// SPDX-License-Identifier: GPL-2.0-or-later /* * CPU Microcode Update Driver for Linux * * Copyright (C) 2000-2006 Tigran Aivazian * 2006 Shaohua Li * 2013-2016 Borislav Petkov * * X86 CPU microcode early update for Linux: * * Copyright (C) 2012 Fenghua Yu * H Peter Anvin" * (C) 2015 Borislav Petkov * * This driver allows to upgrade microcode on x86 processors. */ #define pr_fmt(fmt) "microcode: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRIVER_VERSION "2.2" static struct microcode_ops *microcode_ops; static bool dis_ucode_ldr = true; bool initrd_gone; LIST_HEAD(microcode_cache); /* * Synchronization. * * All non cpu-hotplug-callback call sites use: * * - microcode_mutex to synchronize with each other; * - get/put_online_cpus() to synchronize with * the cpu-hotplug-callback call sites. * * We guarantee that only a single cpu is being * updated at any particular moment of time. */ static DEFINE_MUTEX(microcode_mutex); struct ucode_cpu_info ucode_cpu_info[NR_CPUS]; struct cpu_info_ctx { struct cpu_signature *cpu_sig; int err; }; /* * Those patch levels cannot be updated to newer ones and thus should be final. */ static u32 final_levels[] = { 0x01000098, 0x0100009f, 0x010000af, 0, /* T-101 terminator */ }; /* * Check the current patch level on this CPU. * * Returns: * - true: if update should stop * - false: otherwise */ static bool amd_check_current_patch_level(void) { u32 lvl, dummy, i; u32 *levels; native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); if (IS_ENABLED(CONFIG_X86_32)) levels = (u32 *)__pa_nodebug(&final_levels); else levels = final_levels; for (i = 0; levels[i]; i++) { if (lvl == levels[i]) return true; } return false; } static bool __init check_loader_disabled_bsp(void) { static const char *__dis_opt_str = "dis_ucode_ldr"; #ifdef CONFIG_X86_32 const char *cmdline = (const char *)__pa_nodebug(boot_command_line); const char *option = (const char *)__pa_nodebug(__dis_opt_str); bool *res = (bool *)__pa_nodebug(&dis_ucode_ldr); #else /* CONFIG_X86_64 */ const char *cmdline = boot_command_line; const char *option = __dis_opt_str; bool *res = &dis_ucode_ldr; #endif /* * CPUID(1).ECX[31]: reserved for hypervisor use. This is still not * completely accurate as xen pv guests don't see that CPUID bit set but * that's good enough as they don't land on the BSP path anyway. */ if (native_cpuid_ecx(1) & BIT(31)) return *res; if (x86_cpuid_vendor() == X86_VENDOR_AMD) { if (amd_check_current_patch_level()) return *res; } if (cmdline_find_option_bool(cmdline, option) <= 0) *res = false; return *res; } extern struct builtin_fw __start_builtin_fw[]; extern struct builtin_fw __end_builtin_fw[]; bool get_builtin_firmware(struct cpio_data *cd, const char *name) { #ifdef CONFIG_FW_LOADER struct builtin_fw *b_fw; for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) { if (!strcmp(name, b_fw->name)) { cd->size = b_fw->size; cd->data = b_fw->data; return true; } } #endif return false; } void __init load_ucode_bsp(void) { unsigned int cpuid_1_eax; bool intel = true; if (!have_cpuid_p()) return; cpuid_1_eax = native_cpuid_eax(1); switch (x86_cpuid_vendor()) { case X86_VENDOR_INTEL: if (x86_family(cpuid_1_eax) < 6) return; break; case X86_VENDOR_AMD: if (x86_family(cpuid_1_eax) < 0x10) return; intel = false; break; default: return; } if (check_loader_disabled_bsp()) return; if (intel) load_ucode_intel_bsp(); else load_ucode_amd_bsp(cpuid_1_eax); } static bool check_loader_disabled_ap(void) { #ifdef CONFIG_X86_32 return *((bool *)__pa_nodebug(&dis_ucode_ldr)); #else return dis_ucode_ldr; #endif } void load_ucode_ap(void) { unsigned int cpuid_1_eax; if (check_loader_disabled_ap()) return; cpuid_1_eax = native_cpuid_eax(1); switch (x86_cpuid_vendor()) { case X86_VENDOR_INTEL: if (x86_family(cpuid_1_eax) >= 6) load_ucode_intel_ap(); break; case X86_VENDOR_AMD: if (x86_family(cpuid_1_eax) >= 0x10) load_ucode_amd_ap(cpuid_1_eax); break; default: break; } } static int __init save_microcode_in_initrd(void) { struct cpuinfo_x86 *c = &boot_cpu_data; int ret = -EINVAL; switch (c->x86_vendor) { case X86_VENDOR_INTEL: if (c->x86 >= 6) ret = save_microcode_in_initrd_intel(); break; case X86_VENDOR_AMD: if (c->x86 >= 0x10) ret = save_microcode_in_initrd_amd(cpuid_eax(1)); break; default: break; } initrd_gone = true; return ret; } struct cpio_data find_microcode_in_initrd(const char *path, bool use_pa) { #ifdef CONFIG_BLK_DEV_INITRD unsigned long start = 0; size_t size; #ifdef CONFIG_X86_32 struct boot_params *params; if (use_pa) params = (struct boot_params *)__pa_nodebug(&boot_params); else params = &boot_params; size = params->hdr.ramdisk_size; /* * Set start only if we have an initrd image. We cannot use initrd_start * because it is not set that early yet. */ if (size) start = params->hdr.ramdisk_image; # else /* CONFIG_X86_64 */ size = (unsigned long)boot_params.ext_ramdisk_size << 32; size |= boot_params.hdr.ramdisk_size; if (size) { start = (unsigned long)boot_params.ext_ramdisk_image << 32; start |= boot_params.hdr.ramdisk_image; start += PAGE_OFFSET; } # endif /* * Fixup the start address: after reserve_initrd() runs, initrd_start * has the virtual address of the beginning of the initrd. It also * possibly relocates the ramdisk. In either case, initrd_start contains * the updated address so use that instead. * * initrd_gone is for the hotplug case where we've thrown out initrd * already. */ if (!use_pa) { if (initrd_gone) return (struct cpio_data){ NULL, 0, "" }; if (initrd_start) start = initrd_start; } else { /* * The picture with physical addresses is a bit different: we * need to get the *physical* address to which the ramdisk was * relocated, i.e., relocated_ramdisk (not initrd_start) and * since we're running from physical addresses, we need to access * relocated_ramdisk through its *physical* address too. */ u64 *rr = (u64 *)__pa_nodebug(&relocated_ramdisk); if (*rr) start = *rr; } return find_cpio_data(path, (void *)start, size, NULL); #else /* !CONFIG_BLK_DEV_INITRD */ return (struct cpio_data){ NULL, 0, "" }; #endif } void reload_early_microcode(void) { int vendor, family; vendor = x86_cpuid_vendor(); family = x86_cpuid_family(); switch (vendor) { case X86_VENDOR_INTEL: if (family >= 6) reload_ucode_intel(); break; case X86_VENDOR_AMD: if (family >= 0x10) reload_ucode_amd(); break; default: break; } } static void collect_cpu_info_local(void *arg) { struct cpu_info_ctx *ctx = arg; ctx->err = microcode_ops->collect_cpu_info(smp_processor_id(), ctx->cpu_sig); } static int collect_cpu_info_on_target(int cpu, struct cpu_signature *cpu_sig) { struct cpu_info_ctx ctx = { .cpu_sig = cpu_sig, .err = 0 }; int ret; ret = smp_call_function_single(cpu, collect_cpu_info_local, &ctx, 1); if (!ret) ret = ctx.err; return ret; } static int collect_cpu_info(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; int ret; memset(uci, 0, sizeof(*uci)); ret = collect_cpu_info_on_target(cpu, &uci->cpu_sig); if (!ret) uci->valid = 1; return ret; } static void apply_microcode_local(void *arg) { enum ucode_state *err = arg; *err = microcode_ops->apply_microcode(smp_processor_id()); } static int