp); if (ctxt->d & Sse) { op->type = OP_XMM; op->bytes = 16; op->addr.xmm = ctxt->modrm_rm; kvm_read_sse_reg(ctxt->modrm_rm, &op->vec_val); return rc; } if (ctxt->d & Mmx) { op->type = OP_MM; op->bytes = 8; op->addr.mm = ctxt->modrm_rm & 7; return rc; } fetch_register_operand(op); return rc; } op->type = OP_MEM; if (ctxt->ad_bytes == 2) { unsigned bx = reg_read(ctxt, VCPU_REGS_RBX); unsigned bp = reg_read(ctxt, VCPU_REGS_RBP); unsigned si = reg_read(ctxt, VCPU_REGS_RSI); unsigned di = reg_read(ctxt, VCPU_REGS_RDI); /* 16-bit ModR/M decode. */ switch (ctxt->modrm_mod) { case 0: if (ctxt->modrm_rm == 6) modrm_ea += insn_fetch(u16, ctxt); break; case 1: modrm_ea += insn_fetch(s8, ctxt); break; case 2: modrm_ea += insn_fetch(u16, ctxt); break; } switch (ctxt->modrm_rm) { case 0: modrm_ea += bx + si; break; case 1: modrm_ea += bx + di; break; case 2: modrm_ea += bp + si; break; case 3: modrm_ea += bp + di; break; case 4: modrm_ea += si; break; case 5: modrm_ea += di; break; case 6: if (ctxt->modrm_mod != 0) modrm_ea += bp; break; case 7: modrm_ea += bx; break; } if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 || (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0)) ctxt->modrm_seg = VCPU_SREG_SS; modrm_ea = (u16)modrm_ea; } else { /* 32/64-bit ModR/M decode. */ if ((ctxt->modrm_rm & 7) == 4) { sib = insn_fetch(u8, ctxt); index_reg |= (sib >> 3) & 7; base_reg |= sib & 7; scale = sib >> 6; if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0) modrm_ea += insn_fetch(s32, ctxt); else { modrm_ea += reg_read(ctxt, base_reg); adjust_modrm_seg(ctxt, base_reg); /* Increment ESP on POP [ESP] */ if ((ctxt->d & IncSP) && base_reg == VCPU_REGS_RSP) modrm_ea += ctxt->op_bytes; } if (index_reg != 4) modrm_ea += reg_read(ctxt, index_reg) << scale; } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) { modrm_ea += insn_fetch(s32, ctxt); if (ctxt->mode == X86EMUL_MODE_PROT64) ctxt->rip_relative = 1; } else { base_reg = ctxt->modrm_rm; modrm_ea += reg_read(ctxt, base_reg); adjust_modrm_seg(ctxt, base_reg); } switch (ctxt->modrm_mod) { case 1: modrm_ea += insn_fetch(s8, ctxt); break; case 2: modrm_ea += insn_fetch(s32, ctxt); break; } } op->addr.mem.ea = modrm_ea; if (ctxt->ad_bytes != 8) ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea; done: return rc; } static int decode_abs(struct x86_emulate_ctxt *ctxt, struct operand *op) { int rc = X86EMUL_CONTINUE; op->type = OP_MEM; switch (ctxt->ad_bytes) { case 2: op->addr.mem.ea = insn_fetch(u16, ctxt); break; case 4: op->addr.mem.ea = insn_fetch(u32, ctxt); break; case 8: op->addr.mem.ea = insn_fetch(u64, ctxt); break; } done: return rc; } static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt) { long sv = 0, mask; if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) { mask = ~((long)ctxt->dst.bytes * 8 - 1); if (ctxt->src.bytes == 2) sv = (s16)ctxt->src.val & (s16)mask; else if (ctxt->src.bytes == 4) sv = (s32)ctxt->src.val & (s32)mask; else sv = (s64)ctxt->src.val & (s64)mask; ctxt->dst.addr.mem.ea = address_mask(ctxt, ctxt->dst.addr.mem.ea + (sv >> 3)); } /* only subword offset */ ctxt->src.val &= (ctxt->dst.bytes << 3) - 1; } static int read_emulated(struct x86_emulate_ctxt *ctxt, unsigned long addr, void *dest, unsigned size) { int rc; struct read_cache *mc = &ctxt->mem_read; if (mc->pos < mc->end) goto read_cached; if (KVM_EMULATOR_BUG_ON((mc->end + size) >= sizeof(mc->data), ctxt)) return X86EMUL_UNHANDLEABLE; rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size, &ctxt->exception); if (rc != X86EMUL_CONTINUE) return rc; mc->end += size; read_cached: memcpy(dest, mc->data + mc->pos, size); mc->pos += size; return X86EMUL_CONTINUE; } static int segmented_read(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, void *data, unsigned size) { int rc; ulong linear; rc = linearize(ctxt, addr, size, false, &linear); if (rc != X86EMUL_CONTINUE) return rc; return read_emulated(ctxt, linear, data, size); } static int segmented_write(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, const void *data, unsigned size) { int rc; ulong linear; rc = linearize(ctxt, addr, size, true, &linear); if (rc != X86EMUL_CONTINUE) return rc; return ctxt->ops->write_emulated(ctxt, linear, data, size, &ctxt->exception); } static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt, struct segmented_address addr, const void *orig_data, const void *data, unsigned size) { int rc; ulong linear; rc = linearize(ctxt, addr, size, true, &linear); if (rc != X86EMUL_CONTINUE) return rc; return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data, size, &ctxt->exception); } static int pio_in_emulated(struct x86_emulate_ctxt *ctxt, unsigned int size, unsigned short port, void *dest) { struct read_cache *rc = &ctxt->io_read; if (rc->pos == rc->end) { /* refill pio read ahead */ unsigned int in_page, n; unsigned int count = ctxt->rep_prefix ? address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1; in_page = (ctxt->eflags & X86_EFLAGS_DF) ? offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) : PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)); n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count); if (n == 0) n = 1; rc->pos = rc->end = 0; if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n)) return 0; rc->end = n * size; } if (ctxt->rep_prefix && (ctxt->d & String) && !(ctxt->eflags & X86_EFLAGS_DF)) { ctxt->dst.data = rc->data + rc->pos; ctxt->dst.type = OP_MEM_STR; ctxt->dst.count = (rc->end - rc->pos) / size; rc->pos = rc->end; } else { memcpy(dest, rc->data + rc->pos, size); rc->pos += size; } return 1; } static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt, u16 index, struct desc_struct *desc) { struct desc_ptr dt; ulong addr; ctxt->ops->get_idt(ctxt, &dt); if (dt.size < index * 8 + 7) return emulate_gp(ctxt, index << 3 | 0x2); addr = dt.address + index * 8; return linear_read_system(ctxt, addr, desc, sizeof(*desc)); } static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_ptr *dt) { const struct x86_emulate_ops *ops = ctxt->ops; u32 base3 = 0; if (selector & 1 << 2) { struct desc_struct desc; u16 sel; memset(dt, 0, sizeof(*dt)); if (!ops->get_segment(ctxt, &sel, &desc, &base3, VCPU_SREG_LDTR)) return; dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */ dt->address = get_desc_base(&desc) | ((u64)base3 << 32); } else ops->get_gdt(ctxt, dt); } static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt, u16 selector, ulong *desc_addr_p) { struct desc_ptr dt; u16 index = selector >> 3; ulong addr; get_descriptor_table_ptr(ctxt, selector, &dt); if (dt.size < index * 8 + 7) return emulate_gp(ctxt, selector & 0xfffc); addr = dt.address + index * 8; #ifdef CONFIG_X86_64 if (addr >> 32 != 0) { u64 efer = 0; ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); if (!(efer & EFER_LMA)) addr &= (u32)-1; } #endif *desc_addr_p = addr; return X86EMUL_CONTINUE; } /* allowed just for 8 bytes segments */ static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc, ulong *desc_addr_p) { int rc; rc = get_descriptor_ptr(ctxt, selector, desc_addr_p); if (rc != X86EMUL_CONTINUE) return rc; return linear_read_system(ctxt, *desc_addr_p, desc, sizeof(*desc)); } /* allowed just for 8 bytes segments */ static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt, u16 selector, struct desc_struct *desc) { int rc; ulong addr; rc = get_descriptor_ptr(ctxt, selector, &addr); if (rc != X86EMUL_CONTINUE) return rc; return linear_write_system(ctxt, addr, desc, sizeof(*desc)); } static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt, u16 selector, int seg, u8 cpl, enum x86_transfer_type transfer, struct desc_struct *desc) { struct desc_struct seg_desc, old_desc; u8 dpl, rpl; unsigned err_vec = GP_VECTOR; u32 err_code = 0; bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */ ulong desc_addr; int ret; u16 dummy; u32 base3 = 0; memset(&seg_desc, 0, sizeof(seg_desc)); if (ctxt->mode == X86EMUL_MODE_REAL) { /* set real mode segment descriptor (keep limit etc. for * unreal mode) */ ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg); set_desc_base(&seg_desc, selector << 4); goto load; } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) { /* VM86 needs a clean new segment descriptor */ set_desc_base(&seg_desc, selector << 4); set_desc_limit(&seg_desc, 0xffff); seg_desc.type = 3; seg_desc.p = 1; seg_desc.s = 1; seg_desc.dpl = 3; goto load; } rpl = selector & 3; /* TR should be in GDT only */ if (seg == VCPU_SREG_TR && (selector & (1 << 2))) goto exception; /* NULL selector is not valid for TR, CS and (except for long mode) SS */ if (null_selector) { if (seg == VCPU_SREG_CS || seg == VCPU_SREG_TR) goto exception; if (seg == VCPU_SREG_SS) { if (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl) goto exception; /* * ctxt->ops->set_segment expects the CPL to be in * SS.DPL, so fake an expand-up 32-bit data segment. */ seg_desc.type = 3; seg_desc.p = 1; seg_desc.s = 1; seg_desc.dpl = cpl; seg_desc.d = 1; seg_desc.g = 1; } /* Skip all following checks */ goto load; } ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr); if (ret != X86EMUL_CONTINUE) return ret; err_code = selector & 0xfffc; err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR : GP_VECTOR; /* can't load system descriptor into segment selector */ if (seg <= VCPU_SREG_GS && !seg_desc.s) { if (transfer == X86_TRANSFER_CALL_JMP) return X86EMUL_UNHANDLEABLE; goto exception; } dpl = seg_desc.dpl; switch (seg) { case VCPU_SREG_SS: /* * segment is not a writable data segment or segment * selector's RPL != CPL or DPL != CPL */ if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl) goto exception; break; case VCPU_SREG_CS: if (!(seg_desc.type & 8)) goto exception; if (transfer == X86_TRANSFER_RET) { /* RET can never return to an inner privilege level. */ if (rpl < cpl) goto exception; /* Outer-privilege level return is not implemented */ if (rpl > cpl) return X86EMUL_UNHANDLEABLE; } if (transfer == X86_TRANSFER_RET || transfer == X86_TRANSFER_TASK_SWITCH) { if (seg_desc.type & 4) { /* conforming */ if (dpl > rpl) goto exception; } else { /* nonconforming */ if (dpl != rpl) goto exception; } } else { /* X86_TRANSFER_CALL_JMP */ if (seg_desc.type & 4) { /* conforming */ if (dpl > cpl) goto exception; } else { /* nonconforming */ if (rpl > cpl || dpl != cpl) goto exception; } } /* in long-mode d/b must be clear if l is set */ if (seg_desc.d && seg_desc.l) { u64 efer = 0; ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); if (efer & EFER_LMA) goto exception; } /* CS(RPL) <- CPL */ selector = (selector & 0xfffc) | cpl; break; case VCPU_SREG_TR: if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9)) goto exception; break; case VCPU_SREG_LDTR: if (seg_desc.s || seg_desc.type != 2) goto exception; break; default: /* DS, ES, FS, or GS */ /* * segment is not a data or readable code segment or * ((segment is a data or nonconforming code segment) * and ((RPL > DPL) or (CPL > DPL))) */ if ((seg_desc.type & 0xa) == 0x8 || (((seg_desc.type & 0xc) != 0xc) && (rpl > dpl || cpl > dpl))) goto exception; break; } if (!seg_desc.p) { err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR; goto exception; } if (seg_desc.s) { /* mark segment as accessed */ if (!