// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 1994 Linus Torvalds * * Cyrix stuff, June 1998 by: * - Rafael R. Reilova (moved everything from head.S), * * - Channing Corn (tests & fixes), * - Andrew D. Balsa (code cleanup). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpu.h" static void __init spectre_v1_select_mitigation(void); static void __init spectre_v2_select_mitigation(void); static void __init retbleed_select_mitigation(void); static void __init spectre_v2_user_select_mitigation(void); static void __init ssb_select_mitigation(void); static void __init l1tf_select_mitigation(void); static void __init mds_select_mitigation(void); static void __init md_clear_update_mitigation(void); static void __init md_clear_select_mitigation(void); static void __init taa_select_mitigation(void); static void __init mmio_select_mitigation(void); static void __init srbds_select_mitigation(void); static void __init l1d_flush_select_mitigation(void); static void __init srso_select_mitigation(void); static void __init gds_select_mitigation(void); /* The base value of the SPEC_CTRL MSR without task-specific bits set */ u64 x86_spec_ctrl_base; EXPORT_SYMBOL_GPL(x86_spec_ctrl_base); /* The current value of the SPEC_CTRL MSR with task-specific bits set */ DEFINE_PER_CPU(u64, x86_spec_ctrl_current); EXPORT_SYMBOL_GPL(x86_spec_ctrl_current); u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB; EXPORT_SYMBOL_GPL(x86_pred_cmd); static DEFINE_MUTEX(spec_ctrl_mutex); void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk; /* Update SPEC_CTRL MSR and its cached copy unconditionally */ static void update_spec_ctrl(u64 val) { this_cpu_write(x86_spec_ctrl_current, val); wrmsrl(MSR_IA32_SPEC_CTRL, val); } /* * Keep track of the SPEC_CTRL MSR value for the current task, which may differ * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update(). */ void update_spec_ctrl_cond(u64 val) { if (this_cpu_read(x86_spec_ctrl_current) == val) return; this_cpu_write(x86_spec_ctrl_current, val); /* * When KERNEL_IBRS this MSR is written on return-to-user, unless * forced the update can be delayed until that time. */ if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS)) wrmsrl(MSR_IA32_SPEC_CTRL, val); } noinstr u64 spec_ctrl_current(void) { return this_cpu_read(x86_spec_ctrl_current); } EXPORT_SYMBOL_GPL(spec_ctrl_current); /* * AMD specific MSR info for Speculative Store Bypass control. * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu(). */ u64 __ro_after_init x86_amd_ls_cfg_base; u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask; /* Control conditional STIBP in switch_to() */ DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp); /* Control conditional IBPB in switch_mm() */ DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); /* Control unconditional IBPB in switch_mm() */ DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); /* Control MDS CPU buffer clear before returning to user space */ DEFINE_STATIC_KEY_FALSE(mds_user_clear); EXPORT_SYMBOL_GPL(mds_user_clear); /* Control MDS CPU buffer clear before idling (halt, mwait) */ DEFINE_STATIC_KEY_FALSE(mds_idle_clear); EXPORT_SYMBOL_GPL(mds_idle_clear); /* * Controls whether l1d flush based mitigations are enabled, * based on hw features and admin setting via boot parameter * defaults to false */ DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */ DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear); EXPORT_SYMBOL_GPL(mmio_stale_data_clear); void __init cpu_select_mitigations(void) { /* * Read the SPEC_CTRL MSR to account for reserved bits which may * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD * init code as it is not enumerated and depends on the family. */ if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) { rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base); /* * Previously running kernel (kexec), may have some controls * turned ON. Clear them and let the mitigations setup below * rediscover them based on configuration. */ x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK; } /* Select the proper CPU mitigations before patching alternatives: */ spectre_v1_select_mitigation(); spectre_v2_select_mitigation(); /* * retbleed_select_mitigation() relies on the state set by * spectre_v2_select_mitigation(); specifically it wants to know about * spectre_v2=ibrs. */ retbleed_select_mitigation(); /* * spectre_v2_user_select_mitigation() relies on the state set by * retbleed_select_mitigation(); specifically the STIBP selection is * forced for UNRET or IBPB. */ spectre_v2_user_select_mitigation(); ssb_select_mitigation(); l1tf_select_mitigation(); md_clear_select_mitigation(); srbds_select_mitigation(); l1d_flush_select_mitigation(); /* * srso_select_mitigation() depends and must run after * retbleed_select_mitigation(). */ srso_select_mitigation(); gds_select_mitigation(); } /* * NOTE: This function is *only* called for SVM, since Intel uses * MSR_IA32_SPEC_CTRL for SSBD. */ void x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest) { u64 guestval, hostval; struct thread_info *ti = current_thread_info(); /* * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported. */ if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) && !static_cpu_has(X86_FEATURE_VIRT_SSBD)) return; /* * If the host has SSBD mitigation enabled, force it in the host's * virtual MSR value. If its not permanently enabled, evaluate * current's TIF_SSBD thread flag. */ if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE)) hostval = SPEC_CTRL_SSBD; else hostval = ssbd_tif_to_spec_ctrl(ti->flags); /* Sanitize the guest value */ guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD; if (hostval != guestval) { unsigned long tif; tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) : ssbd_spec_ctrl_to_tif(hostval); speculation_ctrl_update(tif); } } EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl); static void x86_amd_ssb_disable(void) { u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask; if (boot_cpu_has(X86_FEATURE_VIRT_SSBD)) wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD); else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD)) wrmsrl(MSR_AMD64_LS_CFG, msrval); } #undef pr_fmt #define pr_fmt(fmt) "MDS: " fmt /* Default mitigation for MDS-affected CPUs */ static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL; static bool mds_nosmt __ro_after_init = false; static const char * const mds_strings[] = { [MDS_MITIGATION_OFF] = "Vulnerable", [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers", [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode", }; static void __init mds_select_mitigation(void) { if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) { mds_mitigation = MDS_MITIGATION_OFF; return; } if (mds_mitigation == MDS_MITIGATION_FULL) { if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) mds_mitigation = MDS_MITIGATION_VMWERV; static_branch_enable(&mds_user_clear); if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && (mds_nosmt || cpu_mitigations_auto_nosmt())) cpu_smt_disable(false); } } static int __init mds_cmdline(char *str) { if (!boot_cpu_has_bug(X86_BUG_MDS)) return 0; if (!str) return -EINVAL; if (!strcmp(str, "off")) mds_mitigation = MDS_MITIGATION_OFF; else if (!strcmp(str, "full")) mds_mitigation = MDS_MITIGATION_FULL; else if (!strcmp(str, "full,nosmt")) { mds_mitigation = MDS_MITIGATION_FULL; mds_nosmt = true; } return 0; } early_param("mds", mds_cmdline); #undef pr_fmt #define pr_fmt(fmt) "TAA: " fmt enum taa_mitigations { TAA_MITIGATION_OFF, TAA_MITIGATION_UCODE_NEEDED, TAA_MITIGATION_VERW, TAA_MITIGATION_TSX_DISABLED, }; /* Default mitigation for TAA-affected CPUs */ static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW; static bool taa_nosmt __ro_after_init; static const char * const taa_strings[] = { [TAA_MITIGATION_OFF] = "Vulnerable", [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled", }; static void __init taa_select_mitigation(void) { u64 ia32_cap; if (!boot_cpu_has_bug(X86_BUG_TAA)) { taa_mitigation = TAA_MITIGATION_OFF; return; } /* TSX previously disabled by tsx=off */ if (!boot_cpu_has(X86_FEATURE_RTM)) { taa_mitigation = TAA_MITIGATION_TSX_DISABLED; return; } if (cpu_mitigations_off()) { taa_mitigation = TAA_MITIGATION_OFF; return; } /* * TAA mitigation via VERW is turned off if both * tsx_async_abort=off and mds=off are specified. */ if (taa_mitigation == TAA_MITIGATION_OFF && mds_mitigation == MDS_MITIGATION_OFF) return; if (boot_cpu_has(X86_FEATURE_MD_CLEAR)) taa_mitigation = TAA_MITIGATION_VERW; else taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; /* * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1. * A microcode update fixes this behavior to clear CPU buffers. It also * adds support for MSR_IA32_TSX_CTRL which is enumerated by the * ARCH_CAP_TSX_CTRL_MSR bit. * * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode * update is required. */ ia32_cap = x86_read_arch_cap_msr(); if ( (ia32_cap & ARCH_CAP_MDS_NO) && !