apply_microcode_on_target(int cpu) { enum ucode_state err; int ret; ret = smp_call_function_single(cpu, apply_microcode_local, &err, 1); if (!ret) { if (err == UCODE_ERROR) ret = 1; } return ret; } #ifdef CONFIG_MICROCODE_OLD_INTERFACE static int do_microcode_update(const void __user *buf, size_t size) { int error = 0; int cpu; for_each_online_cpu(cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; enum ucode_state ustate; if (!uci->valid) continue; ustate = microcode_ops->request_microcode_user(cpu, buf, size); if (ustate == UCODE_ERROR) { error = -1; break; } else if (ustate == UCODE_NEW) { apply_microcode_on_target(cpu); } } return error; } static int microcode_open(struct inode *inode, struct file *file) { return capable(CAP_SYS_RAWIO) ? stream_open(inode, file) : -EPERM; } static ssize_t microcode_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos) { ssize_t ret = -EINVAL; unsigned long nr_pages = totalram_pages(); if ((len >> PAGE_SHIFT) > nr_pages) { pr_err("too much data (max %ld pages)\n", nr_pages); return ret; } get_online_cpus(); mutex_lock(µcode_mutex); if (do_microcode_update(buf, len) == 0) ret = (ssize_t)len; if (ret > 0) perf_check_microcode(); mutex_unlock(µcode_mutex); put_online_cpus(); return ret; } static const struct file_operations microcode_fops = { .owner = THIS_MODULE, .write = microcode_write, .open = microcode_open, .llseek = no_llseek, }; static struct miscdevice microcode_dev = { .minor = MICROCODE_MINOR, .name = "microcode", .nodename = "cpu/microcode", .fops = µcode_fops, }; static int __init microcode_dev_init(void) { int error; error = misc_register(µcode_dev); if (error) { pr_err("can't misc_register on minor=%d\n", MICROCODE_MINOR); return error; } return 0; } static void __exit microcode_dev_exit(void) { misc_deregister(µcode_dev); } #else #define microcode_dev_init() 0 #define microcode_dev_exit() do { } while (0) #endif /* fake device for request_firmware */ static struct platform_device *microcode_pdev; /* * Late loading dance. Why the heavy-handed stomp_machine effort? * * - HT siblings must be idle and not execute other code while the other sibling * is loading microcode in order to avoid any negative interactions caused by * the loading. * * - In addition, microcode update on the cores must be serialized until this * requirement can be relaxed in the future. Right now, this is conservative * and good. */ #define SPINUNIT 100 /* 100 nsec */ static int check_online_cpus(void) { unsigned int cpu; /* * Make sure all CPUs are online. It's fine for SMT to be disabled if * all the primary threads are still online. */ for_each_present_cpu(cpu) { if (topology_is_primary_thread(cpu) && !cpu_online(cpu)) { pr_err("Not all CPUs online, aborting microcode update.\n"); return -EINVAL; } } return 0; } static atomic_t late_cpus_in; static atomic_t late_cpus_out; static int __wait_for_cpus(atomic_t *t, long long timeout) { int all_cpus = num_online_cpus(); atomic_inc(t); while (atomic_read(t) < all_cpus) { if (timeout < SPINUNIT) { pr_err("Timeout while waiting for CPUs rendezvous, remaining: %d\n", all_cpus - atomic_read(t)); return 1; } ndelay(SPINUNIT); timeout -= SPINUNIT; touch_nmi_watchdog(); } return 0; } /* * Returns: * < 0 - on error * 0 - success (no update done or microcode was updated) */ static int __reload_late(void *info) { int cpu = smp_processor_id(); enum ucode_state err; int ret = 0; /* * Wait for all CPUs to arrive. A load will not be attempted unless all * CPUs show up. * */ if (__wait_for_cpus(&late_cpus_in, NSEC_PER_SEC)) return -1; /* * On an SMT