(seg_desc.type & 1)) { seg_desc.type |= 1; ret = write_segment_descriptor(ctxt, selector, &seg_desc); if (ret != X86EMUL_CONTINUE) return ret; } } else if (ctxt->mode == X86EMUL_MODE_PROT64) { ret = linear_read_system(ctxt, desc_addr+8, &base3, sizeof(base3)); if (ret != X86EMUL_CONTINUE) return ret; if (emul_is_noncanonical_address(get_desc_base(&seg_desc) | ((u64)base3 << 32), ctxt)) return emulate_gp(ctxt, err_code); } if (seg == VCPU_SREG_TR) { old_desc = seg_desc; seg_desc.type |= 2; /* busy */ ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc, sizeof(seg_desc), &ctxt->exception); if (ret != X86EMUL_CONTINUE) return ret; } load: ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg); if (desc) *desc = seg_desc; return X86EMUL_CONTINUE; exception: return emulate_exception(ctxt, err_vec, err_code, true); } static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt, u16 selector, int seg) { u8 cpl = ctxt->ops->cpl(ctxt); /* * None of MOV, POP and LSS can load a NULL selector in CPL=3, but * they can load it at CPL<3 (Intel's manual says only LSS can, * but it's wrong). * * However, the Intel manual says that putting IST=1/DPL=3 in * an interrupt gate will result in SS=3 (the AMD manual instead * says it doesn't), so allow SS=3 in __load_segment_descriptor * and only forbid it here. */ if (seg == VCPU_SREG_SS && selector == 3 && ctxt->mode == X86EMUL_MODE_PROT64) return emulate_exception(ctxt, GP_VECTOR, 0, true); return __load_segment_descriptor(ctxt, selector, seg, cpl, X86_TRANSFER_NONE, NULL); } static void write_register_operand(struct operand *op) { return assign_register(op->addr.reg, op->val, op->bytes); } static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op) { switch (op->type) { case OP_REG: write_register_operand(op); break; case OP_MEM: if (ctxt->lock_prefix) return segmented_cmpxchg(ctxt, op->addr.mem, &op->orig_val, &op->val, op->bytes); else return segmented_write(ctxt, op->addr.mem, &op->val, op->bytes); break; case OP_MEM_STR: return segmented_write(ctxt, op->addr.mem, op->data, op->bytes * op->count); break; case OP_XMM: kvm_write_sse_reg(op->addr.xmm, &op->vec_val); break; case OP_MM: kvm_write_mmx_reg(op->addr.mm, &op->mm_val); break; case OP_NONE: /* no writeback */ break; default: break; } return X86EMUL_CONTINUE; } static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes) { struct segmented_address addr; rsp_increment(ctxt, -bytes); addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); addr.seg = VCPU_SREG_SS; return segmented_write(ctxt, addr, data, bytes); } static int em_push(struct x86_emulate_ctxt *ctxt) { /* Disable writeback. */ ctxt->dst.type = OP_NONE; return push(ctxt, &ctxt->src.val, ctxt->op_bytes); } static int emulate_pop(struct x86_emulate_ctxt *ctxt, void *dest, int len) { int rc; struct segmented_address addr; addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt); addr.seg = VCPU_SREG_SS; rc = segmented_read(ctxt, addr, dest, len); if (rc != X86EMUL_CONTINUE) return rc; rsp_increment(ctxt, len); return rc; } static int em_pop(struct x86_emulate_ctxt *ctxt) { return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes); } static int emulate_popf(struct x86_emulate_ctxt *ctxt, void *dest, int len) { int rc; unsigned long val, change_mask; int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; int cpl = ctxt->ops->cpl(ctxt); rc = emulate_pop(ctxt, &val, len); if (rc != X86EMUL_CONTINUE) return rc; change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF | X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT | X86_EFLAGS_AC | X86_EFLAGS_ID; switch(ctxt->mode) { case X86EMUL_MODE_PROT64: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT16: if (cpl == 0) change_mask |= X86_EFLAGS_IOPL; if (cpl <= iopl) change_mask |= X86_EFLAGS_IF; break; case X86EMUL_MODE_VM86: if (iopl < 3) return emulate_gp(ctxt, 0); change_mask |= X86_EFLAGS_IF; break; default: /* real mode */ change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF); break; } *(unsigned long *)dest = (ctxt->eflags & ~change_mask) | (val & change_mask); return rc; } static int em_popf(struct x86_emulate_ctxt *ctxt) { ctxt->dst.type = OP_REG; ctxt->dst.addr.reg = &ctxt->eflags; ctxt->dst.bytes = ctxt->op_bytes; return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes); } static int em_enter(struct x86_emulate_ctxt *ctxt) { int rc; unsigned frame_size = ctxt->src.val; unsigned nesting_level = ctxt->src2.val & 31; ulong rbp; if (nesting_level) return X86EMUL_UNHANDLEABLE; rbp = reg_read(ctxt, VCPU_REGS_RBP); rc = push(ctxt, &rbp, stack_size(ctxt)); if (rc != X86EMUL_CONTINUE) return rc; assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP), stack_mask(ctxt)); assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RSP) - frame_size, stack_mask(ctxt)); return X86EMUL_CONTINUE; } static int em_leave(struct x86_emulate_ctxt *ctxt) { assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP), stack_mask(ctxt)); return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes); } static int em_push_sreg(struct x86_emulate_ctxt *ctxt) { int seg = ctxt->src2.val; ctxt->src.val = get_segment_selector(ctxt, seg); if (ctxt->op_bytes == 4) { rsp_increment(ctxt, -2); ctxt->op_bytes = 2; } return em_push(ctxt); } static int em_pop_sreg(struct x86_emulate_ctxt *ctxt) { int seg = ctxt->src2.val; unsigned long selector; int rc; rc = emulate_pop(ctxt, &selector, 2); if (rc != X86EMUL_CONTINUE) return rc; if (seg == VCPU_SREG_SS) ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; if (ctxt->op_bytes > 2) rsp_increment(ctxt, ctxt->op_bytes - 2); rc = load_segment_descriptor(ctxt, (u16)selector, seg); return rc; } static int em_pusha(struct x86_emulate_ctxt *ctxt) { unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP); int rc = X86EMUL_CONTINUE; int reg = VCPU_REGS_RAX; while (reg <= VCPU_REGS_RDI) { (reg == VCPU_REGS_RSP) ? (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg)); rc = em_push(ctxt); if (rc != X86EMUL_CONTINUE) return rc; ++reg; } return rc; } static int em_pushf(struct x86_emulate_ctxt *ctxt) { ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM; return em_push(ctxt); } static int em_popa(struct x86_emulate_ctxt *ctxt) { int rc = X86EMUL_CONTINUE; int reg = VCPU_REGS_RDI; u32 val; while (reg >= VCPU_REGS_RAX) { if (reg == VCPU_REGS_RSP) { rsp_increment(ctxt, ctxt->op_bytes); --reg; } rc = emulate_pop(ctxt, &val, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) break; assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes); --reg; } return rc; } static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) { const struct x86_emulate_ops *ops = ctxt->ops; int rc; struct desc_ptr dt; gva_t cs_addr; gva_t eip_addr; u16 cs, eip; /* TODO: Add limit checks */ ctxt->src.val = ctxt->eflags; rc = em_push(ctxt); if (rc != X86EMUL_CONTINUE) return rc; ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC); ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS); rc = em_push(ctxt); if (rc != X86EMUL_CONTINUE) return rc; ctxt->src.val = ctxt->_eip; rc = em_push(ctxt); if (rc != X86EMUL_CONTINUE) return rc; ops->get_idt(ctxt, &dt); eip_addr = dt.address + (irq << 2); cs_addr = dt.address + (irq << 2) + 2; rc = linear_read_system(ctxt, cs_addr, &cs, 2); if (rc != X86EMUL_CONTINUE) return rc; rc = linear_read_system(ctxt, eip_addr, &eip, 2); if (rc != X86EMUL_CONTINUE) return rc; rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS); if (rc != X86EMUL_CONTINUE) return rc; ctxt->_eip = eip; return rc; } int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq) { int rc; invalidate_registers(ctxt); rc = __emulate_int_real(ctxt, irq); if (rc == X86EMUL_CONTINUE) writeback_registers(ctxt); return rc; } static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq) { switch(ctxt->mode) { case X86EMUL_MODE_REAL: return __emulate_int_real(ctxt, irq); case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT64: default: /* Protected mode interrupts unimplemented yet */ return X86EMUL_UNHANDLEABLE; } } static int emulate_iret_real(struct x86_emulate_ctxt *ctxt) { int rc = X86EMUL_CONTINUE; unsigned long temp_eip = 0; unsigned long temp_eflags = 0; unsigned long cs = 0; unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF | X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF | X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF | X86_EFLAGS_AC | X86_EFLAGS_ID | X86_EFLAGS_FIXED; unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF | X86_EFLAGS_VIP; /* TODO: Add stack limit check */ rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; if (temp_eip & ~0xffff) return emulate_gp(ctxt, 0); rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS); if (rc != X86EMUL_CONTINUE) return rc; ctxt->_eip = temp_eip; if (ctxt->op_bytes == 4) ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask)); else if (ctxt->op_bytes == 2) { ctxt->eflags &= ~0xffff; ctxt->eflags |= temp_eflags; } ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */ ctxt->eflags |= X86_EFLAGS_FIXED; ctxt->ops->set_nmi_mask(ctxt, false); return rc; } static int em_iret(struct x86_emulate_ctxt *ctxt) { switch(ctxt->mode) { case X86EMUL_MODE_REAL: return emulate_iret_real(ctxt); case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: case X86EMUL_MODE_PROT32: case X86EMUL_MODE_PROT64: default: /* iret from protected mode unimplemented yet */ return X86EMUL_UNHANDLEABLE; } } static int em_jmp_far(struct x86_emulate_ctxt *ctxt) { int rc; unsigned short sel; struct desc_struct new_desc; u8 cpl = ctxt->ops->cpl(ctxt); memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, X86_TRANSFER_CALL_JMP, &new_desc); if (rc != X86EMUL_CONTINUE) return rc; rc = assign_eip_far(ctxt, ctxt->src.val); /* Error handling is not implemented. */ if (rc != X86EMUL_CONTINUE) return X86EMUL_UNHANDLEABLE; return rc; } static int em_jmp_abs(struct x86_emulate_ctxt *ctxt) { return assign_eip_near(ctxt, ctxt->src.val); } static int em_call_near_abs(struct x86_emulate_ctxt *ctxt) { int rc; long int old_eip; old_eip = ctxt->_eip; rc = assign_eip_near(ctxt, ctxt->src.val); if (rc != X86EMUL_CONTINUE) return rc; ctxt->src.val = old_eip; rc = em_push(ctxt); return rc; } static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt) { u64 old = ctxt->dst.orig_val64; if (ctxt->dst.bytes == 16) return X86EMUL_UNHANDLEABLE; if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) || ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) { *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0); *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32); ctxt->eflags &= ~X86_EFLAGS_ZF; } else { ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) | (u32) reg_read(ctxt, VCPU_REGS_RBX); ctxt->eflags |= X86_EFLAGS_ZF; } return X86EMUL_CONTINUE; } static int em_ret(struct x86_emulate_ctxt *ctxt) { int rc; unsigned long eip; rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; return assign_eip_near(ctxt, eip); } static int em_ret_far(struct x86_emulate_ctxt *ctxt) { int rc; unsigned long eip, cs; int cpl = ctxt->ops->cpl(ctxt); struct desc_struct new_desc; rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = emulate_pop(ctxt, &cs, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl, X86_TRANSFER_RET, &new_desc); if (rc != X86EMUL_CONTINUE) return rc; rc = assign_eip_far(ctxt, eip); /* Error handling is not implemented. */ if (rc != X86EMUL_CONTINUE) return X86EMUL_UNHANDLEABLE; return rc; } static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt) { int rc; rc = em_ret_far(ctxt); if (rc != X86EMUL_CONTINUE) return rc; rsp_increment(ctxt, ctxt->src.val); return X86EMUL_CONTINUE; } static int em_cmpxchg(struct x86_emulate_ctxt *ctxt) { /* Save real source value, then compare EAX against destination. */ ctxt->dst.orig_val = ctxt->dst.val; ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX); ctxt->src.orig_val = ctxt->src.val; ctxt->src.val = ctxt->dst.orig_val; fastop(ctxt, em_cmp); if (ctxt->eflags & X86_EFLAGS_ZF) { /* Success: write back to memory; no update of EAX */ ctxt->src.type = OP_NONE; ctxt->dst.val = ctxt->src.orig_val; } else { /* Failure: write the value we saw to EAX. */ ctxt->src.type = OP_REG; ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); ctxt->src.val = ctxt->dst.orig_val; /* Create write-cycle to dest by writing the same value */ ctxt->dst.val = ctxt->dst.orig_val; } return X86EMUL_CONTINUE; } static int em_lseg(struct x86_emulate_ctxt *ctxt) { int seg = ctxt->src2.val; unsigned short sel; int rc; memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); rc = load_segment_descriptor(ctxt, sel, seg); if (rc != X86EMUL_CONTINUE) return rc; ctxt->dst.val = ctxt->src.val; return rc; } static int em_rsm(struct x86_emulate_ctxt *ctxt) { if (!ctxt->ops->is_smm(ctxt)) return emulate_ud(ctxt); if (ctxt->ops->leave_smm(ctxt)) ctxt->ops->triple_fault(ctxt); return emulator_recalc_and_set_mode(ctxt); } static void setup_syscalls_segments(struct desc_struct *cs, struct desc_struct *ss) { cs->l = 0; /* will be adjusted later */ set_desc_base(cs, 0); /* flat segment */ cs->g = 1; /* 4kb granularity */ set_desc_limit(cs, 0xfffff); /* 4GB limit */ cs->type = 0x0b; /* Read, Execute, Accessed */ cs->s = 1; cs->dpl = 0; /* will be adjusted later */ cs->p = 1; cs->d = 1; cs->avl = 0; set_desc_base(ss, 0); /* flat segment */ set_desc_limit(ss, 0xfffff); /* 4GB limit */ ss->g = 1; /* 4kb granularity */ ss->s = 1; ss->type = 0x03; /* Read/Write, Accessed */ ss->d = 1; /* 32bit stack segment */ ss->dpl = 0; ss->p = 1; ss->l = 0; ss->avl = 0; } static bool vendor_intel(struct x86_emulate_ctxt *ctxt) { u32 eax, ebx, ecx, edx; eax = ecx = 0; ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); return is_guest_vendor_intel(ebx, ecx, edx); } static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt) { const struct x86_emulate_ops *ops = ctxt->ops; u32 eax, ebx, ecx, edx; /* * syscall should always be enabled in longmode - so only become * vendor specific (cpuid) if other modes are active... */ if (ctxt->mode == X86EMUL_MODE_PROT64) return true; eax = 0x00000000; ecx = 0x00000000; ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, true); /* * remark: Intel CPUs only support "syscall" in 64bit longmode. Also a * 64bit guest with a 32bit compat-app running will #UD !! While this * behaviour can be fixed (by emulating) into AMD response - CPUs of * AMD can't behave like Intel. */ if (is_guest_vendor_intel(ebx, ecx, edx)) return false; if (is_guest_vendor_amd(ebx, ecx, edx) || is_guest_vendor_hygon(ebx, ecx, edx)) return true; /* * default: (not Intel, not AMD, not Hygon), apply Intel's * stricter rules... */ return false; } static int em_syscall(struct x86_emulate_ctxt *ctxt) { const struct x86_emulate_ops *ops = ctxt->ops; struct desc_struct cs, ss; u64 msr_data; u16 cs_sel, ss_sel; u64 efer = 0; /* syscall is not available in real mode */ if (ctxt->mode == X86EMUL_MODE_REAL || ctxt->mode == X86EMUL_MODE_VM86) return emulate_ud(ctxt); if (!