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR)) taa_mitigation = TAA_MITIGATION_UCODE_NEEDED; /* * TSX is enabled, select alternate mitigation for TAA which is * the same as MDS. Enable MDS static branch to clear CPU buffers. * * For guests that can't determine whether the correct microcode is * present on host, enable the mitigation for UCODE_NEEDED as well. */ static_branch_enable(&mds_user_clear); if (taa_nosmt || cpu_mitigations_auto_nosmt()) cpu_smt_disable(false); } static int __init tsx_async_abort_parse_cmdline(char *str) { if (!boot_cpu_has_bug(X86_BUG_TAA)) return 0; if (!str) return -EINVAL; if (!strcmp(str, "off")) { taa_mitigation = TAA_MITIGATION_OFF; } else if (!strcmp(str, "full")) { taa_mitigation = TAA_MITIGATION_VERW; } else if (!strcmp(str, "full,nosmt")) { taa_mitigation = TAA_MITIGATION_VERW; taa_nosmt = true; } return 0; } early_param("tsx_async_abort", tsx_async_abort_parse_cmdline); #undef pr_fmt #define pr_fmt(fmt) "MMIO Stale Data: " fmt enum mmio_mitigations { MMIO_MITIGATION_OFF, MMIO_MITIGATION_UCODE_NEEDED, MMIO_MITIGATION_VERW, }; /* Default mitigation for Processor MMIO Stale Data vulnerabilities */ static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW; static bool mmio_nosmt __ro_after_init = false; static const char * const mmio_strings[] = { [MMIO_MITIGATION_OFF] = "Vulnerable", [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode", [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers", }; static void __init mmio_select_mitigation(void) { u64 ia32_cap; if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) || boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) || cpu_mitigations_off()) { mmio_mitigation = MMIO_MITIGATION_OFF; return; } if (mmio_mitigation == MMIO_MITIGATION_OFF) return; ia32_cap = x86_read_arch_cap_msr(); /* * Enable CPU buffer clear mitigation for host and VMM, if also affected * by MDS or TAA. Otherwise, enable mitigation for VMM only. */ if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM))) static_branch_enable(&mds_user_clear); else static_branch_enable(&mmio_stale_data_clear); /* * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can * be propagated to uncore buffers, clearing the Fill buffers on idle * is required irrespective of SMT state. */ if (!(ia32_cap & ARCH_CAP_FBSDP_NO)) static_branch_enable(&mds_idle_clear); /* * Check if the system has the right microcode. * * CPU Fill buffer clear mitigation is enumerated by either an explicit * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS * affected systems. */ if ((ia32_cap & ARCH_CAP_FB_CLEAR) || (boot_cpu_has(X86_FEATURE_MD_CLEAR) && boot_cpu_has(X86_FEATURE_FLUSH_L1D) && !(ia32_cap & ARCH_CAP_MDS_NO))) mmio_mitigation = MMIO_MITIGATION_VERW; else mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED; if (mmio_nosmt || cpu_mitigations_auto_nosmt()) cpu_smt_disable(false); } static int __init mmio_stale_data_parse_cmdline(char *str) { if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) return 0; if (!str) return -EINVAL; if (!strcmp(str, "off")) { mmio_mitigation = MMIO_MITIGATION_OFF; } else if (!strcmp(str, "full")) { mmio_mitigation = MMIO_MITIGATION_VERW; } else if (!strcmp(str, "full,nosmt")) { mmio_mitigation = MMIO_MITIGATION_VERW; mmio_nosmt = true; } return 0; } early_param("mmio_stale_data", mmio_stale_data_parse_cmdline); #undef pr_fmt #define pr_fmt(fmt) "" fmt static void __init md_clear_update_mitigation(void) { if (cpu_mitigations_off()) return; if (!static_key_enabled(&mds_user_clear)) goto out; /* * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data * mitigation, if necessary. */ if (mds_mitigation == MDS_MITIGATION_OFF && boot_cpu_has_bug(X86_BUG_MDS)) { mds_mitigation = MDS_MITIGATION_FULL; mds_select_mitigation(); } if (taa_mitigation == TAA_MITIGATION_OFF && boot_cpu_has_bug(X86_BUG_TAA)) { taa_mitigation = TAA_MITIGATION_VERW; taa_select_mitigation(); } if (mmio_mitigation == MMIO_MITIGATION_OFF && boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) { mmio_mitigation = MMIO_MITIGATION_VERW; mmio_select_mitigation(); } out: if (boot_cpu_has_bug(X86_BUG_MDS)) pr_info("MDS: %s\n", mds_strings[mds_mitigation]); if (boot_cpu_has_bug(X86_BUG_TAA)) pr_info("TAA: %s\n", taa_strings[taa_mitigation]); if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]); else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) pr_info("MMIO Stale Data: Unknown: No mitigations\n"); } static void __init md_clear_select_mitigation(void) { mds_select_mitigation(); taa_select_mitigation(); mmio_select_mitigation(); /* * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update * and print their mitigation after MDS, TAA and MMIO Stale Data * mitigation selection is done. */ md_clear_update_mitigation(); } #undef pr_fmt #define pr_fmt(fmt) "SRBDS: " fmt enum srbds_mitigations { SRBDS_MITIGATION_OFF, SRBDS_MITIGATION_UCODE_NEEDED, SRBDS_MITIGATION_FULL, SRBDS_MITIGATION_TSX_OFF, SRBDS_MITIGATION_HYPERVISOR, }; static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL; static const char * const srbds_strings[] = { [SRBDS_MITIGATION_OFF] = "Vulnerable", [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode", [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled", [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", }; static bool srbds_off; void update_srbds_msr(void) { u64 mcu_ctrl; if (!boot_cpu_has_bug(X86_BUG_SRBDS)) return; if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) return; if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED) return; /* * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX * being disabled and it hasn't received the SRBDS MSR microcode. */ if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) return; rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); switch (srbds_mitigation) { case SRBDS_MITIGATION_OFF: case SRBDS_MITIGATION_TSX_OFF: mcu_ctrl |= RNGDS_MITG_DIS; break; case SRBDS_MITIGATION_FULL: mcu_ctrl &= ~RNGDS_MITG_DIS; break; default: break; } wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); } static void __init srbds_select_mitigation(void) { u64 ia32_cap; if (!boot_cpu_has_bug(X86_BUG_SRBDS)) return; /* * Check to see if this is one of the MDS_NO systems supporting TSX that * are only exposed to SRBDS when TSX is enabled or when CPU is affected * by Processor MMIO Stale Data vulnerability. */ ia32_cap = x86_read_arch_cap_msr(); if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) srbds_mitigation = SRBDS_MITIGATION_TSX_OFF; else if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR; else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL)) srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED; else if (cpu_mitigations_off() || srbds_off) srbds_mitigation = SRBDS_MITIGATION_OFF; update_srbds_msr(); pr_info("%s\n", srbds_strings[srbds_mitigation]); } static int __init srbds_parse_cmdline(char *str) { if (!str) return -EINVAL; if (!boot_cpu_has_bug(X86_BUG_SRBDS)) return 0; srbds_off = !strcmp(str, "off"); return 0; } early_param("srbds", srbds_parse_cmdline); #undef pr_fmt #define pr_fmt(fmt) "L1D Flush : " fmt enum l1d_flush_mitigations { L1D_FLUSH_OFF = 0, L1D_FLUSH_ON, }; static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF; static void __init l1d_flush_select_mitigation(void) { if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) return; static_branch_enable(&switch_mm_cond_l1d_flush); pr_info("Conditional flush on switch_mm() enabled\n"); } static int __init l1d_flush_parse_cmdline(char *str) { if (!strcmp(str, "on")) l1d_flush_mitigation = L1D_FLUSH_ON; return 0; } early_param("l1d_flush", l1d_flush_parse_cmdline); #undef pr_fmt #define pr_fmt(fmt) "GDS: " fmt enum gds_mitigations { GDS_MITIGATION_OFF, GDS_MITIGATION_UCODE_NEEDED, GDS_MITIGATION_FORCE, GDS_MITIGATION_FULL, GDS_MITIGATION_FULL_LOCKED, GDS_MITIGATION_HYPERVISOR, }; #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION) static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE; #else static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL; #endif static const char * const gds_strings[] = { [GDS_MITIGATION_OFF] = "Vulnerable", [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode", [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode", [GDS_MITIGATION_FULL] = "Mitigation: Microcode", [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)", [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status", }; bool gds_ucode_mitigated(void) { return (gds_mitigation == GDS_MITIGATION_FULL || gds_mitigation == GDS_MITIGATION_FULL_LOCKED); } EXPORT_SYMBOL_GPL(gds_ucode_mitigated); void update_gds_msr(void) { u64 mcu_ctrl_after; u64 mcu_ctrl; switch (gds_mitigation) { case GDS_MITIGATION_OFF: rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); mcu_ctrl |= GDS_MITG_DIS; break; case GDS_MITIGATION_FULL_LOCKED: /* * The LOCKED state comes from the boot CPU. APs might not have * the same state. Make sure the mitigation is enabled on all * CPUs. */ case GDS_MITIGATION_FULL: rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); mcu_ctrl &= ~GDS_MITG_DIS; break; case GDS_MITIGATION_FORCE: case GDS_MITIGATION_UCODE_NEEDED: case GDS_MITIGATION_HYPERVISOR: return; }; wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); /* * Check to make sure that the WRMSR value was not ignored. Writes to * GDS_MITG_DIS will be ignored if this processor is locked but the boot * processor was not. */ rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after); WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after); } static void __init gds_select_mitigation(void) { u64 mcu_ctrl; if (!boot_cpu_has_bug(X86_BUG_GDS)) return; if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { gds_mitigation = GDS_MITIGATION_HYPERVISOR; goto out; } if (cpu_mitigations_off()) gds_mitigation = GDS_MITIGATION_OFF; /* Will verify below that mitigation _can_ be disabled */ /* No microcode */ if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) { if (gds_mitigation == GDS_MITIGATION_FORCE) { /* * This only needs to be done on the boot CPU so do it * here rather than in update_gds_msr() */ setup_clear_cpu_cap(X86_FEATURE_AVX); pr_warn("Microcode update needed! Disabling AVX as mitigation.