system, it suffices to load the microcode on one sibling of * the core because the microcode engine is shared between the threads. * Synchronization still needs to take place so that no concurrent * loading attempts happen on multiple threads of an SMT core. See * below. */ if (cpumask_first(topology_sibling_cpumask(cpu)) == cpu) apply_microcode_local(&err); else goto wait_for_siblings; if (err >= UCODE_NFOUND) { if (err == UCODE_ERROR) pr_warn("Error reloading microcode on CPU %d\n", cpu); ret = -1; } wait_for_siblings: if (__wait_for_cpus(&late_cpus_out, NSEC_PER_SEC)) panic("Timeout during microcode update!\n"); /* * At least one thread has completed update on each core. * For others, simply call the update to make sure the * per-cpu cpuinfo can be updated with right microcode * revision. */ if (cpumask_first(topology_sibling_cpumask(cpu)) != cpu) apply_microcode_local(&err); return ret; } /* * Reload microcode late on all CPUs. Wait for a sec until they * all gather together. */ static int microcode_reload_late(void) { int ret; atomic_set(&late_cpus_in, 0); atomic_set(&late_cpus_out, 0); ret = stop_machine_cpuslocked(__reload_late, NULL, cpu_online_mask); if (ret == 0) microcode_check(); pr_info("Reload completed, microcode revision: 0x%x\n", boot_cpu_data.microcode); return ret; } static ssize_t reload_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { enum ucode_state tmp_ret = UCODE_OK; int bsp = boot_cpu_data.cpu_index; unsigned long val; ssize_t ret = 0; ret = kstrtoul(buf, 0, &val); if (ret) return ret; if (val != 1) return size; tmp_ret = microcode_ops->request_microcode_fw(bsp, µcode_pdev->dev, true); if (tmp_ret != UCODE_NEW) return size; get_online_cpus(); ret = check_online_cpus(); if (ret) goto put; mutex_lock(µcode_mutex); ret = microcode_reload_late(); mutex_unlock(µcode_mutex); put: put_online_cpus(); if (ret == 0) ret = size; return ret; } static ssize_t version_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; return sprintf(buf, "0x%x\n", uci->cpu_sig.rev); } static ssize_t pf_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ucode_cpu_info *uci = ucode_cpu_info + dev->id; return sprintf(buf, "0x%x\n", uci->cpu_sig.pf); } static DEVICE_ATTR_WO(reload); static DEVICE_ATTR(version, 0444, version_show, NULL); static DEVICE_ATTR(processor_flags, 0444, pf_show, NULL); static struct attribute *mc_default_attrs[] = { &dev_attr_version.attr, &dev_attr_processor_flags.attr, NULL }; static const struct attribute_group mc_attr_group = { .attrs = mc_default_attrs, .name = "microcode", }; static void microcode_fini_cpu(int cpu) { if (microcode_ops->microcode_fini_cpu) microcode_ops->microcode_fini_cpu(cpu); } static enum ucode_state microcode_resume_cpu(int cpu) { if (apply_microcode_on_target(cpu)) return UCODE_ERROR; pr_debug("CPU%d updated upon resume\n", cpu); return UCODE_OK; } static enum ucode_state microcode_init_cpu(int cpu, bool refresh_fw) { enum ucode_state ustate; struct ucode_cpu_info *uci = ucode_cpu_info + cpu; if (uci->valid) return UCODE_OK; if (collect_cpu_info(cpu)) return UCODE_ERROR; /* --dimm. Trigger a delayed update? */ if (system_state != SYSTEM_RUNNING) return UCODE_NFOUND; ustate = microcode_ops->request_microcode_fw(cpu, µcode_pdev->dev, refresh_fw); if (ustate == UCODE_NEW) { pr_debug("CPU%d updated upon init\n", cpu); apply_microcode_on_target(cpu); } return ustate; } static enum ucode_state microcode_update_cpu(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; /* Refresh CPU microcode revision after resume. */ collect_cpu_info(cpu); if (uci->valid) return microcode_resume_cpu(cpu); return microcode_init_cpu(cpu, false); } static int mc_device_add(struct device *dev, struct subsys_interface *sif) { int err, cpu = dev->id; if (!cpu_online(cpu)) return 0; pr_debug("CPU%d added\n", cpu); err = sysfs_create_group(&dev->kobj, &mc_attr_group); if (err) return err; if (microcode_init_cpu(cpu, true) == UCODE_ERROR) return -EINVAL; return err; } static void mc_device_remove(struct device *dev, struct subsys_interface *sif) { int cpu = dev->id; if (!cpu_online(cpu)) return; pr_debug("CPU%d removed\n", cpu); microcode_fini_cpu(cpu); sysfs_remove_group(&dev->kobj, &mc_attr_group); } static struct subsys_interface mc_cpu_interface = { .name = "microcode", .subsys = &cpu_subsys, .add_dev = mc_device_add, .remove_dev = mc_device_remove, }; /** * mc_bp_resume - Update boot CPU microcode during resume. */ static void mc_bp_resume(void) { int cpu = smp_processor_id(); struct ucode_cpu_info *uci = ucode_cpu_info + cpu; if (uci->valid && uci->mc) microcode_ops->apply_microcode(cpu); else if (!uci->mc) reload_early_microcode(); } static struct syscore_ops mc_syscore_ops = { .resume = mc_bp_resume, }; static int mc_cpu_starting(unsigned int cpu) { microcode_update_cpu(cpu); pr_debug("CPU%d added\n", cpu); return 0; } static int mc_cpu_online(unsigned int cpu) { struct device *dev = get_cpu_device(cpu); if (sysfs_create_group(&dev->kobj, &mc_attr_group)) pr_err("Failed to create group for CPU%d\n", cpu); return 0; } static int mc_cpu_down_prep(unsigned int cpu) { struct device *dev; dev = get_cpu_device(cpu); /* Suspend is in progress, only remove the interface */ sysfs_remove_group(&dev->kobj, &mc_attr_group); pr_debug("CPU%d removed\n", cpu); return 0; } static struct attribute *cpu_root_microcode_attrs[] = { &dev_attr_reload.attr, NULL }; static const struct attribute_group cpu_root_microcode_group = { .name = "microcode", .attrs = cpu_root_microcode_attrs, }; int __init microcode_init(void) { struct cpuinfo_x86 *c = &boot_cpu_data; int error; if (dis_ucode_ldr) return -EINVAL; if (c->x86_vendor == X86_VENDOR_INTEL) microcode_ops = init_intel_microcode(); else if (c->x86_vendor == X86_VENDOR_AMD) microcode_ops = init_amd_microcode(); else pr_err("no support for this CPU vendor\n"); if (!microcode_ops) return -ENODEV; microcode_pdev = platform_device_register_simple("microcode", -1, NULL, 0); if (IS_ERR(microcode_pdev)) return PTR_ERR(microcode_pdev); get_online_cpus(); mutex_lock(µcode_mutex); error = subsys_interface_register(&mc_cpu_interface); if (!error) perf_check_microcode(); mutex_unlock(µcode_mutex); put_online_cpus(); if (error) goto out_pdev; error = sysfs_create_group(&cpu_subsys.dev_root->kobj, &cpu_root_microcode_group); if (error) { pr_err("Error creating microcode group!\n"); goto out_driver; } error = microcode_dev_init(); if (error) goto out_ucode_group; register_syscore_ops(&mc_syscore_ops); cpuhp_setup_state_nocalls(CPUHP_AP_MICROCODE_LOADER, "x86/microcode:starting", mc_cpu_starting, NULL); cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/microcode:online", mc_cpu_online, mc_cpu_down_prep); pr_info("Microcode Update Driver: v%s.", DRIVER_VERSION); return 0; out_ucode_group: sysfs_remove_group(&cpu_subsys.dev_root->kobj, &cpu_root_microcode_group); out_driver: get_online_cpus(); mutex_lock(µcode_mutex); subsys_interface_unregister(&mc_cpu_interface); mutex_unlock(µcode_mutex); put_online_cpus(); out_pdev: platform_device_unregister(microcode_pdev); return error; } fs_initcall(save_microcode_in_initrd); late_initcall(microcode_init);