(em_syscall_is_enabled(ctxt))) return emulate_ud(ctxt); ops->get_msr(ctxt, MSR_EFER, &efer); if (!(efer & EFER_SCE)) return emulate_ud(ctxt); setup_syscalls_segments(&cs, &ss); ops->get_msr(ctxt, MSR_STAR, &msr_data); msr_data >>= 32; cs_sel = (u16)(msr_data & 0xfffc); ss_sel = (u16)(msr_data + 8); if (efer & EFER_LMA) { cs.d = 0; cs.l = 1; } ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip; if (efer & EFER_LMA) { #ifdef CONFIG_X86_64 *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags; ops->get_msr(ctxt, ctxt->mode == X86EMUL_MODE_PROT64 ? MSR_LSTAR : MSR_CSTAR, &msr_data); ctxt->_eip = msr_data; ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data); ctxt->eflags &= ~msr_data; ctxt->eflags |= X86_EFLAGS_FIXED; #endif } else { /* legacy mode */ ops->get_msr(ctxt, MSR_STAR, &msr_data); ctxt->_eip = (u32)msr_data; ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); } ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; return X86EMUL_CONTINUE; } static int em_sysenter(struct x86_emulate_ctxt *ctxt) { const struct x86_emulate_ops *ops = ctxt->ops; struct desc_struct cs, ss; u64 msr_data; u16 cs_sel, ss_sel; u64 efer = 0; ops->get_msr(ctxt, MSR_EFER, &efer); /* inject #GP if in real mode */ if (ctxt->mode == X86EMUL_MODE_REAL) return emulate_gp(ctxt, 0); /* * Not recognized on AMD in compat mode (but is recognized in legacy * mode). */ if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA) && !vendor_intel(ctxt)) return emulate_ud(ctxt); /* sysenter/sysexit have not been tested in 64bit mode. */ if (ctxt->mode == X86EMUL_MODE_PROT64) return X86EMUL_UNHANDLEABLE; ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); if ((msr_data & 0xfffc) == 0x0) return emulate_gp(ctxt, 0); setup_syscalls_segments(&cs, &ss); ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF); cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK; ss_sel = cs_sel + 8; if (efer & EFER_LMA) { cs.d = 0; cs.l = 1; } ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data); ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data; ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data); *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data : (u32)msr_data; if (efer & EFER_LMA) ctxt->mode = X86EMUL_MODE_PROT64; return X86EMUL_CONTINUE; } static int em_sysexit(struct x86_emulate_ctxt *ctxt) { const struct x86_emulate_ops *ops = ctxt->ops; struct desc_struct cs, ss; u64 msr_data, rcx, rdx; int usermode; u16 cs_sel = 0, ss_sel = 0; /* inject #GP if in real mode or Virtual 8086 mode */ if (ctxt->mode == X86EMUL_MODE_REAL || ctxt->mode == X86EMUL_MODE_VM86) return emulate_gp(ctxt, 0); setup_syscalls_segments(&cs, &ss); if ((ctxt->rex_prefix & 0x8) != 0x0) usermode = X86EMUL_MODE_PROT64; else usermode = X86EMUL_MODE_PROT32; rcx = reg_read(ctxt, VCPU_REGS_RCX); rdx = reg_read(ctxt, VCPU_REGS_RDX); cs.dpl = 3; ss.dpl = 3; ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data); switch (usermode) { case X86EMUL_MODE_PROT32: cs_sel = (u16)(msr_data + 16); if ((msr_data & 0xfffc) == 0x0) return emulate_gp(ctxt, 0); ss_sel = (u16)(msr_data + 24); rcx = (u32)rcx; rdx = (u32)rdx; break; case X86EMUL_MODE_PROT64: cs_sel = (u16)(msr_data + 32); if (msr_data == 0x0) return emulate_gp(ctxt, 0); ss_sel = cs_sel + 8; cs.d = 0; cs.l = 1; if (emul_is_noncanonical_address(rcx, ctxt) || emul_is_noncanonical_address(rdx, ctxt)) return emulate_gp(ctxt, 0); break; } cs_sel |= SEGMENT_RPL_MASK; ss_sel |= SEGMENT_RPL_MASK; ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS); ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS); ctxt->_eip = rdx; ctxt->mode = usermode; *reg_write(ctxt, VCPU_REGS_RSP) = rcx; return X86EMUL_CONTINUE; } static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt) { int iopl; if (ctxt->mode == X86EMUL_MODE_REAL) return false; if (ctxt->mode == X86EMUL_MODE_VM86) return true; iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT; return ctxt->ops->cpl(ctxt) > iopl; } #define VMWARE_PORT_VMPORT (0x5658) #define VMWARE_PORT_VMRPC (0x5659) static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt, u16 port, u16 len) { const struct x86_emulate_ops *ops = ctxt->ops; struct desc_struct tr_seg; u32 base3; int r; u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7; unsigned mask = (1 << len) - 1; unsigned long base; /* * VMware allows access to these ports even if denied * by TSS I/O permission bitmap. Mimic behavior. */ if (enable_vmware_backdoor && ((port == VMWARE_PORT_VMPORT) || (port == VMWARE_PORT_VMRPC))) return true; ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR); if (!tr_seg.p) return false; if (desc_limit_scaled(&tr_seg) < 103) return false; base = get_desc_base(&tr_seg); #ifdef CONFIG_X86_64 base |= ((u64)base3) << 32; #endif r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL, true); if (r != X86EMUL_CONTINUE) return false; if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg)) return false; r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL, true); if (r != X86EMUL_CONTINUE) return false; if ((perm >> bit_idx) & mask) return false; return true; } static bool emulator_io_permitted(struct x86_emulate_ctxt *ctxt, u16 port, u16 len) { if (ctxt->perm_ok) return true; if (emulator_bad_iopl(ctxt)) if (!emulator_io_port_access_allowed(ctxt, port, len)) return false; ctxt->perm_ok = true; return true; } static void string_registers_quirk(struct x86_emulate_ctxt *ctxt) { /* * Intel CPUs mask the counter and pointers in quite strange * manner when ECX is zero due to REP-string optimizations. */ #ifdef CONFIG_X86_64 if (ctxt->ad_bytes != 4 || !vendor_intel(ctxt)) return; *reg_write(ctxt, VCPU_REGS_RCX) = 0; switch (ctxt->b) { case 0xa4: /* movsb */ case 0xa5: /* movsd/w */ *reg_rmw(ctxt, VCPU_REGS_RSI) &= (u32)-1; fallthrough; case 0xaa: /* stosb */ case 0xab: /* stosd/w */ *reg_rmw(ctxt, VCPU_REGS_RDI) &= (u32)-1; } #endif } static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt, struct tss_segment_16 *tss) { tss->ip = ctxt->_eip; tss->flag = ctxt->eflags; tss->ax = reg_read(ctxt, VCPU_REGS_RAX); tss->cx = reg_read(ctxt, VCPU_REGS_RCX); tss->dx = reg_read(ctxt, VCPU_REGS_RDX); tss->bx = reg_read(ctxt, VCPU_REGS_RBX); tss->sp = reg_read(ctxt, VCPU_REGS_RSP); tss->bp = reg_read(ctxt, VCPU_REGS_RBP); tss->si = reg_read(ctxt, VCPU_REGS_RSI); tss->di = reg_read(ctxt, VCPU_REGS_RDI); tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR); } static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt, struct tss_segment_16 *tss) { int ret; u8 cpl; ctxt->_eip = tss->ip; ctxt->eflags = tss->flag | 2; *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax; *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx; *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx; *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx; *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp; *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp; *reg_write(ctxt, VCPU_REGS_RSI) = tss->si; *reg_write(ctxt, VCPU_REGS_RDI) = tss->di; /* * SDM says that segment selectors are loaded before segment * descriptors */ set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR); set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); cpl = tss->cs & 3; /* * Now load segment descriptors. If fault happens at this stage * it is handled in a context of new task */ ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; return X86EMUL_CONTINUE; } static int task_switch_16(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, ulong old_tss_base, struct desc_struct *new_desc) { struct tss_segment_16 tss_seg; int ret; u32 new_tss_base = get_desc_base(new_desc); ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); if (ret != X86EMUL_CONTINUE) return ret; save_state_to_tss16(ctxt, &tss_seg); ret = linear_write_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); if (ret != X86EMUL_CONTINUE) return ret; ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); if (ret != X86EMUL_CONTINUE) return ret; if (old_tss_sel != 0xffff) { tss_seg.prev_task_link = old_tss_sel; ret = linear_write_system(ctxt, new_tss_base, &tss_seg.prev_task_link, sizeof(tss_seg.prev_task_link)); if (ret != X86EMUL_CONTINUE) return ret; } return load_state_from_tss16(ctxt, &tss_seg); } static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt, struct tss_segment_32 *tss) { /* CR3 and ldt selector are not saved intentionally */ tss->eip = ctxt->_eip; tss->eflags = ctxt->eflags; tss->eax = reg_read(ctxt, VCPU_REGS_RAX); tss->ecx = reg_read(ctxt, VCPU_REGS_RCX); tss->edx = reg_read(ctxt, VCPU_REGS_RDX); tss->ebx = reg_read(ctxt, VCPU_REGS_RBX); tss->esp = reg_read(ctxt, VCPU_REGS_RSP); tss->ebp = reg_read(ctxt, VCPU_REGS_RBP); tss->esi = reg_read(ctxt, VCPU_REGS_RSI); tss->edi = reg_read(ctxt, VCPU_REGS_RDI); tss->es = get_segment_selector(ctxt, VCPU_SREG_ES); tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS); tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS); tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS); tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS); tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS); } static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt, struct tss_segment_32 *tss) { int ret; u8 cpl; if (ctxt->ops->set_cr(ctxt, 3, tss->cr3)) return emulate_gp(ctxt, 0); ctxt->_eip = tss->eip; ctxt->eflags = tss->eflags | 2; /* General purpose registers */ *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax; *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx; *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx; *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx; *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp; *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp; *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi; *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi; /* * SDM says that segment selectors are loaded before segment * descriptors. This is important because CPL checks will * use CS.RPL. */ set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR); set_segment_selector(ctxt, tss->es, VCPU_SREG_ES); set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS); set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS); set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS); set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS); set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS); /* * If we're switching between Protected Mode and VM86, we need to make * sure to update the mode before loading the segment descriptors so * that the selectors are interpreted correctly. */ if (ctxt->eflags & X86_EFLAGS_VM) { ctxt->mode = X86EMUL_MODE_VM86; cpl = 3; } else { ctxt->mode = X86EMUL_MODE_PROT32; cpl = tss->cs & 3; } /* * Now load segment descriptors. If fault happens at this stage * it is handled in a context of new task */ ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); if (ret != X86EMUL_CONTINUE) return ret; ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, X86_TRANSFER_TASK_SWITCH, NULL); return ret; } static int task_switch_32(struct x86_emulate_ctxt *ctxt, u16 old_tss_sel, ulong old_tss_base, struct desc_struct *new_desc) { struct tss_segment_32 tss_seg; int ret; u32 new_tss_base = get_desc_base(new_desc); u32 eip_offset = offsetof(struct tss_segment_32, eip); u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector); ret = linear_read_system(ctxt, old_tss_base, &tss_seg, sizeof(tss_seg)); if (ret != X86EMUL_CONTINUE) return ret; save_state_to_tss32(ctxt, &tss_seg); /* Only GP registers and segment selectors are saved */ ret = linear_write_system(ctxt, old_tss_base + eip_offset, &tss_seg.eip, ldt_sel_offset - eip_offset); if (ret != X86EMUL_CONTINUE) return