\n"); } else { gds_mitigation = GDS_MITIGATION_UCODE_NEEDED; } goto out; } /* Microcode has mitigation, use it */ if (gds_mitigation == GDS_MITIGATION_FORCE) gds_mitigation = GDS_MITIGATION_FULL; rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl); if (mcu_ctrl & GDS_MITG_LOCKED) { if (gds_mitigation == GDS_MITIGATION_OFF) pr_warn("Mitigation locked. Disable failed.\n"); /* * The mitigation is selected from the boot CPU. All other CPUs * _should_ have the same state. If the boot CPU isn't locked * but others are then update_gds_msr() will WARN() of the state * mismatch. If the boot CPU is locked update_gds_msr() will * ensure the other CPUs have the mitigation enabled. */ gds_mitigation = GDS_MITIGATION_FULL_LOCKED; } update_gds_msr(); out: pr_info("%s\n", gds_strings[gds_mitigation]); } static int __init gds_parse_cmdline(char *str) { if (!str) return -EINVAL; if (!boot_cpu_has_bug(X86_BUG_GDS)) return 0; if (!strcmp(str, "off")) gds_mitigation = GDS_MITIGATION_OFF; else if (!strcmp(str, "force")) gds_mitigation = GDS_MITIGATION_FORCE; return 0; } early_param("gather_data_sampling", gds_parse_cmdline); #undef pr_fmt #define pr_fmt(fmt) "Spectre V1 : " fmt enum spectre_v1_mitigation { SPECTRE_V1_MITIGATION_NONE, SPECTRE_V1_MITIGATION_AUTO, }; static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init = SPECTRE_V1_MITIGATION_AUTO; static const char * const spectre_v1_strings[] = { [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers", [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization", }; /* * Does SMAP provide full mitigation against speculative kernel access to * userspace? */ static bool smap_works_speculatively(void) { if (!boot_cpu_has(X86_FEATURE_SMAP)) return false; /* * On CPUs which are vulnerable to Meltdown, SMAP does not * prevent speculative access to user data in the L1 cache. * Consider SMAP to be non-functional as a mitigation on these * CPUs. */ if (boot_cpu_has(X86_BUG_CPU_MELTDOWN)) return false; return true; } static void __init spectre_v1_select_mitigation(void) { if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) { spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; return; } if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) { /* * With Spectre v1, a user can speculatively control either * path of a conditional swapgs with a user-controlled GS * value. The mitigation is to add lfences to both code paths. * * If FSGSBASE is enabled, the user can put a kernel address in * GS, in which case SMAP provides no protection. * * If FSGSBASE is disabled, the user can only put a user space * address in GS. That makes an attack harder, but still * possible if there's no SMAP protection. */ if (boot_cpu_has(X86_FEATURE_FSGSBASE) || !smap_works_speculatively()) { /* * Mitigation can be provided from SWAPGS itself or * PTI as the CR3 write in the Meltdown mitigation * is serializing. * * If neither is there, mitigate with an LFENCE to * stop speculation through swapgs. */ if (boot_cpu_has_bug(X86_BUG_SWAPGS) && !boot_cpu_has(X86_FEATURE_PTI)) setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER); /* * Enable lfences in the kernel entry (non-swapgs) * paths, to prevent user entry from speculatively * skipping swapgs. */ setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL); } } pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]); } static int __init nospectre_v1_cmdline(char *str) { spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE; return 0; } early_param("nospectre_v1", nospectre_v1_cmdline); enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE; #undef pr_fmt #define pr_fmt(fmt) "RETBleed: " fmt enum retbleed_mitigation { RETBLEED_MITIGATION_NONE, RETBLEED_MITIGATION_UNRET, RETBLEED_MITIGATION_IBPB, RETBLEED_MITIGATION_IBRS, RETBLEED_MITIGATION_EIBRS, RETBLEED_MITIGATION_STUFF, }; enum retbleed_mitigation_cmd { RETBLEED_CMD_OFF, RETBLEED_CMD_AUTO, RETBLEED_CMD_UNRET, RETBLEED_CMD_IBPB, RETBLEED_CMD_STUFF, }; static const char * const retbleed_strings[] = { [RETBLEED_MITIGATION_NONE] = "Vulnerable", [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk", [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB", [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS", [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS", [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing", }; static enum retbleed_mitigation retbleed_mitigation __ro_after_init = RETBLEED_MITIGATION_NONE; static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init = RETBLEED_CMD_AUTO; static int __ro_after_init retbleed_nosmt = false; static int __init retbleed_parse_cmdline(char *str) { if (!str) return -EINVAL; while (str) { char *next = strchr(str, ','); if (next) { *next = 0; next++; } if (!strcmp(str, "off")) { retbleed_cmd = RETBLEED_CMD_OFF; } else if (!strcmp(str, "auto")) { retbleed_cmd = RETBLEED_CMD_AUTO; } else if (!strcmp(str, "unret")) { retbleed_cmd = RETBLEED_CMD_UNRET; } else if (!strcmp(str, "ibpb")) { retbleed_cmd = RETBLEED_CMD_IBPB; } else if (!strcmp(str, "stuff")) { retbleed_cmd = RETBLEED_CMD_STUFF; } else if (!strcmp(str, "nosmt")) { retbleed_nosmt = true; } else if (!strcmp(str, "force")) { setup_force_cpu_bug(X86_BUG_RETBLEED); } else { pr_err("Ignoring unknown retbleed option (%s).", str); } str = next; } return 0; } early_param("retbleed", retbleed_parse_cmdline); #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n" #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n" static void __init retbleed_select_mitigation(void) { bool mitigate_smt = false; if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off()) return; switch (retbleed_cmd) { case RETBLEED_CMD_OFF: return; case RETBLEED_CMD_UNRET: if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) { retbleed_mitigation = RETBLEED_MITIGATION_UNRET; } else { pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n"); goto do_cmd_auto; } break; case RETBLEED_CMD_IBPB: if (!boot_cpu_has(X86_FEATURE_IBPB)) { pr_err("WARNING: CPU does not support IBPB.\n"); goto do_cmd_auto; } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) { retbleed_mitigation = RETBLEED_MITIGATION_IBPB; } else { pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n"); goto do_cmd_auto; } break; case RETBLEED_CMD_STUFF: if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) && spectre_v2_enabled == SPECTRE_V2_RETPOLINE) { retbleed_mitigation = RETBLEED_MITIGATION_STUFF; } else { if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING)) pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n"); else pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n"); goto do_cmd_auto; } break; do_cmd_auto: case RETBLEED_CMD_AUTO: default: if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) { if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) retbleed_mitigation = RETBLEED_MITIGATION_UNRET; else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB)) retbleed_mitigation = RETBLEED_MITIGATION_IBPB; } /* * The Intel mitigation (IBRS or eIBRS) was already selected in * spectre_v2_select_mitigation(). 