ret; ret = linear_read_system(ctxt, new_tss_base, &tss_seg, sizeof(tss_seg)); if (ret != X86EMUL_CONTINUE) return ret; if (old_tss_sel != 0xffff) { tss_seg.prev_task_link = old_tss_sel; ret = linear_write_system(ctxt, new_tss_base, &tss_seg.prev_task_link, sizeof(tss_seg.prev_task_link)); if (ret != X86EMUL_CONTINUE) return ret; } return load_state_from_tss32(ctxt, &tss_seg); } static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code) { const struct x86_emulate_ops *ops = ctxt->ops; struct desc_struct curr_tss_desc, next_tss_desc; int ret; u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR); ulong old_tss_base = ops->get_cached_segment_base(ctxt, VCPU_SREG_TR); u32 desc_limit; ulong desc_addr, dr7; /* FIXME: old_tss_base == ~0 ? */ ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr); if (ret != X86EMUL_CONTINUE) return ret; ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr); if (ret != X86EMUL_CONTINUE) return ret; /* FIXME: check that next_tss_desc is tss */ /* * Check privileges. The three cases are task switch caused by... * * 1. jmp/call/int to task gate: Check against DPL of the task gate * 2. Exception/IRQ/iret: No check is performed * 3. jmp/call to TSS/task-gate: No check is performed since the * hardware checks it before exiting. */ if (reason == TASK_SWITCH_GATE) { if (idt_index != -1) { /* Software interrupts */ struct desc_struct task_gate_desc; int dpl; ret = read_interrupt_descriptor(ctxt, idt_index, &task_gate_desc); if (ret != X86EMUL_CONTINUE) return ret; dpl = task_gate_desc.dpl; if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl) return emulate_gp(ctxt, (idt_index << 3) | 0x2); } } desc_limit = desc_limit_scaled(&next_tss_desc); if (!next_tss_desc.p || ((desc_limit < 0x67 && (next_tss_desc.type & 8)) || desc_limit < 0x2b)) { return emulate_ts(ctxt, tss_selector & 0xfffc); } if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */ write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc); } if (reason == TASK_SWITCH_IRET) ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT; /* set back link to prev task only if NT bit is set in eflags note that old_tss_sel is not used after this point */ if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE) old_tss_sel = 0xffff; if (next_tss_desc.type & 8) ret = task_switch_32(ctxt, old_tss_sel, old_tss_base, &next_tss_desc); else ret = task_switch_16(ctxt, old_tss_sel, old_tss_base, &next_tss_desc); if (ret != X86EMUL_CONTINUE) return ret; if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT; if (reason != TASK_SWITCH_IRET) { next_tss_desc.type |= (1 << 1); /* set busy flag */ write_segment_descriptor(ctxt, tss_selector, &next_tss_desc); } ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS); ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR); if (has_error_code) { ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2; ctxt->lock_prefix = 0; ctxt->src.val = (unsigned long) error_code; ret = em_push(ctxt); } ops->get_dr(ctxt, 7, &dr7); ops->set_dr(ctxt, 7, dr7 & ~(DR_LOCAL_ENABLE_MASK | DR_LOCAL_SLOWDOWN)); return ret; } int emulator_task_switch(struct x86_emulate_ctxt *ctxt, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code) { int rc; invalidate_registers(ctxt); ctxt->_eip = ctxt->eip; ctxt->dst.type = OP_NONE; rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason, has_error_code, error_code); if (rc == X86EMUL_CONTINUE) { ctxt->eip = ctxt->_eip; writeback_registers(ctxt); } return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; } static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg, struct operand *op) { int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count; register_address_increment(ctxt, reg, df * op->bytes); op->addr.mem.ea = register_address(ctxt, reg); } static int em_das(struct x86_emulate_ctxt *ctxt) { u8 al, old_al; bool af, cf, old_cf; cf = ctxt->eflags & X86_EFLAGS_CF; al = ctxt->dst.val; old_al = al; old_cf = cf; cf = false; af = ctxt->eflags & X86_EFLAGS_AF; if ((al & 0x0f) > 9 || af) { al -= 6; cf = old_cf | (al >= 250); af = true; } else { af = false; } if (old_al > 0x99 || old_cf) { al -= 0x60; cf = true; } ctxt->dst.val = al; /* Set PF, ZF, SF */ ctxt->src.type = OP_IMM; ctxt->src.val = 0; ctxt->src.bytes = 1; fastop(ctxt, em_or); ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF); if (cf) ctxt->eflags |= X86_EFLAGS_CF; if (af) ctxt->eflags |= X86_EFLAGS_AF; return X86EMUL_CONTINUE; } static int em_aam(struct x86_emulate_ctxt *ctxt) { u8 al, ah; if (ctxt->src.val == 0) return emulate_de(ctxt); al = ctxt->dst.val & 0xff; ah = al / ctxt->src.val; al %= ctxt->src.val; ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8); /* Set PF, ZF, SF */ ctxt->src.type = OP_IMM; ctxt->src.val = 0; ctxt->src.bytes = 1; fastop(ctxt, em_or); return X86EMUL_CONTINUE; } static int em_aad(struct x86_emulate_ctxt *ctxt) { u8 al = ctxt->dst.val & 0xff; u8 ah = (ctxt->dst.val >> 8) & 0xff; al = (al + (ah * ctxt->src.val)) & 0xff; ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al; /* Set PF, ZF, SF */ ctxt->src.type = OP_IMM; ctxt->src.val = 0; ctxt->src.bytes = 1; fastop(ctxt, em_or); return X86EMUL_CONTINUE; } static int em_call(struct x86_emulate_ctxt *ctxt) { int rc; long rel = ctxt->src.val; ctxt->src.val = (unsigned long)ctxt->_eip; rc = jmp_rel(ctxt, rel); if (rc != X86EMUL_CONTINUE) return rc; return em_push(ctxt); } static int em_call_far(struct x86_emulate_ctxt *ctxt) { u16 sel, old_cs; ulong old_eip; int rc; struct desc_struct old_desc, new_desc; const struct x86_emulate_ops *ops = ctxt->ops; int cpl = ctxt->ops->cpl(ctxt); enum x86emul_mode prev_mode = ctxt->mode; old_eip = ctxt->_eip; ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS); memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2); rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl, X86_TRANSFER_CALL_JMP, &new_desc); if (rc != X86EMUL_CONTINUE) return rc; rc = assign_eip_far(ctxt, ctxt->src.val); if (rc != X86EMUL_CONTINUE) goto fail; ctxt->src.val = old_cs; rc = em_push(ctxt); if (rc != X86EMUL_CONTINUE) goto fail; ctxt->src.val = old_eip; rc = em_push(ctxt); /* If we failed, we tainted the memory, but the very least we should restore cs */ if (rc != X86EMUL_CONTINUE) { pr_warn_once("faulting far call emulation tainted memory\n"); goto fail; } return rc; fail: ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS); ctxt->mode = prev_mode; return rc; } static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt) { int rc; unsigned long eip; rc = emulate_pop(ctxt, &eip, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; rc = assign_eip_near(ctxt, eip); if (rc != X86EMUL_CONTINUE) return rc; rsp_increment(ctxt, ctxt->src.val); return X86EMUL_CONTINUE; } static int em_xchg(struct x86_emulate_ctxt *ctxt) { /* Write back the register source. */ ctxt->src.val = ctxt->dst.val; write_register_operand(&ctxt->src); /* Write back the memory destination with implicit LOCK prefix. */ ctxt->dst.val = ctxt->src.orig_val; ctxt->lock_prefix = 1; return X86EMUL_CONTINUE; } static int em_imul_3op(struct x86_emulate_ctxt *ctxt) { ctxt->dst.val = ctxt->src2.val; return fastop(ctxt, em_imul); } static int em_cwd(struct x86_emulate_ctxt *ctxt) { ctxt->dst.type = OP_REG; ctxt->dst.bytes = ctxt->src.bytes; ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1); return X86EMUL_CONTINUE; } static int em_rdpid(struct x86_emulate_ctxt *ctxt) { u64 tsc_aux = 0; if (!ctxt->ops->guest_has_rdpid(ctxt)) return emulate_ud(ctxt); ctxt->ops->get_msr(ctxt, MSR_TSC_AUX, &tsc_aux); ctxt->dst.val = tsc_aux; return X86EMUL_CONTINUE; } static int em_rdtsc(struct x86_emulate_ctxt *ctxt) { u64 tsc = 0; ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc); *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc; *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32; return X86EMUL_CONTINUE; } static int em_rdpmc(struct x86_emulate_ctxt *ctxt) { u64 pmc; if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc)) return emulate_gp(ctxt, 0); *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc; *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32; return X86EMUL_CONTINUE; } static int em_mov(struct x86_emulate_ctxt *ctxt) { memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr)); return X86EMUL_CONTINUE; } static int em_movbe(struct x86_emulate_ctxt *ctxt) { u16 tmp; if (!ctxt->ops->guest_has_movbe(ctxt)) return emulate_ud(ctxt); switch (ctxt->op_bytes) { case 2: /* * From MOVBE definition: "...When the operand size is 16 bits, * the upper word of the destination register remains unchanged * ..." * * Both casting ->valptr and ->val to u16 breaks strict aliasing * rules so we have to do the operation almost per hand. */ tmp = (u16)ctxt->src.val; ctxt->dst.val &= ~0xffffUL; ctxt->dst.val |= (unsigned long)swab16(tmp); break; case 4: ctxt->dst.val = swab32((u32)ctxt->src.val); break; case 8: ctxt->dst.val = swab64(ctxt->src.val); break; default: BUG(); } return X86EMUL_CONTINUE; } static int em_cr_write(struct x86_emulate_ctxt *ctxt) { int cr_num = ctxt->modrm_reg; int r; if (ctxt->ops->set_cr(ctxt, cr_num, ctxt->src.val)) return emulate_gp(ctxt, 0); /* Disable writeback. */ ctxt->dst.type = OP_NONE; if (cr_num == 0) { /* * CR0 write might have updated CR0.PE and/or CR0.PG * which can affect the cpu's execution mode. */ r = emulator_recalc_and_set_mode(ctxt); if (r != X86EMUL_CONTINUE) return r; } return X86EMUL_CONTINUE; } static int em_dr_write(struct x86_emulate_ctxt *ctxt) { unsigned long val; if (ctxt->mode == X86EMUL_MODE_PROT64) val = ctxt->src.val & ~0ULL; else val = ctxt->src.val & ~0U; /* #UD condition is already handled. */ if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0) return emulate_gp(ctxt, 0); /* Disable writeback. */ ctxt->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int em_wrmsr(struct x86_emulate_ctxt *ctxt) { u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); u64 msr_data; int r; msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX) | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32); r = ctxt->ops->set_msr_with_filter(ctxt, msr_index, msr_data); if (r == X86EMUL_PROPAGATE_FAULT) return emulate_gp(ctxt, 0); return r; } static int em_rdmsr(struct x86_emulate_ctxt *ctxt) { u64 msr_index = reg_read(ctxt, VCPU_REGS_RCX); u64 msr_data; int r; r = ctxt->ops->get_msr_with_filter(ctxt, msr_index, &msr_data); if (r == X86EMUL_PROPAGATE_FAULT) return emulate_gp(ctxt, 0); if (r == X86EMUL_CONTINUE) { *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data; *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32; } return r; } static int em_store_sreg(struct x86_emulate_ctxt *ctxt, int segment) { if (segment > VCPU_SREG_GS && (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && ctxt->ops->cpl(ctxt) > 0) return emulate_gp(ctxt, 0); ctxt->dst.val = get_segment_selector(ctxt, segment); if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM) ctxt->dst.bytes = 2; return X86EMUL_CONTINUE; } static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt) { if (ctxt->modrm_reg > VCPU_SREG_GS) return emulate_ud(ctxt); return em_store_sreg(ctxt, ctxt->modrm_reg); } static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt) { u16 sel = ctxt->src.val; if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS) return emulate_ud(ctxt); if (ctxt->modrm_reg == VCPU_SREG_SS) ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS; /* Disable writeback. */ ctxt->dst.type = OP_NONE; return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg); } static int em_sldt(struct x86_emulate_ctxt *ctxt) { return em_store_sreg(ctxt, VCPU_SREG_LDTR); } static int em_lldt(struct x86_emulate_ctxt *ctxt) { u16 sel = ctxt->src.val; /* Disable writeback. */ ctxt->dst.type = OP_NONE; return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR); } static int em_str(struct x86_emulate_ctxt *ctxt) { return em_store_sreg(ctxt, VCPU_SREG_TR); } static int em_ltr(struct x86_emulate_ctxt *ctxt) { u16 sel = ctxt->src.val; /* Disable writeback. */ ctxt->dst.type = OP_NONE; return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR); } static int em_invlpg(struct x86_emulate_ctxt *ctxt) { int rc; ulong linear; rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear); if (rc == X86EMUL_CONTINUE) ctxt->ops->invlpg(ctxt, linear); /* Disable writeback. */ ctxt->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int em_clts(struct x86_emulate_ctxt *ctxt) { ulong cr0; cr0 = ctxt->ops->get_cr(ctxt, 0); cr0 &= ~X86_CR0_TS; ctxt->ops->set_cr(ctxt, 0, cr0); return X86EMUL_CONTINUE; } static int em_hypercall(struct x86_emulate_ctxt *ctxt) { int