'retbleed_mitigation' will * be set accordingly below. */ break; } switch (retbleed_mitigation) { case RETBLEED_MITIGATION_UNRET: setup_force_cpu_cap(X86_FEATURE_RETHUNK); setup_force_cpu_cap(X86_FEATURE_UNRET); if (IS_ENABLED(CONFIG_RETHUNK)) x86_return_thunk = retbleed_return_thunk; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) pr_err(RETBLEED_UNTRAIN_MSG); mitigate_smt = true; break; case RETBLEED_MITIGATION_IBPB: setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); mitigate_smt = true; break; case RETBLEED_MITIGATION_STUFF: setup_force_cpu_cap(X86_FEATURE_RETHUNK); setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH); x86_set_skl_return_thunk(); break; default: break; } if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) && (retbleed_nosmt || cpu_mitigations_auto_nosmt())) cpu_smt_disable(false); /* * Let IBRS trump all on Intel without affecting the effects of the * retbleed= cmdline option except for call depth based stuffing */ if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { switch (spectre_v2_enabled) { case SPECTRE_V2_IBRS: retbleed_mitigation = RETBLEED_MITIGATION_IBRS; break; case SPECTRE_V2_EIBRS: case SPECTRE_V2_EIBRS_RETPOLINE: case SPECTRE_V2_EIBRS_LFENCE: retbleed_mitigation = RETBLEED_MITIGATION_EIBRS; break; default: if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF) pr_err(RETBLEED_INTEL_MSG); } } pr_info("%s\n", retbleed_strings[retbleed_mitigation]); } #undef pr_fmt #define pr_fmt(fmt) "Spectre V2 : " fmt static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init = SPECTRE_V2_USER_NONE; static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init = SPECTRE_V2_USER_NONE; #ifdef CONFIG_RETPOLINE static bool spectre_v2_bad_module; bool retpoline_module_ok(bool has_retpoline) { if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline) return true; pr_err("System may be vulnerable to spectre v2\n"); spectre_v2_bad_module = true; return false; } static inline const char *spectre_v2_module_string(void) { return spectre_v2_bad_module ? " - vulnerable module loaded" : ""; } #else static inline const char *spectre_v2_module_string(void) { return ""; } #endif #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n" #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n" #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n" #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n" #ifdef CONFIG_BPF_SYSCALL void unpriv_ebpf_notify(int new_state) { if (new_state) return; /* Unprivileged eBPF is enabled */ switch (spectre_v2_enabled) { case SPECTRE_V2_EIBRS: pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); break; case SPECTRE_V2_EIBRS_LFENCE: if (sched_smt_active()) pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); break; default: break; } } #endif static inline bool match_option(const char *arg, int arglen, const char *opt) { int len = strlen(opt); return len == arglen && !strncmp(arg, opt, len); } /* The kernel command line selection for spectre v2 */ enum spectre_v2_mitigation_cmd { SPECTRE_V2_CMD_NONE, SPECTRE_V2_CMD_AUTO, SPECTRE_V2_CMD_FORCE, SPECTRE_V2_CMD_RETPOLINE, SPECTRE_V2_CMD_RETPOLINE_GENERIC, SPECTRE_V2_CMD_RETPOLINE_LFENCE, SPECTRE_V2_CMD_EIBRS, SPECTRE_V2_CMD_EIBRS_RETPOLINE, SPECTRE_V2_CMD_EIBRS_LFENCE, SPECTRE_V2_CMD_IBRS, }; enum spectre_v2_user_cmd { SPECTRE_V2_USER_CMD_NONE, SPECTRE_V2_USER_CMD_AUTO, SPECTRE_V2_USER_CMD_FORCE, SPECTRE_V2_USER_CMD_PRCTL, SPECTRE_V2_USER_CMD_PRCTL_IBPB, SPECTRE_V2_USER_CMD_SECCOMP, SPECTRE_V2_USER_CMD_SECCOMP_IBPB, }; static const char * const spectre_v2_user_strings[] = { [SPECTRE_V2_USER_NONE] = "User space: Vulnerable", [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection", [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection", [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl", [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl", }; static const struct { const char *option; enum spectre_v2_user_cmd cmd; bool secure; } v2_user_options[] __initconst = { { "auto", SPECTRE_V2_USER_CMD_AUTO, false }, { "off", SPECTRE_V2_USER_CMD_NONE, false }, { "on", SPECTRE_V2_USER_CMD_FORCE, true }, { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false }, { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false }, { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false }, { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false }, }; static void __init spec_v2_user_print_cond(const char *reason, bool secure) { if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) pr_info("spectre_v2_user=%s forced on command line.\n", reason); } static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd; static enum spectre_v2_user_cmd __init spectre_v2_parse_user_cmdline(void) { char arg[20]; int ret, i; switch (spectre_v2_cmd) { case SPECTRE_V2_CMD_NONE: return SPECTRE_V2_USER_CMD_NONE; case SPECTRE_V2_CMD_FORCE: return SPECTRE_V2_USER_CMD_FORCE; default: break; } ret = cmdline_find_option(boot_command_line, "spectre_v2_user", arg, sizeof(arg)); if (ret < 0) return SPECTRE_V2_USER_CMD_AUTO; for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) { if (match_option(arg, ret, v2_user_options[i].option)) { spec_v2_user_print_cond(v2_user_options[i].option, v2_user_options[i].secure); return v2_user_options[i].cmd; } } pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg); return SPECTRE_V2_USER_CMD_AUTO; } static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode) { return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS; } static void __init spectre_v2_user_select_mitigation(void) { enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE; bool smt_possible = IS_ENABLED(CONFIG_SMP); enum spectre_v2_user_cmd cmd; if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP)) return; if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || cpu_smt_control == CPU_SMT_NOT_SUPPORTED) smt_possible = false; cmd = spectre_v2_parse_user_cmdline(); switch (cmd) { case SPECTRE_V2_USER_CMD_NONE: goto set_mode; case SPECTRE_V2_USER_CMD_FORCE: mode = SPECTRE_V2_USER_STRICT; break; case SPECTRE_V2_USER_CMD_AUTO: case SPECTRE_V2_USER_CMD_PRCTL: case SPECTRE_V2_USER_CMD_PRCTL_IBPB: mode = SPECTRE_V2_USER_PRCTL; break; case SPECTRE_V2_USER_CMD_SECCOMP: case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: if (IS_ENABLED(CONFIG_SECCOMP)) mode = SPECTRE_V2_USER_SECCOMP; else mode = SPECTRE_V2_USER_PRCTL; break; } /* Initialize Indirect Branch Prediction Barrier */ if (boot_cpu_has(X86_FEATURE_IBPB)) { setup_force_cpu_cap(X86_FEATURE_USE_IBPB); spectre_v2_user_ibpb = mode; switch (cmd) { case SPECTRE_V2_USER_CMD_FORCE: case SPECTRE_V2_USER_CMD_PRCTL_IBPB: case SPECTRE_V2_USER_CMD_SECCOMP_IBPB: static_branch_enable(&switch_mm_always_ibpb); spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT; break; case SPECTRE_V2_USER_CMD_PRCTL: case SPECTRE_V2_USER_CMD_AUTO: case SPECTRE_V2_USER_CMD_SECCOMP: static_branch_enable(&switch_mm_cond_ibpb); break; default: break; } pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n", static_key_enabled(&switch_mm_always_ibpb) ? "always-on" : "conditional"); } /* * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP * is not required. * * Intel's Enhanced IBRS also protects against cross-thread branch target * injection in user-mode as the IBRS bit remains always set which * implicitly enables cross-thread protections. However, in legacy IBRS * mode, the IBRS bit is set only on kernel entry and cleared on return * to userspace. AMD Automatic IBRS also does not protect userspace. * These modes therefore disable the implicit cross-thread protection, * so allow for STIBP to be selected in those cases. */ if (!boot_cpu_has(X86_FEATURE_STIBP) || !smt_possible || (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && !boot_cpu_has(X86_FEATURE_AUTOIBRS))) return; /* * At this point, an STIBP mode other than "off" has been set. * If STIBP support is not being forced, check if STIBP always-on * is preferred. */ if (mode != SPECTRE_V2_USER_STRICT && boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON)) mode = SPECTRE_V2_USER_STRICT_PREFERRED; if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { if (mode != SPECTRE_V2_USER_STRICT && mode != SPECTRE_V2_USER_STRICT_PREFERRED) pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n"); mode = SPECTRE_V2_USER_STRICT_PREFERRED; } spectre_v2_user_stibp = mode; set_mode: pr_info("%s\n", spectre_v2_user_strings[mode]); } static const char * const spectre_v2_strings[] = { [SPECTRE_V2_NONE] = "Vulnerable", [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines", [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE", [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS", [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE", [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines", [SPECTRE_V2_IBRS] = "Mitigation: IBRS", }; static const struct { const char *option; enum spectre_v2_mitigation_cmd cmd; bool secure; } mitigation_options[] __initconst = { { "off", SPECTRE_V2_CMD_NONE, false }, { "on", SPECTRE_V2_CMD_FORCE, true }, { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false }, { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false }, { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false }, { "eibrs", SPECTRE_V2_CMD_EIBRS, false }, { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false }, { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false }, { "auto", SPECTRE_V2_CMD_AUTO, false }, { "ibrs", SPECTRE_V2_CMD_IBRS, false }, }; static void __init spec_v2_print_cond(const char *reason, bool secure) { if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure) pr_info("%s selected on command line.\n", reason); } static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void) { enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO; char arg[20]; int ret, i; if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") || cpu_mitigations_off()) return SPECTRE_V2_CMD_NONE; ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg)); if (ret < 0) return SPECTRE_V2_CMD_AUTO; for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) { if (!match_option(arg, ret, mitigation_options[i].option)) continue; cmd = mitigation_options[i].cmd; break; } if (i >= ARRAY_SIZE(mitigation_options)) { pr_err("unknown option (%s). Switching to AUTO select\n", arg); return SPECTRE_V2_CMD_AUTO; } if ((cmd == SPECTRE_V2_CMD_RETPOLINE || cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC || cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && !IS_ENABLED(CONFIG_RETPOLINE)) { pr_err("%s selected but not compiled in. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } if ((cmd == SPECTRE_V2_CMD_EIBRS || cmd == SPECTRE_V2_CMD_EIBRS_LFENCE || cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) && !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE || cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) && !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) { pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) { pr_err("%s selected but not compiled in. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { pr_err("%s selected but not Intel CPU. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) { pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) { pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n", mitigation_options[i].option); return SPECTRE_V2_CMD_AUTO; } spec_v2_print_cond(mitigation_options[i].option, mitigation_options[i].secure); return cmd; } static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void) { if (!IS_ENABLED(CONFIG_RETPOLINE)) { pr_err("Kernel not compiled with retpoline; no mitigation available!"); return SPECTRE_V2_NONE; } return SPECTRE_V2_RETPOLINE; } /* Disable in-kernel use of non-RSB RET predictors */ static void __init spec_ctrl_disable_kernel_rrsba(void) { u64 ia32_cap; if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL)) return; ia32_cap = x86_read_arch_cap_msr(); if (ia32_cap & ARCH_CAP_RRSBA) { x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S; update_spec_ctrl(x86_spec_ctrl_base); } } static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode) { /* * Similar to context switches, there are two types of RSB attacks * after VM exit: * * 1) RSB underflow * * 2) Poisoned RSB entry * * When retpoline is enabled, both are mitigated by filling/clearing * the RSB. * * When IBRS is enabled, while #1 would be mitigated by the IBRS branch * prediction isolation protections, RSB still needs to be cleared * because of #2. Note that SMEP provides no protection here, unlike * user-space-poisoned RSB entries. * * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB * bug is present then a LITE version of RSB protection is required, * just a single call needs to retire before a RET is executed. */ switch (mode) { case SPECTRE_V2_NONE: return; case SPECTRE_V2_EIBRS_LFENCE: case SPECTRE_V2_EIBRS: if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE); pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n"); } return; case SPECTRE_V2_EIBRS_RETPOLINE: case SPECTRE_V2_RETPOLINE: case SPECTRE_V2_LFENCE: case SPECTRE_V2_IBRS: setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT); pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n"); return; } pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit"); dump_stack(); } static void __init spectre_v2_select_mitigation(void) { enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline(); enum spectre_v2_mitigation mode = SPECTRE_V2_NONE; /* * If the CPU is not affected and the command line mode is NONE or AUTO * then nothing to do. */ if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) && (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO)) return; switch (cmd) { case SPECTRE_V2_CMD_NONE: return; case SPECTRE_V2_CMD_FORCE: case SPECTRE_V2_CMD_AUTO: if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) { mode = SPECTRE_V2_EIBRS; break; } if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) && boot_cpu_has_bug(X86_BUG_RETBLEED) && retbleed_cmd != RETBLEED_CMD_OFF && retbleed_cmd != RETBLEED_CMD_STUFF && boot_cpu_has(X86_FEATURE_IBRS) && boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) { mode = SPECTRE_V2_IBRS; break; } mode = spectre_v2_select_retpoline(); break; case SPECTRE_V2_CMD_RETPOLINE_LFENCE: pr_err(SPECTRE_V2_LFENCE_MSG); mode = SPECTRE_V2_LFENCE; break; case SPECTRE_V2_CMD_RETPOLINE_GENERIC: mode = SPECTRE_V2_RETPOLINE; break; case SPECTRE_V2_CMD_RETPOLINE: mode = spectre_v2_select_retpoline(); break; case SPECTRE_V2_CMD_IBRS: mode = SPECTRE_V2_IBRS; break; case SPECTRE_V2_CMD_EIBRS: mode = SPECTRE_V2_EIBRS; break; case SPECTRE_V2_CMD_EIBRS_LFENCE: mode = SPECTRE_V2_EIBRS_LFENCE; break; case SPECTRE_V2_CMD_EIBRS_RETPOLINE: mode = SPECTRE_V2_EIBRS_RETPOLINE; break; } if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) pr_err(SPECTRE_V2_EIBRS_EBPF_MSG); if (spectre_v2_in_ibrs_mode(mode)) { if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) { msr_set_bit(MSR_EFER, _EFER_AUTOIBRS); } else { x86_spec_ctrl_base |= SPEC_CTRL_IBRS; update_spec_ctrl(x86_spec_ctrl_base); } } switch (mode) { case SPECTRE_V2_NONE: case SPECTRE_V2_EIBRS: break; case SPECTRE_V2_IBRS: setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS); if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) pr_warn(SPECTRE_V2_IBRS_PERF_MSG); break; case SPECTRE_V2_LFENCE: case SPECTRE_V2_EIBRS_LFENCE: setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE); fallthrough; case SPECTRE_V2_RETPOLINE: case SPECTRE_V2_EIBRS_RETPOLINE: setup_force_cpu_cap(X86_FEATURE_RETPOLINE); break; } /* * Disable alternate RSB predictions in kernel when indirect CALLs and * JMPs gets protection against BHI and Intramode-BTI, but RET * prediction from a non-RSB predictor is still a risk. */ if (mode == SPECTRE_V2_EIBRS_LFENCE || mode == SPECTRE_V2_EIBRS_RETPOLINE || mode == SPECTRE_V2_RETPOLINE) spec_ctrl_disable_kernel_rrsba(); spectre_v2_enabled = mode; pr_info("%s\n", spectre_v2_strings[mode]); /* * If Spectre v2 protection has been enabled, fill the RSB during a * context switch. In general there are two types of RSB attacks * across context switches, for which the CALLs/RETs may be unbalanced. * * 1) RSB underflow * * Some Intel parts have "bottomless RSB". When the RSB is empty, * speculated return targets may come from the branch predictor, * which could have a user-poisoned BTB or BHB entry. * * AMD has it even worse: *all* returns are speculated from the BTB, * regardless of the state of the RSB. * * When IBRS or eIBRS is enabled, the "user -> kernel" attack * scenario is mitigated by the IBRS branch prediction isolation * properties, so the RSB buffer filling wouldn't be necessary to * protect against this type of attack. * * The "user -> user" attack scenario is mitigated by RSB filling. * * 2) Poisoned RSB entry * * If the 'next' in-kernel return stack is shorter than 'prev', * 'next' could be tricked into speculating with a user-poisoned RSB * entry. * * The "user -> kernel" attack scenario is mitigated by SMEP and * eIBRS. * * The "user -> user" scenario, also known as SpectreBHB, requires * RSB clearing. * * So to mitigate all cases, unconditionally fill RSB on context * switches. * * FIXME: Is this pointless for retbleed-affected AMD? */ setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW); pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n"); spectre_v2_determine_rsb_fill_type_at_vmexit(mode); /* * Retpoline protects the kernel, but doesn't protect firmware. IBRS * and Enhanced IBRS protect firmware too, so enable IBRS around * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't * otherwise enabled. * * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because * the user might select retpoline on the kernel command line and if * the CPU supports Enhanced IBRS, kernel might un-intentionally not * enable IBRS around firmware calls. */ if (boot_cpu_has_bug(X86_BUG_RETBLEED) && boot_cpu_has(X86_FEATURE_IBPB) && (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) { if (retbleed_cmd != RETBLEED_CMD_IBPB) { setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW); pr_info("Enabling Speculation Barrier for firmware calls\n"); } } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) { setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW); pr_info("Enabling Restricted Speculation for firmware calls\n"); } /* Set up IBPB and STIBP depending on the general spectre V2 command */ spectre_v2_cmd = cmd; } static void update_stibp_msr(void * __unused) { u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP); update_spec_ctrl(val); } /* Update x86_spec_ctrl_base in case SMT state changed. */ static void update_stibp_strict(void) { u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP; if (sched_smt_active()) mask |= SPEC_CTRL_STIBP; if (mask == x86_spec_ctrl_base) return; pr_info("Update user space SMT mitigation: STIBP %s\n", mask & SPEC_CTRL_STIBP ? "always-on" : "off"); x86_spec_ctrl_base = mask; on_each_cpu(update_stibp_msr, NULL, 1); } /* Update the static key controlling the evaluation of TIF_SPEC_IB */ static void update_indir_branch_cond(void) { if (sched_smt_active()) static_branch_enable(&switch_to_cond_stibp); else static_branch_disable(&switch_to_cond_stibp); } #undef pr_fmt #define pr_fmt(fmt) fmt /* Update the static key controlling the MDS CPU buffer clear in idle */ static void update_mds_branch_idle(void) { u64 ia32_cap = x86_read_arch_cap_msr(); /* * Enable the idle clearing if SMT is active on CPUs which are * affected only by MSBDS and not any other MDS variant. * * The other variants cannot be mitigated when SMT is enabled, so * clearing the buffers on idle just to prevent the Store Buffer * repartitioning leak would be a window dressing exercise. */ if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY)) return; if (sched_smt_active()) { static_branch_enable(&mds_idle_clear); } else if (mmio_mitigation == MMIO_MITIGATION_OFF || (ia32_cap & ARCH_CAP_FBSDP_NO)) { static_branch_disable(&mds_idle_clear); } } #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n" #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n" #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n" void cpu_bugs_smt_update(void) { mutex_lock(&spec_ctrl_mutex); if (sched_smt_active() && unprivileged_ebpf_enabled() && spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG); switch (spectre_v2_user_stibp) { case SPECTRE_V2_USER_NONE: break; case SPECTRE_V2_USER_STRICT: case SPECTRE_V2_USER_STRICT_PREFERRED: update_stibp_strict(); break; case SPECTRE_V2_USER_PRCTL: case SPECTRE_V2_USER_SECCOMP: update_indir_branch_cond(); break; } switch (mds_mitigation) { case MDS_MITIGATION_FULL: case MDS_MITIGATION_VMWERV: if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY)) pr_warn_once(MDS_MSG_SMT); update_mds_branch_idle(); break; case MDS_MITIGATION_OFF: break; } switch (taa_mitigation) { case TAA_MITIGATION_VERW: case TAA_MITIGATION_UCODE_NEEDED: if (sched_smt_active()) pr_warn_once(TAA_MSG_SMT); break; case TAA_MITIGATION_TSX_DISABLED: case TAA_MITIGATION_OFF: break; } switch (mmio_mitigation) { case MMIO_MITIGATION_VERW: case MMIO_MITIGATION_UCODE_NEEDED: if (sched_smt_active()) pr_warn_once(MMIO_MSG_SMT); break; case MMIO_MITIGATION_OFF: break; } mutex_unlock(&spec_ctrl_mutex); } #undef pr_fmt #define pr_fmt(fmt) "Speculative Store Bypass: " fmt static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE; /* The kernel command line selection */ enum ssb_mitigation_cmd { SPEC_STORE_BYPASS_CMD_NONE, SPEC_STORE_BYPASS_CMD_AUTO, SPEC_STORE_BYPASS_CMD_ON, SPEC_STORE_BYPASS_CMD_PRCTL, SPEC_STORE_BYPASS_CMD_SECCOMP, }; static const char * const ssb_strings[] = { [SPEC_STORE_BYPASS_NONE] = "Vulnerable", [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled", [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl", [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp", }; static const struct { const char *option; enum ssb_mitigation_cmd cmd; } ssb_mitigation_options[] __initconst = { { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */ { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */ { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */ { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */ { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */ }; static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void) { enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO; char arg[20]; int ret, i; if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") || cpu_mitigations_off()) { return SPEC_STORE_BYPASS_CMD_NONE; } else { ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable", arg, sizeof(arg)); if (ret < 0) return SPEC_STORE_BYPASS_CMD_AUTO; for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) { if (!match_option(arg, ret, ssb_mitigation_options[i].option)) continue; cmd = ssb_mitigation_options[i].cmd; break; } if (i >= ARRAY_SIZE(ssb_mitigation_options)) { pr_err("unknown option (%s). Switching to AUTO select\n", arg); return SPEC_STORE_BYPASS_CMD_AUTO; } } return cmd; } static enum ssb_mitigation __init __ssb_select_mitigation(void) { enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE; enum ssb_mitigation_cmd cmd; if (!boot_cpu_has(X86_FEATURE_SSBD)) return mode; cmd = ssb_parse_cmdline(); if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) && (cmd == SPEC_STORE_BYPASS_CMD_NONE || cmd == SPEC_STORE_BYPASS_CMD_AUTO)) return mode; switch (cmd) { case SPEC_STORE_BYPASS_CMD_SECCOMP: /* * Choose prctl+seccomp as the default mode if seccomp is * enabled. */ if (IS_ENABLED(CONFIG_SECCOMP)) mode = SPEC_STORE_BYPASS_SECCOMP; else mode = SPEC_STORE_BYPASS_PRCTL; break; case SPEC_STORE_BYPASS_CMD_ON: mode = SPEC_STORE_BYPASS_DISABLE; break; case SPEC_STORE_BYPASS_CMD_AUTO: case SPEC_STORE_BYPASS_CMD_PRCTL: mode = SPEC_STORE_BYPASS_PRCTL; break; case SPEC_STORE_BYPASS_CMD_NONE: break; } /* * We have three CPU feature flags that are in play here: * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible. * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation */ if (mode == SPEC_STORE_BYPASS_DISABLE) { setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE); /* * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may * use a completely different MSR and bit dependent on family. */ if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) && !static_cpu_has(X86_FEATURE_AMD_SSBD)) { x86_amd_ssb_disable(); } else { x86_spec_ctrl_base |= SPEC_CTRL_SSBD; update_spec_ctrl(x86_spec_ctrl_base); } } return mode; } static void ssb_select_mitigation(void) { ssb_mode = __ssb_select_mitigation(); if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) pr_info("%s\n", ssb_strings[ssb_mode]); } #undef pr_fmt #define pr_fmt(fmt) "Speculation prctl: " fmt static void task_update_spec_tif(struct task_struct *tsk) { /* Force the update of the real TIF bits */ set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE); /* * Immediately update the speculation control MSRs for the current * task, but for a non-current task delay setting the CPU * mitigation until it is scheduled next. * * This can only happen for SECCOMP mitigation. For PRCTL it's * always the current task. */ if (tsk == current) speculation_ctrl_update_current(); } static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl) { if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) return -EPERM; switch (ctrl) { case PR_SPEC_ENABLE: set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); return 0; case PR_SPEC_DISABLE: clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH); return 0; default: return -ERANGE; } } static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl) { if (ssb_mode != SPEC_STORE_BYPASS_PRCTL && ssb_mode != SPEC_STORE_BYPASS_SECCOMP) return -ENXIO; switch (ctrl) { case PR_SPEC_ENABLE: /* If speculation is force disabled, enable is not allowed */ if (task_spec_ssb_force_disable(task)) return -EPERM; task_clear_spec_ssb_disable(task); task_clear_spec_ssb_noexec(task); task_update_spec_tif(task); break; case PR_SPEC_DISABLE: task_set_spec_ssb_disable(task); task_clear_spec_ssb_noexec(task); task_update_spec_tif(task); break; case PR_SPEC_FORCE_DISABLE: task_set_spec_ssb_disable(task); task_set_spec_ssb_force_disable(task); task_clear_spec_ssb_noexec(task); task_update_spec_tif(task); break; case PR_SPEC_DISABLE_NOEXEC: if (task_spec_ssb_force_disable(task)) return -EPERM; task_set_spec_ssb_disable(task); task_set_spec_ssb_noexec(task); task_update_spec_tif(task); break; default: return -ERANGE; } return 0; } static bool is_spec_ib_user_controlled(void) { return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL || spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL || spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP; } static int ib_prctl_set(struct task_struct *task, unsigned long ctrl) { switch (ctrl) { case PR_SPEC_ENABLE: if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) return 0; /* * With strict mode for both IBPB and STIBP, the instruction * code paths avoid checking this task flag and instead, * unconditionally run the instruction. However, STIBP and IBPB * are independent and either can be set to conditionally * enabled regardless of the mode of the other. * * If either is set to conditional, allow the task flag to be * updated, unless it was force-disabled by a previous prctl * call. Currently, this is possible on an AMD CPU which has the * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the * kernel is booted with 'spectre_v2_user=seccomp', then * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED. */ if (!is_spec_ib_user_controlled() || task_spec_ib_force_disable(task)) return -EPERM; task_clear_spec_ib_disable(task); task_update_spec_tif(task); break; case PR_SPEC_DISABLE: case PR_SPEC_FORCE_DISABLE: /* * Indirect branch speculation is always allowed when * mitigation is force disabled. */ if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) return -EPERM; if (!is_spec_ib_user_controlled()) return 0; task_set_spec_ib_disable(task); if (ctrl == PR_SPEC_FORCE_DISABLE) task_set_spec_ib_force_disable(task); task_update_spec_tif(task); if (task == current) indirect_branch_prediction_barrier(); break; default: return -ERANGE; } return 0; } int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which, unsigned long ctrl) { switch (which) { case PR_SPEC_STORE_BYPASS: return ssb_prctl_set(task, ctrl); case PR_SPEC_INDIRECT_BRANCH: return ib_prctl_set(task, ctrl); case