rc = ctxt->ops->fix_hypercall(ctxt); if (rc != X86EMUL_CONTINUE) return rc; /* Let the processor re-execute the fixed hypercall */ ctxt->_eip = ctxt->eip; /* Disable writeback. */ ctxt->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt, void (*get)(struct x86_emulate_ctxt *ctxt, struct desc_ptr *ptr)) { struct desc_ptr desc_ptr; if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && ctxt->ops->cpl(ctxt) > 0) return emulate_gp(ctxt, 0); if (ctxt->mode == X86EMUL_MODE_PROT64) ctxt->op_bytes = 8; get(ctxt, &desc_ptr); if (ctxt->op_bytes == 2) { ctxt->op_bytes = 4; desc_ptr.address &= 0x00ffffff; } /* Disable writeback. */ ctxt->dst.type = OP_NONE; return segmented_write_std(ctxt, ctxt->dst.addr.mem, &desc_ptr, 2 + ctxt->op_bytes); } static int em_sgdt(struct x86_emulate_ctxt *ctxt) { return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt); } static int em_sidt(struct x86_emulate_ctxt *ctxt) { return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt); } static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt) { struct desc_ptr desc_ptr; int rc; if (ctxt->mode == X86EMUL_MODE_PROT64) ctxt->op_bytes = 8; rc = read_descriptor(ctxt, ctxt->src.addr.mem, &desc_ptr.size, &desc_ptr.address, ctxt->op_bytes); if (rc != X86EMUL_CONTINUE) return rc; if (ctxt->mode == X86EMUL_MODE_PROT64 && emul_is_noncanonical_address(desc_ptr.address, ctxt)) return emulate_gp(ctxt, 0); if (lgdt) ctxt->ops->set_gdt(ctxt, &desc_ptr); else ctxt->ops->set_idt(ctxt, &desc_ptr); /* Disable writeback. */ ctxt->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int em_lgdt(struct x86_emulate_ctxt *ctxt) { return em_lgdt_lidt(ctxt, true); } static int em_lidt(struct x86_emulate_ctxt *ctxt) { return em_lgdt_lidt(ctxt, false); } static int em_smsw(struct x86_emulate_ctxt *ctxt) { if ((ctxt->ops->get_cr(ctxt, 4) & X86_CR4_UMIP) && ctxt->ops->cpl(ctxt) > 0) return emulate_gp(ctxt, 0); if (ctxt->dst.type == OP_MEM) ctxt->dst.bytes = 2; ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0); return X86EMUL_CONTINUE; } static int em_lmsw(struct x86_emulate_ctxt *ctxt) { ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul) | (ctxt->src.val & 0x0f)); ctxt->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int em_loop(struct x86_emulate_ctxt *ctxt) { int rc = X86EMUL_CONTINUE; register_address_increment(ctxt, VCPU_REGS_RCX, -1); if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) && (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags))) rc = jmp_rel(ctxt, ctxt->src.val); return rc; } static int em_jcxz(struct x86_emulate_ctxt *ctxt) { int rc = X86EMUL_CONTINUE; if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) rc = jmp_rel(ctxt, ctxt->src.val); return rc; } static int em_in(struct x86_emulate_ctxt *ctxt) { if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val, &ctxt->dst.val)) return X86EMUL_IO_NEEDED; return X86EMUL_CONTINUE; } static int em_out(struct x86_emulate_ctxt *ctxt) { ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val, &ctxt->src.val, 1); /* Disable writeback. */ ctxt->dst.type = OP_NONE; return X86EMUL_CONTINUE; } static int em_cli(struct x86_emulate_ctxt *ctxt) { if (emulator_bad_iopl(ctxt)) return emulate_gp(ctxt, 0); ctxt->eflags &= ~X86_EFLAGS_IF; return X86EMUL_CONTINUE; } static int em_sti(struct x86_emulate_ctxt *ctxt) { if (emulator_bad_iopl(ctxt)) return emulate_gp(ctxt, 0); ctxt->interruptibility = KVM_X86_SHADOW_INT_STI; ctxt->eflags |= X86_EFLAGS_IF; return X86EMUL_CONTINUE; } static int em_cpuid(struct x86_emulate_ctxt *ctxt) { u32 eax, ebx, ecx, edx; u64 msr = 0; ctxt->ops->get_msr(ctxt, MSR_MISC_FEATURES_ENABLES, &msr); if (msr & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && ctxt->ops->cpl(ctxt)) { return emulate_gp(ctxt, 0); } eax = reg_read(ctxt, VCPU_REGS_RAX); ecx = reg_read(ctxt, VCPU_REGS_RCX); ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx, false); *reg_write(ctxt, VCPU_REGS_RAX) = eax; *reg_write(ctxt, VCPU_REGS_RBX) = ebx; *reg_write(ctxt, VCPU_REGS_RCX) = ecx; *reg_write(ctxt, VCPU_REGS_RDX) = edx; return X86EMUL_CONTINUE; } static int em_sahf(struct x86_emulate_ctxt *ctxt) { u32 flags; flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | X86_EFLAGS_SF; flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8; ctxt->eflags &= ~0xffUL; ctxt->eflags |= flags | X86_EFLAGS_FIXED; return X86EMUL_CONTINUE; } static int em_lahf(struct x86_emulate_ctxt *ctxt) { *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL; *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8; return X86EMUL_CONTINUE; } static int em_bswap(struct x86_emulate_ctxt *ctxt) { switch (ctxt->op_bytes) { #ifdef CONFIG_X86_64 case 8: asm("bswap %0" : "+r"(ctxt->dst.val)); break; #endif default: asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val)); break; } return X86EMUL_CONTINUE; } static int em_clflush(struct x86_emulate_ctxt *ctxt) { /* emulating clflush regardless of cpuid */ return X86EMUL_CONTINUE; } static int em_clflushopt(struct x86_emulate_ctxt *ctxt) { /* emulating clflushopt regardless of cpuid */ return X86EMUL_CONTINUE; } static int em_movsxd(struct x86_emulate_ctxt *ctxt) { ctxt->dst.val = (s32) ctxt->src.val; return X86EMUL_CONTINUE; } static int check_fxsr(struct x86_emulate_ctxt *ctxt) { if (!ctxt->ops->guest_has_fxsr(ctxt)) return emulate_ud(ctxt); if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM)) return emulate_nm(ctxt); /* * Don't emulate a case that should never be hit, instead of working * around a lack of fxsave64/fxrstor64 on old compilers. */ if (ctxt->mode >= X86EMUL_MODE_PROT64) return X86EMUL_UNHANDLEABLE; return X86EMUL_CONTINUE; } /* * Hardware doesn't save and restore XMM 0-7 without CR4.OSFXSR, but does save * and restore MXCSR. */ static size_t __fxstate_size(int nregs) { return offsetof(struct fxregs_state, xmm_space[0]) + nregs * 16; } static inline size_t fxstate_size(struct x86_emulate_ctxt *ctxt) { bool cr4_osfxsr; if (ctxt->mode == X86EMUL_MODE_PROT64) return __fxstate_size(16); cr4_osfxsr = ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR; return __fxstate_size(cr4_osfxsr ? 8 : 0); } /* * FXSAVE and FXRSTOR have 4 different formats depending on execution mode, * 1) 16 bit mode * 2) 32 bit mode * - like (1), but FIP and FDP (foo) are only 16 bit. At least Intel CPUs * preserve whole 32 bit values, though, so (1) and (2) are the same wrt. * save and restore * 3) 64-bit mode with REX.W prefix * - like (2), but XMM 8-15 are being saved and restored * 4) 64-bit mode without REX.W prefix * - like (3), but FIP and FDP are 64 bit * * Emulation uses (3) for (1) and (2) and preserves XMM 8-15 to reach the * desired result. (4) is not emulated. * * Note: Guest and host CPUID.(EAX=07H,ECX=0H):EBX[bit 13] (deprecate FPU CS * and FPU DS) should match. */ static int em_fxsave(struct x86_emulate_ctxt *ctxt) { struct fxregs_state fx_state; int rc; rc = check_fxsr(ctxt); if (rc != X86EMUL_CONTINUE) return rc; kvm_fpu_get(); rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_state)); kvm_fpu_put(); if (rc != X86EMUL_CONTINUE) return rc; return segmented_write_std(ctxt, ctxt->memop.addr.mem, &fx_state, fxstate_size(ctxt)); } /* * FXRSTOR might restore XMM registers not provided by the guest. Fill * in the host registers (via FXSAVE) instead, so they won't be modified. * (preemption has to stay disabled until FXRSTOR). * * Use noinline to keep the stack for other functions called by callers small. */ static noinline int fxregs_fixup(struct fxregs_state *fx_state, const size_t used_size) { struct fxregs_state fx_tmp; int rc; rc = asm_safe("fxsave %[fx]", , [fx] "+m"(fx_tmp)); memcpy((void *)fx_state + used_size, (void *)&fx_tmp + used_size, __fxstate_size(16) - used_size); return rc; } static int em_fxrstor(struct x86_emulate_ctxt *ctxt) { struct fxregs_state fx_state; int rc; size_t size; rc = check_fxsr(ctxt); if (rc != X86EMUL_CONTINUE) return rc; size = fxstate_size(ctxt); rc = segmented_read_std(ctxt, ctxt->memop.addr.mem, &fx_state, size); if (rc != X86EMUL_CONTINUE) return rc; kvm_fpu_get(); if (size < __fxstate_size(16)) { rc = fxregs_fixup(&fx_state, size); if (rc != X86EMUL_CONTINUE) goto out; } if (fx_state.mxcsr >> 16) { rc = emulate_gp(ctxt, 0); goto out; } if (rc == X86EMUL_CONTINUE) rc = asm_safe("fxrstor %[fx]", : [fx] "m"(fx_state)); out: kvm_fpu_put(); return rc; } static int em_xsetbv(struct x86_emulate_ctxt *ctxt) { u32 eax, ecx, edx; if (!(ctxt->ops->get_cr(ctxt, 4) & X86_CR4_OSXSAVE)) return emulate_ud(ctxt); eax = reg_read(ctxt, VCPU_REGS_RAX); edx = reg_read(ctxt, VCPU_REGS_RDX); ecx = reg_read(ctxt, VCPU_REGS_RCX); if (ctxt->ops->set_xcr(ctxt, ecx, ((u64)edx << 32) | eax)) return emulate_gp(ctxt, 0); return X86EMUL_CONTINUE; } static bool valid_cr(int nr) { switch (nr) { case 0: case 2 ... 4: case 8: return true; default: return false; } } static int check_cr_access(struct x86_emulate_ctxt *ctxt) { if (!valid_cr(ctxt->modrm_reg)) return emulate_ud(ctxt); return X86EMUL_CONTINUE; } static int check_dr7_gd(struct x86_emulate_ctxt *ctxt) { unsigned long dr7; ctxt->ops->get_dr(ctxt, 7, &dr7); return dr7 & DR7_GD; } static int check_dr_read(struct x86_emulate_ctxt *ctxt) { int dr = ctxt->modrm_reg; u64 cr4; if (dr > 7) return emulate_ud(ctxt); cr4 = ctxt->ops->get_cr(ctxt, 4); if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5)) return emulate_ud(ctxt); if (check_dr7_gd(ctxt)) { ulong dr6; ctxt->ops->get_dr(ctxt, 6, &dr6); dr6 &= ~DR_TRAP_BITS; dr6 |= DR6_BD | DR6_ACTIVE_LOW; ctxt->ops->set_dr(ctxt, 6, dr6); return emulate_db(ctxt); } return X86EMUL_CONTINUE; } static int check_dr_write(struct x86_emulate_ctxt *ctxt) { u64 new_val = ctxt->src.val64; int dr = ctxt->modrm_reg; if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL)) return emulate_gp(ctxt, 0); return check_dr_read(ctxt); } static int check_svme(struct x86_emulate_ctxt *ctxt) { u64 efer = 0; ctxt->ops->get_msr(ctxt, MSR_EFER, &efer); if (!(efer & EFER_SVME)) return emulate_ud(ctxt); return X86EMUL_CONTINUE; } static int check_svme_pa(struct x86_emulate_ctxt *ctxt) { u64 rax = reg_read(ctxt, VCPU_REGS_RAX); /* Valid physical address? */ if (rax & 0xffff000000000000ULL) return emulate_gp(ctxt, 0); return check_svme(ctxt); } static int check_rdtsc(struct x86_emulate_ctxt *ctxt) { u64 cr4 = ctxt->ops->get_cr(ctxt, 4); if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt)) return emulate_gp(ctxt, 0); return X86EMUL_CONTINUE; } static int check_rdpmc(struct x86_emulate_ctxt *ctxt) { u64 cr4 = ctxt->ops->get_cr(ctxt, 4); u64 rcx = reg_read(ctxt, VCPU_REGS_RCX); /* * VMware allows access to these Pseduo-PMCs even when read via RDPMC * in Ring3 when CR4.PCE=0. */ if (enable_vmware_backdoor && is_vmware_backdoor_pmc(rcx)) return X86EMUL_CONTINUE; /* * If CR4.PCE is set, the SDM requires CPL=0 or CR0.PE=0. The CR0.PE * check however is unnecessary because CPL is always 0 outside * protected mode. */ if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) || ctxt->ops->check_pmc(ctxt, rcx)) return emulate_gp(ctxt, 0); return X86EMUL_CONTINUE; } static int check_perm_in(struct x86_emulate_ctxt *ctxt) { ctxt->dst.bytes = min(ctxt->dst.bytes, 4u); if (!emulator_io_permitted(ctxt, ctxt->src.val, ctxt->dst.bytes)) return emulate_gp(ctxt, 0); return X86EMUL_CONTINUE; } static int check_perm_out(struct x86_emulate_ctxt *ctxt) { ctxt->src.bytes = min(ctxt->src.bytes, 4u); if (!emulator_io_permitted(ctxt, ctxt->dst.val, ctxt->src.bytes)) return emulate_gp(ctxt, 0); return X86EMUL_CONTINUE; } #define D(_y) { .flags = (_y) } #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i } #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \ .intercept = x86_intercept_##_i, .check_perm = (_p) } #define N D(NotImpl) #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) } #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) } #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) } #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) } #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) } #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) } #define I(_f, _e) { .flags = (_f), .u.execute = (_e) } #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) } #define II(_f, _e, _i) \ { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i } #define IIP(_f, _e, _i, _p) \ { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \ .intercept = x86_intercept_##_i, .check_perm = (_p) } #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) } #define D2bv(_f) D((_f) | ByteOp), D(_f) #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p) #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e) #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e) #define