PR_SPEC_L1D_FLUSH: return l1d_flush_prctl_set(task, ctrl); default: return -ENODEV; } } #ifdef CONFIG_SECCOMP void arch_seccomp_spec_mitigate(struct task_struct *task) { if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP) ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE); if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP || spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) ib_prctl_set(task, PR_SPEC_FORCE_DISABLE); } #endif static int l1d_flush_prctl_get(struct task_struct *task) { if (!static_branch_unlikely(&switch_mm_cond_l1d_flush)) return PR_SPEC_FORCE_DISABLE; if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH)) return PR_SPEC_PRCTL | PR_SPEC_ENABLE; else return PR_SPEC_PRCTL | PR_SPEC_DISABLE; } static int ssb_prctl_get(struct task_struct *task) { switch (ssb_mode) { case SPEC_STORE_BYPASS_DISABLE: return PR_SPEC_DISABLE; case SPEC_STORE_BYPASS_SECCOMP: case SPEC_STORE_BYPASS_PRCTL: if (task_spec_ssb_force_disable(task)) return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; if (task_spec_ssb_noexec(task)) return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC; if (task_spec_ssb_disable(task)) return PR_SPEC_PRCTL | PR_SPEC_DISABLE; return PR_SPEC_PRCTL | PR_SPEC_ENABLE; default: if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) return PR_SPEC_ENABLE; return PR_SPEC_NOT_AFFECTED; } } static int ib_prctl_get(struct task_struct *task) { if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2)) return PR_SPEC_NOT_AFFECTED; if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE && spectre_v2_user_stibp == SPECTRE_V2_USER_NONE) return PR_SPEC_ENABLE; else if (is_spec_ib_user_controlled()) { if (task_spec_ib_force_disable(task)) return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE; if (task_spec_ib_disable(task)) return PR_SPEC_PRCTL | PR_SPEC_DISABLE; return PR_SPEC_PRCTL | PR_SPEC_ENABLE; } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT || spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED) return PR_SPEC_DISABLE; else return PR_SPEC_NOT_AFFECTED; } int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) { switch (which) { case PR_SPEC_STORE_BYPASS: return ssb_prctl_get(task); case PR_SPEC_INDIRECT_BRANCH: return ib_prctl_get(task); case PR_SPEC_L1D_FLUSH: return l1d_flush_prctl_get(task); default: return -ENODEV; } } void x86_spec_ctrl_setup_ap(void) { if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) update_spec_ctrl(x86_spec_ctrl_base); if (ssb_mode == SPEC_STORE_BYPASS_DISABLE) x86_amd_ssb_disable(); } bool itlb_multihit_kvm_mitigation; EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation); #undef pr_fmt #define pr_fmt(fmt) "L1TF: " fmt /* Default mitigation for L1TF-affected CPUs */ enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH; #if IS_ENABLED(CONFIG_KVM_INTEL) EXPORT_SYMBOL_GPL(l1tf_mitigation); #endif enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation); /* * These CPUs all support 44bits physical address space internally in the * cache but CPUID can report a smaller number of physical address bits. * * The L1TF mitigation uses the top most address bit for the inversion of * non present PTEs. When the installed memory reaches into the top most * address bit due to memory holes, which has been observed on machines * which report 36bits physical address bits and have 32G RAM installed, * then the mitigation range check in l1tf_select_mitigation() triggers. * This is a false positive because the mitigation is still possible due to * the fact that the cache uses 44bit internally. Use the cache bits * instead of the reported physical bits and adjust them on the affected * machines to 44bit if the reported bits are less than 44. */ static void override_cache_bits(struct cpuinfo_x86 *c) { if (c->x86 != 6) return; switch (c->x86_model) { case INTEL_FAM6_NEHALEM: case INTEL_FAM6_WESTMERE: case INTEL_FAM6_SANDYBRIDGE: case INTEL_FAM6_IVYBRIDGE: case INTEL_FAM6_HASWELL: case INTEL_FAM6_HASWELL_L: case INTEL_FAM6_HASWELL_G: case INTEL_FAM6_BROADWELL: case INTEL_FAM6_BROADWELL_G: case INTEL_FAM6_SKYLAKE_L: case INTEL_FAM6_SKYLAKE: case INTEL_FAM6_KABYLAKE_L: case INTEL_FAM6_KABYLAKE: if (c->x86_cache_bits < 44) c->x86_cache_bits = 44; break; } } static void __init l1tf_select_mitigation(void) { u64 half_pa; if (!boot_cpu_has_bug(X86_BUG_L1TF)) return; if (cpu_mitigations_off()) l1tf_mitigation = L1TF_MITIGATION_OFF; else if (cpu_mitigations_auto_nosmt()) l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; override_cache_bits(&boot_cpu_data); switch (l1tf_mitigation) { case L1TF_MITIGATION_OFF: case L1TF_MITIGATION_FLUSH_NOWARN: case L1TF_MITIGATION_FLUSH: break; case L1TF_MITIGATION_FLUSH_NOSMT: case L1TF_MITIGATION_FULL: cpu_smt_disable(false); break; case L1TF_MITIGATION_FULL_FORCE: cpu_smt_disable(true); break; } #if CONFIG_PGTABLE_LEVELS == 2 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n"); return; #endif half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT; if (l1tf_mitigation != L1TF_MITIGATION_OFF && e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) { pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n"); pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n", half_pa); pr_info("However, doing so will make a part of your RAM unusable.\n"); pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n"); return; } setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV); } static int __init l1tf_cmdline(char *str) { if (!boot_cpu_has_bug(X86_BUG_L1TF)) return 0; if (!str) return -EINVAL; if (!strcmp(str, "off")) l1tf_mitigation = L1TF_MITIGATION_OFF; else if (!strcmp(str, "flush,nowarn")) l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN; else if (!strcmp(str, "flush")) l1tf_mitigation = L1TF_MITIGATION_FLUSH; else if (!strcmp(str, "flush,nosmt")) l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT; else if (!strcmp(str, "full")) l1tf_mitigation = L1TF_MITIGATION_FULL; else if (!strcmp(str, "full,force")) l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE; return 0; } early_param("l1tf", l1tf_cmdline); #undef pr_fmt #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt enum srso_mitigation { SRSO_MITIGATION_NONE, SRSO_MITIGATION_MICROCODE, SRSO_MITIGATION_SAFE_RET, SRSO_MITIGATION_IBPB, SRSO_MITIGATION_IBPB_ON_VMEXIT, }; enum srso_mitigation_cmd { SRSO_CMD_OFF, SRSO_CMD_MICROCODE, SRSO_CMD_SAFE_RET, SRSO_CMD_IBPB, SRSO_CMD_IBPB_ON_VMEXIT, }; static const char * const srso_strings[] = { [SRSO_MITIGATION_NONE] = "Vulnerable", [SRSO_MITIGATION_MICROCODE] = "Mitigation: microcode", [SRSO_MITIGATION_SAFE_RET] = "Mitigation: safe RET", [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB", [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only" }; static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE; static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET; static int __init srso_parse_cmdline(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "off")) srso_cmd = SRSO_CMD_OFF; else if (!strcmp(str, "microcode")) srso_cmd = SRSO_CMD_MICROCODE; else if (!strcmp(str, "safe-ret")) srso_cmd = SRSO_CMD_SAFE_RET; else if (!strcmp(str, "ibpb")) srso_cmd = SRSO_CMD_IBPB; else if (!strcmp(str, "ibpb-vmexit")) srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT; else pr_err("Ignoring unknown SRSO option (%s).", str); return 0; } early_param("spec_rstack_overflow", srso_parse_cmdline); #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options." static void __init srso_select_mitigation(void) { bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE); if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off()) goto pred_cmd; if (!has_microcode) { pr_warn("IBPB-extending microcode not applied!\n"); pr_warn(SRSO_NOTICE); } else { /* * Zen1/2 with SMT off aren't vulnerable after the right * IBPB microcode has been applied. */ if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) { setup_force_cpu_cap(X86_FEATURE_SRSO_NO); return; } } if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { if (has_microcode) { pr_err("Retbleed IBPB mitigation enabled, using same for SRSO\n"); srso_mitigation = SRSO_MITIGATION_IBPB; goto pred_cmd; } } switch (srso_cmd) { case SRSO_CMD_OFF: goto pred_cmd; case SRSO_CMD_MICROCODE: if (has_microcode) { srso_mitigation = SRSO_MITIGATION_MICROCODE; pr_warn(SRSO_NOTICE); } break; case SRSO_CMD_SAFE_RET: if (IS_ENABLED(CONFIG_CPU_SRSO)) { /* * Enable the return thunk for generated code * like ftrace, static_call, etc. */ setup_force_cpu_cap(X86_FEATURE_RETHUNK); setup_force_cpu_cap(X86_FEATURE_UNRET); if (boot_cpu_data.x86 == 0x19) { setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS); x86_return_thunk = srso_alias_return_thunk; } else { setup_force_cpu_cap(X86_FEATURE_SRSO); x86_return_thunk = srso_return_thunk; } srso_mitigation = SRSO_MITIGATION_SAFE_RET; } else { pr_err("WARNING: kernel not compiled with CPU_SRSO.