I2bvIP(_f, _e, _i, _p) \ IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p) #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \ F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \ F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e) static const struct opcode group7_rm0[] = { N, I(SrcNone | Priv | EmulateOnUD, em_hypercall), N, N, N, N, N, N, }; static const struct opcode group7_rm1[] = { DI(SrcNone | Priv, monitor), DI(SrcNone | Priv, mwait), N, N, N, N, N, N, }; static const struct opcode group7_rm2[] = { N, II(ImplicitOps | Priv, em_xsetbv, xsetbv), N, N, N, N, N, N, }; static const struct opcode group7_rm3[] = { DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa), II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall), DIP(SrcNone | Prot | Priv, vmload, check_svme_pa), DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa), DIP(SrcNone | Prot | Priv, stgi, check_svme), DIP(SrcNone | Prot | Priv, clgi, check_svme), DIP(SrcNone | Prot | Priv, skinit, check_svme), DIP(SrcNone | Prot | Priv, invlpga, check_svme), }; static const struct opcode group7_rm7[] = { N, DIP(SrcNone, rdtscp, check_rdtsc), N, N, N, N, N, N, }; static const struct opcode group1[] = { F(Lock, em_add), F(Lock | PageTable, em_or), F(Lock, em_adc), F(Lock, em_sbb), F(Lock | PageTable, em_and), F(Lock, em_sub), F(Lock, em_xor), F(NoWrite, em_cmp), }; static const struct opcode group1A[] = { I(DstMem | SrcNone | Mov | Stack | IncSP | TwoMemOp, em_pop), N, N, N, N, N, N, N, }; static const struct opcode group2[] = { F(DstMem | ModRM, em_rol), F(DstMem | ModRM, em_ror), F(DstMem | ModRM, em_rcl), F(DstMem | ModRM, em_rcr), F(DstMem | ModRM, em_shl), F(DstMem | ModRM, em_shr), F(DstMem | ModRM, em_shl), F(DstMem | ModRM, em_sar), }; static const struct opcode group3[] = { F(DstMem | SrcImm | NoWrite, em_test), F(DstMem | SrcImm | NoWrite, em_test), F(DstMem | SrcNone | Lock, em_not), F(DstMem | SrcNone | Lock, em_neg), F(DstXacc | Src2Mem, em_mul_ex), F(DstXacc | Src2Mem, em_imul_ex), F(DstXacc | Src2Mem, em_div_ex), F(DstXacc | Src2Mem, em_idiv_ex), }; static const struct opcode group4[] = { F(ByteOp | DstMem | SrcNone | Lock, em_inc), F(ByteOp | DstMem | SrcNone | Lock, em_dec), N, N, N, N, N, N, }; static const struct opcode group5[] = { F(DstMem | SrcNone | Lock, em_inc), F(DstMem | SrcNone | Lock, em_dec), I(SrcMem | NearBranch | IsBranch, em_call_near_abs), I(SrcMemFAddr | ImplicitOps | IsBranch, em_call_far), I(SrcMem | NearBranch | IsBranch, em_jmp_abs), I(SrcMemFAddr | ImplicitOps | IsBranch, em_jmp_far), I(SrcMem | Stack | TwoMemOp, em_push), D(Undefined), }; static const struct opcode group6[] = { II(Prot | DstMem, em_sldt, sldt), II(Prot | DstMem, em_str, str), II(Prot | Priv | SrcMem16, em_lldt, lldt), II(Prot | Priv | SrcMem16, em_ltr, ltr), N, N, N, N, }; static const struct group_dual group7 = { { II(Mov | DstMem, em_sgdt, sgdt), II(Mov | DstMem, em_sidt, sidt), II(SrcMem | Priv, em_lgdt, lgdt), II(SrcMem | Priv, em_lidt, lidt), II(SrcNone | DstMem | Mov, em_smsw, smsw), N, II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg), }, { EXT(0, group7_rm0), EXT(0, group7_rm1), EXT(0, group7_rm2), EXT(0, group7_rm3), II(SrcNone | DstMem | Mov, em_smsw, smsw), N, II(SrcMem16 | Mov | Priv, em_lmsw, lmsw), EXT(0, group7_rm7), } }; static const struct opcode group8[] = { N, N, N, N, F(DstMem | SrcImmByte | NoWrite, em_bt), F(DstMem | SrcImmByte | Lock | PageTable, em_bts), F(DstMem | SrcImmByte | Lock, em_btr), F(DstMem | SrcImmByte | Lock | PageTable, em_btc), }; /* * The "memory" destination is actually always a register, since we come * from the register case of group9. */ static const struct gprefix pfx_0f_c7_7 = { N, N, N, II(DstMem | ModRM | Op3264 | EmulateOnUD, em_rdpid, rdpid), }; static const struct group_dual group9 = { { N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N, }, { N, N, N, N, N, N, N, GP(0, &pfx_0f_c7_7), } }; static const struct opcode group11[] = { I(DstMem | SrcImm | Mov | PageTable, em_mov), X7(D(Undefined)), }; static const struct gprefix pfx_0f_ae_7 = { I(SrcMem | ByteOp, em_clflush), I(SrcMem | ByteOp, em_clflushopt), N, N, }; static const struct group_dual group15 = { { I(ModRM | Aligned16, em_fxsave), I(ModRM | Aligned16, em_fxrstor), N, N, N, N, N, GP(0, &pfx_0f_ae_7), }, { N, N, N, N, N, N, N, N, } }; static const struct gprefix pfx_0f_6f_0f_7f = { I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov), }; static const struct instr_dual instr_dual_0f_2b = { I(0, em_mov), N }; static const struct gprefix pfx_0f_2b = { ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N, }; static const struct gprefix pfx_0f_10_0f_11 = { I(Unaligned, em_mov), I(Unaligned, em_mov), N, N, }; static const struct gprefix pfx_0f_28_0f_29 = { I(Aligned, em_mov), I(Aligned, em_mov), N, N, }; static const struct gprefix pfx_0f_e7 = { N, I(Sse, em_mov), N, N, }; static const struct escape escape_d9 = { { N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw), }, { /* 0xC0 - 0xC7 */ N, N, N, N, N, N, N, N, /* 0xC8 - 0xCF */ N, N, N, N, N, N, N, N, /* 0xD0 - 0xC7 */ N, N, N, N, N, N, N, N, /* 0xD8 - 0xDF */ N, N, N, N, N, N, N, N, /* 0xE0 - 0xE7 */ N, N, N, N, N, N, N, N, /* 0xE8 - 0xEF */ N, N, N, N, N, N, N, N, /* 0xF0 - 0xF7 */ N, N, N, N, N, N, N, N, /* 0xF8 - 0xFF */ N, N, N, N, N, N, N, N, } }; static const struct escape escape_db = { { N, N, N, N, N, N, N, N, }, { /* 0xC0 - 0xC7 */ N, N, N, N, N, N, N, N, /* 0xC8 - 0xCF */ N, N, N, N, N, N, N, N, /* 0xD0 - 0xC7 */ N, N, N, N, N, N, N, N, /* 0xD8 - 0xDF */ N, N, N, N, N, N, N, N, /* 0xE0 - 0xE7 */ N, N, N, I(ImplicitOps, em_fninit), N, N, N, N, /* 0xE8 - 0xEF */ N, N, N, N, N, N, N, N, /* 0xF0 - 0xF7 */ N, N, N, N, N, N, N, N, /* 0xF8 - 0xFF */ N, N, N, N, N, N, N, N, } }; static const struct escape escape_dd = { { N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw), }, { /* 0xC0 - 0xC7 */ N, N, N, N, N, N, N, N, /* 0xC8 - 0xCF */ N, N, N, N, N, N, N, N, /* 0xD0 - 0xC7 */ N, N, N, N, N, N, N, N, /* 0xD8 - 0xDF */ N, N, N, N, N, N, N, N, /* 0xE0 - 0xE7 */ N, N, N, N, N, N, N, N, /* 0xE8 - 0xEF */ N, N, N, N, N, N, N, N, /* 0xF0 - 0xF7 */ N, N, N, N, N, N, N, N, /* 0xF8 - 0xFF */ N, N, N, N, N, N, N, N, } }; static const struct instr_dual instr_dual_0f_c3 = { I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N }; static const struct mode_dual mode_dual_63 = { N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd) }; static const struct instr_dual instr_dual_8d = { D(DstReg | SrcMem | ModRM | NoAccess), N }; static const struct opcode opcode_table[256] = { /* 0x00 - 0x07 */ F6ALU(Lock, em_add), I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg), I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg), /* 0x08 - 0x0F */ F6ALU(Lock | PageTable, em_or), I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg), N, /* 0x10 - 0x17 */ F6ALU(Lock, em_adc), I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg), I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg), /* 0x18 - 0x1F */ F6ALU(Lock, em_sbb), I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg), I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg), /* 0x20 - 0x27 */ F6ALU(Lock | PageTable, em_and), N, N, /* 0x28 - 0x2F */ F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das), /* 0x30 - 0x37 */ F6ALU(Lock, em_xor), N, N, /* 0x38 - 0x3F */ F6ALU(NoWrite, em_cmp), N, N, /* 0x40 - 0x4F */ X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)), /* 0x50 - 0x57 */ X8(I(SrcReg | Stack, em_push)), /* 0x58 - 0x5F */ X8(I(DstReg | Stack, em_pop)), /* 0x60 - 0x67 */ I(ImplicitOps | Stack | No64, em_pusha), I(ImplicitOps | Stack | No64, em_popa), N, MD(ModRM, &mode_dual_63), N, N, N, N, /* 0x68 - 0x6F */ I(SrcImm | Mov | Stack, em_push), I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op), I(SrcImmByte | Mov | Stack, em_push), I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op), I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */ I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */ /* 0x70 - 0x7F */ X16(D(SrcImmByte | NearBranch | IsBranch)), /* 0x80 - 0x87 */ G(ByteOp | DstMem | SrcImm, group1), G(DstMem | SrcImm, group1), G(ByteOp | DstMem | SrcImm | No64, group1), G(DstMem | SrcImmByte, group1), F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test), I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg), /* 0x88 - 0x8F */ I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov), I2bv(DstReg | SrcMem | ModRM | Mov, em_mov), I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg), ID(0, &instr_dual_8d), I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm), G(0, group1A), /* 0x90 - 0x97 */ DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)), /* 0x98 - 0x9F */ D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd), I(SrcImmFAddr | No64 | IsBranch, em_call_far), N, II(ImplicitOps | Stack, em_pushf, pushf), II(ImplicitOps | Stack, em_popf, popf), I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf), /* 0xA0 - 0xA7 */ I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov), I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov), I2bv(SrcSI | DstDI | Mov | String | TwoMemOp, em_mov), F2bv(SrcSI | DstDI | String | NoWrite | TwoMemOp, em_cmp_r), /* 0xA8 - 0xAF */ F2bv(DstAcc | SrcImm | NoWrite, em_test), I2bv(SrcAcc | DstDI | Mov | String, em_mov), I2bv(SrcSI | DstAcc | Mov | String, em_mov), F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r), /* 0xB0 - 0xB7 */ X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)), /* 0xB8 - 0xBF */ X8(I(DstReg | SrcImm64 | Mov, em_mov)), /* 0xC0 - 0xC7 */ G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2), I(ImplicitOps | NearBranch | SrcImmU16 | IsBranch, em_ret_near_imm), I(ImplicitOps | NearBranch | IsBranch, em_ret), I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg), I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg), G(ByteOp, group11), G(0, group11), /* 0xC8 - 0xCF */ I(Stack | SrcImmU16 | Src2ImmByte | IsBranch, em_enter), I(Stack | IsBranch, em_leave), I(ImplicitOps | SrcImmU16 | IsBranch, em_ret_far_imm), I(ImplicitOps | IsBranch, em_ret_far), D(ImplicitOps | IsBranch), DI(SrcImmByte | IsBranch, intn), D(ImplicitOps | No64 | IsBranch), II(ImplicitOps | IsBranch, em_iret, iret), /* 0xD0 - 0xD7 */ G(Src2One | ByteOp, group2), G(Src2One, group2), G(Src2CL | ByteOp, group2), G(Src2CL, group2), I(DstAcc | SrcImmUByte | No64, em_aam), I(DstAcc | SrcImmUByte | No64, em_aad), F(DstAcc | ByteOp | No64, em_salc), I(DstAcc | SrcXLat | ByteOp, em_mov), /* 0xD8 - 0xDF */ N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N, /* 0xE0 - 0xE7 */ X3(I(SrcImmByte | NearBranch | IsBranch, em_loop)), I(SrcImmByte | NearBranch | IsBranch, em_jcxz), I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in), I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out), /* 0xE8 - 0xEF */ I(SrcImm | NearBranch | IsBranch, em_call), D(SrcImm | ImplicitOps | NearBranch | IsBranch), I(SrcImmFAddr | No64 | IsBranch, em_jmp_far), D(SrcImmByte | ImplicitOps | NearBranch | IsBranch), I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in), I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out), /* 0xF0 - 0xF7 */ N, DI(ImplicitOps, icebp), N, N, DI(ImplicitOps | Priv, hlt), D(ImplicitOps), G(ByteOp, group3), G(0, group3), /* 0xF8 - 0xFF */ D(ImplicitOps), D(ImplicitOps), I(ImplicitOps, em_cli), I(ImplicitOps, em_sti), D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5), }; static const struct opcode twobyte_table[256] = { /* 0x00 - 0x0F */ G(0, group6), GD(0, &group7), N, N, N, I(ImplicitOps | EmulateOnUD | IsBranch, em_syscall), II(ImplicitOps | Priv, em_clts, clts), N, DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, /* 0x10 - 0x1F */ GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_10_0f_11), GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_10_0f_11), N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 4 * prefetch + 4 * reserved NOP */ D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ D(ImplicitOps | ModRM | SrcMem | NoAccess), /* 8 * reserved NOP */ D(ImplicitOps | ModRM | SrcMem | NoAccess), /* NOP + 7 * reserved NOP */ /* 0x20 - 0x2F */ DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_access), DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read), IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write, check_cr_access), IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write, check_dr_write), N, N, N, N, GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29), GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29), N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b), N, N, N, N, /* 0x30 - 0x3F */ II(ImplicitOps | Priv, em_wrmsr, wrmsr), IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc), II(ImplicitOps | Priv, em_rdmsr, rdmsr), IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc), I(ImplicitOps | EmulateOnUD | IsBranch, em_sysenter), I(ImplicitOps | Priv | EmulateOnUD | IsBranch, em_sysexit), N, N, N, N, N, N, N, N, N, N, /* 0x40 - 0x4F */ X16(D(DstReg | SrcMem | ModRM)), /* 0x50 - 0x5F */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0x60 - 0x6F */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f), /* 0x70 - 0x7F */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f), /* 0x80 - 0x8F */ X16(D(SrcImm | NearBranch | IsBranch)), /* 0x90 - 0x9F */ X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)), /* 0xA0 - 0xA7 */ I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg), II(ImplicitOps, em_cpuid, cpuid), F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt), F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld), F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N, /* 0xA8 - 0xAF */ I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg), II(EmulateOnUD | ImplicitOps, em_rsm, rsm), F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts), F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd), F(DstMem | SrcReg | Src2CL | ModRM, em_shrd), GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul), /* 0xB0 - 0xB7 */ I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg), I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg), F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr), I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg), I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg), D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), /* 0xB8 - 0xBF */ N, N, G(BitOp, group8), F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc), I(DstReg | SrcMem | ModRM, em_bsf_c), I(DstReg | SrcMem | ModRM, em_bsr_c), D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov), /* 0xC0 - 0xC7 */ F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd), N, ID(0, &instr_dual_0f_c3), N, N, N, GD(0, &group9), /* 0xC8 - 0xCF */ X8(I(DstReg, em_bswap)), /* 0xD0 - 0xDF */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, /* 0xE0 - 0xEF */ N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7), N, N, N, N, N, N, N, N, /* 0xF0 - 0xFF */ N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N }; static const struct instr_dual instr_dual_0f_38_f0 = { I(DstReg | SrcMem | Mov, em_movbe), N }; static const struct instr_dual instr_dual_0f_38_f1 = { I(DstMem | SrcReg | Mov, em_movbe), N }; static const struct gprefix three_byte_0f_38_f0 = { ID(0, &instr_dual_0f_38_f0), N, N, N }; static const struct gprefix three_byte_0f_38_f1 = { ID(0, &instr_dual_0f_38_f1), N, N, N }; /* * Insns below are selected by the prefix which indexed by the third opcode * byte. */ static const struct opcode opcode_map_0f_38[256] = { /* 0x00 - 0x7f */ X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), /* 0x80 - 0xef */ X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), /* 0xf0 - 0xf1 */ GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0), GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1), /* 0xf2 - 0xff */ N, N, X4(N), X8(N) }; #undef D #undef N #undef G #undef GD #undef I #undef GP #undef EXT #undef MD #undef ID #undef D2bv #undef D2bvIP #undef I2bv #undef I2bvIP #undef I6ALU static unsigned imm_size(struct x86_emulate_ctxt *ctxt) { unsigned size; size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; if (size == 8) size = 4; return size; } static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op, unsigned size, bool sign_extension) { int rc = X86EMUL_CONTINUE; op->type = OP_IMM; op->bytes = size; op->addr.mem.ea = ctxt->_eip; /* NB. Immediates are sign-extended as necessary. */ switch (op->bytes) { case 1: op->val = insn_fetch(s8, ctxt); break; case 2: op->val = insn_fetch(s16, ctxt); break; case 4: op->val = insn_fetch(s32, ctxt); break; case 8: op->val = insn_fetch(s64, ctxt); break; } if (!sign_extension) { switch (op->bytes) { case 1: op->val &= 0xff; break; case 2: op->val &= 0xffff; break; case 4: op->val &= 0xffffffff; break; } } done: return rc; } static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op, unsigned d) { int rc = X86EMUL_CONTINUE; switch (d) { case OpReg: decode_register_operand(ctxt, op); break; case OpImmUByte: rc = decode_imm(ctxt, op, 1, false); break; case OpMem: ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; mem_common: *op = ctxt->memop; ctxt->memopp = op; if (ctxt->d & BitOp) fetch_bit_operand(ctxt); op->orig_val = op->val; break; case OpMem64: ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8; goto mem_common; case OpAcc: op->type = OP_REG; op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); fetch_register_operand(op); op->orig_val = op->val; break; case OpAccLo: op->type = OP_REG; op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes; op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX); fetch_register_operand(op); op->orig_val = op->val; break; case OpAccHi: if (ctxt->d & ByteOp) { op->type = OP_NONE; break; } op->type = OP_REG; op->bytes = ctxt->op_bytes; op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); fetch_register_operand(op); op->orig_val = op->val; break; case OpDI: op->type = OP_MEM; op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; op->addr.mem.ea = register_address(ctxt, VCPU_REGS_RDI); op->addr.mem.seg = VCPU_SREG_ES; op->val = 0; op->count = 1; break; case OpDX: op->type = OP_REG; op->bytes = 2; op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX); fetch_register_operand(op); break; case OpCL: op->type = OP_IMM; op->bytes = 1; op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff; break; case OpImmByte: rc = decode_imm(ctxt, op, 1, true); break; case OpOne: op->type = OP_IMM; op->bytes = 1; op->val = 1; break; case OpImm: rc = decode_imm(ctxt, op, imm_size(ctxt), true); break; case OpImm64: rc = decode_imm(ctxt, op, ctxt->op_bytes, true); break; case OpMem8: ctxt->memop.bytes = 1; if (ctxt->memop.type == OP_REG) { ctxt->memop.addr.reg = decode_register(ctxt, ctxt->modrm_rm, true); fetch_register_operand(&ctxt->memop); } goto mem_common; case OpMem16: ctxt->memop.bytes = 2; goto mem_common; case OpMem32: ctxt->memop.bytes = 4; goto mem_common; case OpImmU16: rc = decode_imm(ctxt, op, 2, false); break; case OpImmU: rc = decode_imm(ctxt, op, imm_size(ctxt), false); break; case OpSI: op->type = OP_MEM; op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; op->addr.mem.ea = register_address(ctxt, VCPU_REGS_RSI); op->addr.mem.seg = ctxt->seg_override; op->val = 0; op->count = 1; break; case OpXLat: op->type = OP_MEM; op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes; op->addr.mem.ea = address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RBX) + (reg_read(ctxt, VCPU_REGS_RAX) & 0xff)); op->addr.mem.seg = ctxt->seg_override; op->val = 0; break; case OpImmFAddr: op->type = OP_IMM; op->addr.mem.ea = ctxt->_eip; op->bytes = ctxt->op_bytes + 2; insn_fetch_arr(op->valptr, op->bytes, ctxt); break; case OpMemFAddr: ctxt->memop.bytes = ctxt->op_bytes + 2; goto mem_common; case OpES: op->type = OP_IMM; op->val = VCPU_SREG_ES; break; case OpCS: op->type = OP_IMM; op->val = VCPU_SREG_CS; break; case OpSS: op->type = OP_IMM; op->val = VCPU_SREG_SS; break; case OpDS: op->type = OP_IMM; op->val = VCPU_SREG_DS; break; case OpFS: op->type = OP_IMM; op->val = VCPU_SREG_FS; break; case OpGS: op->type = OP_IMM; op->val = VCPU_SREG_GS; break; case OpImplicit: /* Special instructions do their own operand decoding. */ default: op->type = OP_NONE; /* Disable writeback. */ break; } done: return rc; } int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len, int emulation_type) { int rc = X86EMUL_CONTINUE; int mode = ctxt->mode; int def_op_bytes, def_ad_bytes, goffset, simd_prefix; bool op_prefix = false; bool has_seg_override = false; struct opcode opcode; u16 dummy; struct desc_struct desc; ctxt->memop.type = OP_NONE; ctxt->memopp = NULL; ctxt->_eip = ctxt->eip; ctxt->fetch.ptr = ctxt->fetch.data; ctxt->fetch.end = ctxt->fetch.data + insn_len; ctxt->opcode_len = 1; ctxt->intercept = x86_intercept_none; if (insn_len > 0) memcpy(ctxt->fetch.data, insn, insn_len); else { rc = __do_insn_fetch_bytes(ctxt, 1); if (rc != X86EMUL_CONTINUE) goto done; } switch (mode) { case X86EMUL_MODE_REAL: case X86EMUL_MODE_VM86: def_op_bytes = def_ad_bytes = 2; ctxt->ops->get_segment(ctxt, &dummy, &desc, NULL, VCPU_SREG_CS); if (desc.d) def_op_bytes = def_ad_bytes = 4; break; case X86EMUL_MODE_PROT16: def_op_bytes = def_ad_bytes = 2; break; case X86EMUL_MODE_PROT32: def_op_bytes = def_ad_bytes = 4; break; #ifdef CONFIG_X86_64 case X86EMUL_MODE_PROT64: def_op_bytes = 4; def_ad_bytes = 8; break; #endif default: return EMULATION_FAILED; } ctxt->op_bytes = def_op_bytes; ctxt->ad_bytes = def_ad_bytes; /* Legacy prefixes. */ for (;;) { switch (ctxt->b = insn_fetch(u8, ctxt)) { case 0x66: /* operand-size override */ op_prefix = true; /* switch between 2/4 bytes */ ctxt->op_bytes = def_op_bytes ^ 6; break; case 0x67: /* address-size override */ if (mode == X86EMUL_MODE_PROT64) /* switch between 4/8 bytes */ ctxt->ad_bytes = def_ad_bytes ^ 12; else /* switch between 2/4 bytes */ ctxt->ad_bytes = def_ad_bytes ^ 6; break; case 0x26: /* ES override */ has_seg_override = true; ctxt->seg_override = VCPU_SREG_ES; break; case 0x2e: /* CS override */ has_seg_override = true; ctxt->seg_override = VCPU_SREG_CS; break; case 0x36: /* SS override */ has_seg_override = true; ctxt->seg_override = VCPU_SREG_SS; break; case 0x3e: /* DS override */ has_seg_override = true; ctxt->seg_override = VCPU_SREG_DS; break; case 0x64: /* FS override */ has_seg_override = true; ctxt->seg_override = VCPU_SREG_FS; break; case 0x65: /* GS override */ has_seg_override = true; ctxt->seg_override = VCPU_SREG_GS; break; case 0x40 ... 0x4f: /* REX */ if (mode != X86EMUL_MODE_PROT64) goto done_prefixes; ctxt->rex_prefix = ctxt->b; continue; case 0xf0: /* LOCK */ ctxt->lock_prefix = 1; break; case 0xf2: /* REPNE/REPNZ */ case 0xf3: /* REP/REPE/REPZ */ ctxt->rep_prefix = ctxt->b; break; default: goto done_prefixes; } /* Any legacy prefix after a REX prefix nullifies its effect. */ ctxt->rex_prefix = 0; } done_prefixes: /* REX prefix. */ if (ctxt->rex_prefix & 8) ctxt->op_bytes = 8; /* REX.W */ /* Opcode byte(s). */ opcode = opcode_table[ctxt->b]; /* Two-byte opcode? */ if (ctxt->b == 0x0f) { ctxt->opcode_len = 2; ctxt->b = insn_fetch(u8, ctxt); opcode = twobyte_table[ctxt->b]; /* 0F_38 opcode map */ if (ctxt->b == 0x38) { ctxt->opcode_len = 3; ctxt->b = insn_fetch(u8, ctxt); opcode = opcode_map_0f_38[ctxt->b]; } } ctxt->d = opcode.flags; if (ctxt->d & ModRM) ctxt->modrm = insn_fetch(u8, ctxt); /* vex-prefix instructions are not implemented */ if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) && (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) { ctxt->d = NotImpl; } while (ctxt->d & GroupMask) { switch (ctxt->d & GroupMask) { case Group: goffset = (ctxt->modrm >> 3) & 7; opcode = opcode.u.group[goffset]; break; case GroupDual: goffset = (ctxt->modrm >> 3) & 7; if ((ctxt->modrm >> 6) == 3) opcode = opcode.u.gdual->mod3[goffset]; else opcode = opcode.u.gdual->mod012[goffset]; break; case RMExt: goffset = ctxt->modrm & 7; opcode = opcode.u.group[goffset]; break; case Prefix: if (ctxt->rep_prefix && op_prefix) return EMULATION_FAILED; simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix; switch (simd_prefix) { case 0x00: opcode = opcode.u.gprefix->pfx_no; break; case 0x66: opcode = opcode.u.gprefix->pfx_66; break; case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; } break; case Escape: if (ctxt->modrm > 0xbf) { size_t size = ARRAY_SIZE(opcode.u.esc->high); u32 index = array_index_nospec( ctxt->modrm - 0xc0, size); opcode = opcode.u.esc->high[index]; } else { opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; } break; case InstrDual: if ((ctxt->modrm >> 6) == 3) opcode = opcode.u.idual->mod3; else opcode = opcode.u.idual->mod012; break; case ModeDual: if (ctxt->mode == X86EMUL_MODE_PROT64) opcode = opcode.u.mdual->mode64; else opcode = opcode.u.mdual->mode32; break; default: return EMULATION_FAILED; } ctxt->d &= ~(u64)GroupMask; ctxt->d |= opcode.flags; } ctxt->is_branch = opcode.flags & IsBranch; /* Unrecognised? */ if (ctxt->d == 0) return EMULATION_FAILED; ctxt->execute = opcode.u.execute; if (unlikely(emulation_type & EMULTYPE_TRAP_UD) && likely(!