\n"); goto pred_cmd; } break; case SRSO_CMD_IBPB: if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) { if (has_microcode) { setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB); srso_mitigation = SRSO_MITIGATION_IBPB; } } else { pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n"); goto pred_cmd; } break; case SRSO_CMD_IBPB_ON_VMEXIT: if (IS_ENABLED(CONFIG_CPU_SRSO)) { if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) { setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT); srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT; } } else { pr_err("WARNING: kernel not compiled with CPU_SRSO.\n"); goto pred_cmd; } break; default: break; } pr_info("%s%s\n", srso_strings[srso_mitigation], (has_microcode ? "" : ", no microcode")); pred_cmd: if ((boot_cpu_has(X86_FEATURE_SRSO_NO) || srso_cmd == SRSO_CMD_OFF) && boot_cpu_has(X86_FEATURE_SBPB)) x86_pred_cmd = PRED_CMD_SBPB; } #undef pr_fmt #define pr_fmt(fmt) fmt #ifdef CONFIG_SYSFS #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion" #if IS_ENABLED(CONFIG_KVM_INTEL) static const char * const l1tf_vmx_states[] = { [VMENTER_L1D_FLUSH_AUTO] = "auto", [VMENTER_L1D_FLUSH_NEVER] = "vulnerable", [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes", [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes", [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled", [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary" }; static ssize_t l1tf_show_state(char *buf) { if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED || (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER && sched_smt_active())) { return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG, l1tf_vmx_states[l1tf_vmx_mitigation]); } return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG, l1tf_vmx_states[l1tf_vmx_mitigation], sched_smt_active() ? "vulnerable" : "disabled"); } static ssize_t itlb_multihit_show_state(char *buf) { if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || !boot_cpu_has(X86_FEATURE_VMX)) return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n"); else if (!(cr4_read_shadow() & X86_CR4_VMXE)) return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n"); else if (itlb_multihit_kvm_mitigation) return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n"); else return sysfs_emit(buf, "KVM: Vulnerable\n"); } #else static ssize_t l1tf_show_state(char *buf) { return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG); } static ssize_t itlb_multihit_show_state(char *buf) { return sysfs_emit(buf, "Processor vulnerable\n"); } #endif static ssize_t mds_show_state(char *buf) { if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { return sysfs_emit(buf, "%s; SMT Host state unknown\n", mds_strings[mds_mitigation]); } if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) { return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" : sched_smt_active() ? "mitigated" : "disabled")); } return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation], sched_smt_active() ? "vulnerable" : "disabled"); } static ssize_t tsx_async_abort_show_state(char *buf) { if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) || (taa_mitigation == TAA_MITIGATION_OFF)) return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]); if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { return sysfs_emit(buf, "%s; SMT Host state unknown\n", taa_strings[taa_mitigation]); } return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation], sched_smt_active() ? "vulnerable" : "disabled"); } static ssize_t mmio_stale_data_show_state(char *buf) { if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) return sysfs_emit(buf, "Unknown: No mitigations\n"); if (mmio_mitigation == MMIO_MITIGATION_OFF) return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]); if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { return sysfs_emit(buf, "%s; SMT Host state unknown\n", mmio_strings[mmio_mitigation]); } return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation], sched_smt_active() ? "vulnerable" : "disabled"); } static char *stibp_state(void) { if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) && !boot_cpu_has(X86_FEATURE_AUTOIBRS)) return ""; switch (spectre_v2_user_stibp) { case SPECTRE_V2_USER_NONE: return ", STIBP: disabled"; case SPECTRE_V2_USER_STRICT: return ", STIBP: forced"; case SPECTRE_V2_USER_STRICT_PREFERRED: return ", STIBP: always-on"; case SPECTRE_V2_USER_PRCTL: case SPECTRE_V2_USER_SECCOMP: if (static_key_enabled(&switch_to_cond_stibp)) return ", STIBP: conditional"; } return ""; } static char *ibpb_state(void) { if (boot_cpu_has(X86_FEATURE_IBPB)) { if (static_key_enabled(&switch_mm_always_ibpb)) return ", IBPB: always-on"; if (static_key_enabled(&switch_mm_cond_ibpb)) return ", IBPB: conditional"; return ", IBPB: disabled"; } return ""; } static char *pbrsb_eibrs_state(void) { if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) { if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) || boot_cpu_has(X86_FEATURE_RSB_VMEXIT)) return ", PBRSB-eIBRS: SW sequence"; else return ", PBRSB-eIBRS: Vulnerable"; } else { return ", PBRSB-eIBRS: Not affected"; } } static ssize_t spectre_v2_show_state(char *buf) { if (spectre_v2_enabled == SPECTRE_V2_LFENCE) return sysfs_emit(buf, "Vulnerable: LFENCE\n"); if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled()) return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n"); if (sched_smt_active() && unprivileged_ebpf_enabled() && spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE) return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n"); return sysfs_emit(buf, "%s%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled], ibpb_state(), boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "", stibp_state(), boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "", pbrsb_eibrs_state(), spectre_v2_module_string()); } static ssize_t srbds_show_state(char *buf) { return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]); } static ssize_t retbleed_show_state(char *buf) { if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET || retbleed_mitigation == RETBLEED_MITIGATION_IBPB) { if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD && boot_cpu_data.x86_vendor != X86_VENDOR_HYGON) return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n"); return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation], !sched_smt_active() ? "disabled" : spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT || spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ? "enabled with STIBP protection" : "vulnerable"); } return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]); } static ssize_t srso_show_state(char *buf) { if (boot_cpu_has(X86_FEATURE_SRSO_NO)) return sysfs_emit(buf, "Mitigation: SMT disabled\n"); return sysfs_emit(buf, "%s%s\n", srso_strings[srso_mitigation], boot_cpu_has(X86_FEATURE_IBPB_BRTYPE) ? "" : ", no microcode"); } static ssize_t gds_show_state(char *buf) { return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]); } static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr, char *buf, unsigned int bug) { if (!boot_cpu_has_bug(bug)) return sysfs_emit(buf, "Not affected\n"); switch (bug) { case X86_BUG_CPU_MELTDOWN: if (boot_cpu_has(X86_FEATURE_PTI)) return sysfs_emit(buf, "Mitigation: PTI\n"); if (hypervisor_is_type(X86_HYPER_XEN_PV)) return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n"); break; case X86_BUG_SPECTRE_V1: return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]); case X86_BUG_SPECTRE_V2: return spectre_v2_show_state(buf); case X86_BUG_SPEC_STORE_BYPASS: return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]); case X86_BUG_L1TF: if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV)) return l1tf_show_state(buf); break; case X86_BUG_MDS: return mds_show_state(buf); case X86_BUG_TAA: return tsx_async_abort_show_state(buf); case X86_BUG_ITLB_MULTIHIT: return itlb_multihit_show_state(buf); case X86_BUG_SRBDS: return srbds_show_state(buf); case X86_BUG_MMIO_STALE_DATA: case X86_BUG_MMIO_UNKNOWN: return mmio_stale_data_show_state(buf); case X86_BUG_RETBLEED: return retbleed_show_state(buf); case X86_BUG_SRSO: return srso_show_state(buf); case X86_BUG_GDS: return gds_show_state(buf); default: break; } return sysfs_emit(buf, "Vulnerable\n"); } ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN); } ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1); } ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2); } ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS); } ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_L1TF); } ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_MDS); } ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_TAA); } ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT); } ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS); } ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf) { if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN)) return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN); else return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA); } ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED); } ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_SRSO); } ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_common(dev, attr, buf, X86_BUG_GDS); } #endif