(ctxt->d & EmulateOnUD))) return EMULATION_FAILED; if (unlikely(ctxt->d & (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch| No16))) { /* * These are copied unconditionally here, and checked unconditionally * in x86_emulate_insn. */ ctxt->check_perm = opcode.check_perm; ctxt->intercept = opcode.intercept; if (ctxt->d & NotImpl) return EMULATION_FAILED; if (mode == X86EMUL_MODE_PROT64) { if (ctxt->op_bytes == 4 && (ctxt->d & Stack)) ctxt->op_bytes = 8; else if (ctxt->d & NearBranch) ctxt->op_bytes = 8; } if (ctxt->d & Op3264) { if (mode == X86EMUL_MODE_PROT64) ctxt->op_bytes = 8; else ctxt->op_bytes = 4; } if ((ctxt->d & No16) && ctxt->op_bytes == 2) ctxt->op_bytes = 4; if (ctxt->d & Sse) ctxt->op_bytes = 16; else if (ctxt->d & Mmx) ctxt->op_bytes = 8; } /* ModRM and SIB bytes. */ if (ctxt->d & ModRM) { rc = decode_modrm(ctxt, &ctxt->memop); if (!has_seg_override) { has_seg_override = true; ctxt->seg_override = ctxt->modrm_seg; } } else if (ctxt->d & MemAbs) rc = decode_abs(ctxt, &ctxt->memop); if (rc != X86EMUL_CONTINUE) goto done; if (!has_seg_override) ctxt->seg_override = VCPU_SREG_DS; ctxt->memop.addr.mem.seg = ctxt->seg_override; /* * Decode and fetch the source operand: register, memory * or immediate. */ rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); if (rc != X86EMUL_CONTINUE) goto done; /* * Decode and fetch the second source operand: register, memory * or immediate. */ rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); if (rc != X86EMUL_CONTINUE) goto done; /* Decode and fetch the destination operand: register or memory. */ rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); if (ctxt->rip_relative && likely(ctxt->memopp)) ctxt->memopp->addr.mem.ea = address_mask(ctxt, ctxt->memopp->addr.mem.ea + ctxt->_eip); done: if (rc == X86EMUL_PROPAGATE_FAULT) ctxt->have_exception = true; return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; } bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt) { return ctxt->d & PageTable; } static bool string_insn_completed(struct x86_emulate_ctxt *ctxt) { /* The second termination condition only applies for REPE * and REPNE. Test if the repeat string operation prefix is * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the * corresponding termination condition according to: * - if REPE/REPZ and ZF = 0 then done * - if REPNE/REPNZ and ZF = 1 then done */ if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) || (ctxt->b == 0xae) || (ctxt->b == 0xaf)) && (((ctxt->rep_prefix == REPE_PREFIX) && ((ctxt->eflags & X86_EFLAGS_ZF) == 0)) || ((ctxt->rep_prefix == REPNE_PREFIX) && ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF)))) return true; return false; } static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt) { int rc; kvm_fpu_get(); rc = asm_safe("fwait"); kvm_fpu_put(); if (unlikely(rc != X86EMUL_CONTINUE)) return emulate_exception(ctxt, MF_VECTOR, 0, false); return X86EMUL_CONTINUE; } static void fetch_possible_mmx_operand(struct operand *op) { if (op->type == OP_MM) kvm_read_mmx_reg(op->addr.mm, &op->mm_val); } static int fastop(struct x86_emulate_ctxt *ctxt, fastop_t fop) { ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF; if (!(ctxt->d & ByteOp)) fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE; asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n" : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags), [thunk_target]"+S"(fop), ASM_CALL_CONSTRAINT : "c"(ctxt->src2.val)); ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK); if (!fop) /* exception is returned in fop variable */ return emulate_de(ctxt); return X86EMUL_CONTINUE; } void init_decode_cache(struct x86_emulate_ctxt *ctxt) { /* Clear fields that are set conditionally but read without a guard. */ ctxt->rip_relative = false; ctxt->rex_prefix = 0; ctxt->lock_prefix = 0; ctxt->rep_prefix = 0; ctxt->regs_valid = 0; ctxt->regs_dirty = 0; ctxt->io_read.pos = 0; ctxt->io_read.end = 0; ctxt->mem_read.end = 0; } int x86_emulate_insn(struct x86_emulate_ctxt *ctxt) { const struct x86_emulate_ops *ops = ctxt->ops; int rc = X86EMUL_CONTINUE; int saved_dst_type = ctxt->dst.type; bool is_guest_mode = ctxt->ops->is_guest_mode(ctxt); ctxt->mem_read.pos = 0; /* LOCK prefix is allowed only with some instructions */ if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) { rc = emulate_ud(ctxt); goto done; } if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) { rc = emulate_ud(ctxt); goto done; } if (unlikely(ctxt->d & (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) { if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) || (ctxt->d & Undefined)) { rc = emulate_ud(ctxt); goto done; } if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM))) || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) { rc = emulate_ud(ctxt); goto done; } if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) { rc = emulate_nm(ctxt); goto done; } if (ctxt->d & Mmx) { rc = flush_pending_x87_faults(ctxt); if (rc != X86EMUL_CONTINUE) goto done; /* * Now that we know the fpu is exception safe, we can fetch * operands from it. */ fetch_possible_mmx_operand(&ctxt->src); fetch_possible_mmx_operand(&ctxt->src2); if (!(ctxt->d & Mov)) fetch_possible_mmx_operand(&ctxt->dst); } if (unlikely(is_guest_mode) && ctxt->intercept) { rc = emulator_check_intercept(ctxt, ctxt->intercept, X86_ICPT_PRE_EXCEPT); if (rc != X86EMUL_CONTINUE) goto done; } /* Instruction can only be executed in protected mode */ if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) { rc = emulate_ud(ctxt); goto done; } /* Privileged instruction can be executed only in CPL=0 */ if ((ctxt->d & Priv) && ops->cpl(ctxt)) { if (ctxt->d & PrivUD) rc = emulate_ud(ctxt); else rc = emulate_gp(ctxt, 0); goto done; } /* Do instruction specific permission checks */ if (ctxt->d & CheckPerm) { rc = ctxt->check_perm(ctxt); if (rc != X86EMUL_CONTINUE) goto done; } if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) { rc = emulator_check_intercept(ctxt, ctxt->intercept, X86_ICPT_POST_EXCEPT); if (rc != X86EMUL_CONTINUE) goto done; } if (ctxt->rep_prefix && (ctxt->d & String)) { /* All REP prefixes have the same first termination condition */ if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) { string_registers_quirk(ctxt); ctxt->eip = ctxt->_eip; ctxt->eflags &= ~X86_EFLAGS_RF; goto done; } } } if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) { rc = segmented_read(ctxt, ctxt->src.addr.mem, ctxt->src.valptr, ctxt->src.bytes); if (rc != X86EMUL_CONTINUE) goto done; ctxt->src.orig_val64 = ctxt->src.val64; } if (ctxt->src2.type == OP_MEM) { rc = segmented_read(ctxt, ctxt->src2.addr.mem, &ctxt->src2.val, ctxt->src2.bytes); if (rc != X86EMUL_CONTINUE) goto done; } if ((ctxt->d & DstMask) == ImplicitOps) goto special_insn; if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) { /* optimisation - avoid slow emulated read if Mov */ rc = segmented_read(ctxt, ctxt->dst.addr.mem, &ctxt->dst.val, ctxt->dst.bytes); if (rc != X86EMUL_CONTINUE) { if (!(ctxt->d & NoWrite) && rc == X86EMUL_PROPAGATE_FAULT && ctxt->exception.vector == PF_VECTOR) ctxt->exception.error_code |= PFERR_WRITE_MASK; goto done; } } /* Copy full 64-bit value for CMPXCHG8B. */ ctxt->dst.orig_val64 = ctxt->dst.val64; special_insn: if (unlikely(is_guest_mode) && (ctxt->d & Intercept)) { rc = emulator_check_intercept(ctxt, ctxt->intercept, X86_ICPT_POST_MEMACCESS); if (rc != X86EMUL_CONTINUE) goto done; } if (ctxt->rep_prefix && (ctxt->d & String)) ctxt->eflags |= X86_EFLAGS_RF; else ctxt->eflags &= ~X86_EFLAGS_RF; if (ctxt->execute) { if (ctxt->d & Fastop) rc = fastop(ctxt, ctxt->fop); else rc = ctxt->execute(ctxt); if (rc != X86EMUL_CONTINUE) goto done; goto writeback; } if (ctxt->opcode_len == 2) goto twobyte_insn; else if (ctxt->opcode_len == 3) goto threebyte_insn; switch (ctxt->b) { case 0x70 ... 0x7f: /* jcc (short) */ if (test_cc(ctxt->b, ctxt->eflags)) rc = jmp_rel(ctxt, ctxt->src.val); break; case 0x8d: /* lea r16/r32, m */ ctxt->dst.val = ctxt->src.addr.mem.ea; break; case 0x90 ... 0x97: /* nop / xchg reg, rax */ if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX)) ctxt->dst.type = OP_NONE; else rc = em_xchg(ctxt); break; case 0x98: /* cbw/cwde/cdqe */ switch (ctxt->op_bytes) { case 2: ctxt->dst.val = (s8)ctxt->dst.val; break; case 4: ctxt->dst.val = (s16)ctxt->dst.val; break; case 8: ctxt->dst.val = (s32)ctxt->dst.val; break; } break; case 0xcc: /* int3 */ rc = emulate_int(ctxt, 3); break; case 0xcd: /* int n */ rc = emulate_int(ctxt, ctxt->src.val); break; case 0xce: /* into */ if (ctxt->eflags & X86_EFLAGS_OF) rc = emulate_int(ctxt, 4); break; case 0xe9: /* jmp rel */ case 0xeb: /* jmp rel short */ rc = jmp_rel(ctxt, ctxt->src.val); ctxt->dst.type = OP_NONE; /* Disable writeback. */ break; case 0xf4: /* hlt */ ctxt->ops->halt(ctxt); break; case 0xf5: /* cmc */ /* complement carry flag from eflags reg */ ctxt->eflags ^= X86_EFLAGS_CF; break; case 0xf8: /* clc */ ctxt->eflags &= ~X86_EFLAGS_CF; break; case 0xf9: /* stc */ ctxt->eflags |= X86_EFLAGS_CF; break; case 0xfc: /* cld */ ctxt->eflags &= ~X86_EFLAGS_DF; break; case 0xfd: /* std */ ctxt->eflags |= X86_EFLAGS_DF; break; default: goto cannot_emulate; } if (rc != X86EMUL_CONTINUE) goto done; writeback: if (ctxt->d & SrcWrite) { BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR); rc = writeback(ctxt, &ctxt->src); if (rc != X86EMUL_CONTINUE) goto done; } if (!(ctxt->d & NoWrite)) { rc = writeback(ctxt, &ctxt->dst); if (rc != X86EMUL_CONTINUE) goto done; } /* * restore dst type in case the decoding will be reused * (happens for string instruction ) */ ctxt->dst.type = saved_dst_type; if ((ctxt->d & SrcMask) == SrcSI) string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src); if ((ctxt->d & DstMask) == DstDI) string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst); if (ctxt->rep_prefix && (ctxt->d & String)) { unsigned int count; struct read_cache *r = &ctxt->io_read; if ((ctxt->d & SrcMask) == SrcSI) count = ctxt->src.count; else count = ctxt->dst.count; register_address_increment(ctxt, VCPU_REGS_RCX, -count); if (!string_insn_completed(ctxt)) { /* * Re-enter guest when pio read ahead buffer is empty * or, if it is not used, after each 1024 iteration. */ if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) && (r->end == 0 || r->end != r->pos)) { /* * Reset read cache. Usually happens before * decode, but since instruction is restarted * we have to do it here. */ ctxt->mem_read.end = 0; writeback_registers(ctxt); return EMULATION_RESTART; } goto done; /* skip rip writeback */ } ctxt->eflags &= ~X86_EFLAGS_RF; } ctxt->eip = ctxt->_eip; if (ctxt->mode != X86EMUL_MODE_PROT64) ctxt->eip = (u32)ctxt->_eip; done: if (rc == X86EMUL_PROPAGATE_FAULT) { if (KVM_EMULATOR_BUG_ON(ctxt->exception.vector > 0x1f, ctxt)) return EMULATION_FAILED; ctxt->have_exception = true; } if (rc == X86EMUL_INTERCEPTED) return EMULATION_INTERCEPTED; if (rc == X86EMUL_CONTINUE) writeback_registers(ctxt); return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK; twobyte_insn: switch (ctxt->b) { case 0x09: /* wbinvd */ (ctxt->ops->wbinvd)(ctxt); break; case 0x08: /* invd */ case 0x0d: /* GrpP (prefetch) */ case 0x18: /* Grp16 (prefetch/nop) */ case 0x1f: /* nop */ break; case 0x20: /* mov cr, reg */ ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg); break; case 0x21: /* mov from dr to reg */ ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val); break; case 0x40 ... 0x4f: /* cmov */ if (test_cc(ctxt->b, ctxt->eflags)) ctxt->dst.val = ctxt->src.val; else if (ctxt->op_bytes != 4) ctxt->dst.type = OP_NONE; /* no writeback */ break; case 0x80 ... 0x8f: /* jnz rel, etc*/ if (test_cc(ctxt->b, ctxt->eflags)) rc = jmp_rel(ctxt, ctxt->src.val); break; case 0x90 ... 0x9f: /* setcc r/m8 */ ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags); break; case 0xb6 ... 0xb7: /* movzx */ ctxt->dst.bytes = ctxt->op_bytes; ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val : (u16) ctxt->src.val; break; case 0xbe ... 0xbf: /* movsx */ ctxt->dst.bytes = ctxt->op_bytes; ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val : (s16) ctxt->src.val; break; default: goto cannot_emulate; } threebyte_insn: if (rc != X86EMUL_CONTINUE) goto done; goto writeback; cannot_emulate: return EMULATION_FAILED; } void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt) { invalidate_registers(ctxt); } void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt) { writeback_registers(ctxt); } bool emulator_can_use_gpa(struct x86_emulate_ctxt *ctxt) { if (ctxt->rep_prefix && (ctxt->d & String)) return false; if (ctxt->d & TwoMemOp) return false; return true; }