/* * Copyright (C) 1991,1992 Linus Torvalds * * entry_32.S contains the system-call and low-level fault and trap handling routines. * * Stack layout while running C code: * ptrace needs to have all registers on the stack. * If the order here is changed, it needs to be * updated in fork.c:copy_process(), signal.c:do_signal(), * ptrace.c and ptrace.h * * 0(%esp) - %ebx * 4(%esp) - %ecx * 8(%esp) - %edx * C(%esp) - %esi * 10(%esp) - %edi * 14(%esp) - %ebp * 18(%esp) - %eax * 1C(%esp) - %ds * 20(%esp) - %es * 24(%esp) - %fs * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS * 2C(%esp) - orig_eax * 30(%esp) - %eip * 34(%esp) - %cs * 38(%esp) - %eflags * 3C(%esp) - %oldesp * 40(%esp) - %oldss */ #include <linux/linkage.h> #include <linux/err.h> #include <asm/thread_info.h> #include <asm/irqflags.h> #include <asm/errno.h> #include <asm/segment.h> #include <asm/smp.h> #include <asm/page_types.h> #include <asm/percpu.h> #include <asm/processor-flags.h> #include <asm/ftrace.h> #include <asm/irq_vectors.h> #include <asm/cpufeatures.h> #include <asm/alternative-asm.h> #include <asm/asm.h> #include <asm/smap.h> .section .entry.text, "ax" /* * We use macros for low-level operations which need to be overridden * for paravirtualization. The following will never clobber any registers: * INTERRUPT_RETURN (aka. "iret") * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax") * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit"). * * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY). * Allowing a register to be clobbered can shrink the paravirt replacement * enough to patch inline, increasing performance. */ #ifdef CONFIG_PREEMPT # define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF #else # define preempt_stop(clobbers) # define resume_kernel restore_all #endif .macro TRACE_IRQS_IRET #ifdef CONFIG_TRACE_IRQFLAGS testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off? jz 1f TRACE_IRQS_ON 1: #endif .endm /* * User gs save/restore * * %gs is used for userland TLS and kernel only uses it for stack * canary which is required to be at %gs:20 by gcc. Read the comment * at the top of stackprotector.h for more info. * * Local labels 98 and 99 are used. */ #ifdef CONFIG_X86_32_LAZY_GS /* unfortunately push/pop can't be no-op */ .macro PUSH_GS pushl $0 .endm .macro POP_GS pop=0 addl $(4 + \pop), %esp .endm .macro POP_GS_EX .endm /* all the rest are no-op */ .macro PTGS_TO_GS .endm .macro PTGS_TO_GS_EX .endm .macro GS_TO_REG reg .endm .macro REG_TO_PTGS reg .endm .macro SET_KERNEL_GS reg .endm #else /* CONFIG_X86_32_LAZY_GS */ .macro PUSH_GS pushl %gs .endm .macro POP_GS pop=0 98: popl %gs .if \pop <> 0 add $\pop, %esp .endif .endm .macro POP_GS_EX .pushsection .fixup, "ax" 99: movl $0, (%esp) jmp 98b .popsection _ASM_EXTABLE(98b, 99b) .endm .macro PTGS_TO_GS 98: mov PT_GS(%esp), %gs .endm .macro PTGS_TO_GS_EX .pushsection .fixup, "ax" 99: movl $0, PT_GS(%esp) jmp 98b .popsection _ASM_EXTABLE(98b, 99b) .endm .macro GS_TO_REG reg movl %gs, \reg .endm .macro REG_TO_PTGS reg movl \reg, PT_GS(%esp) .endm .macro SET_KERNEL_GS reg movl $(__KERNEL_STACK_CANARY), \reg movl \reg, %gs .endm #endif /* CONFIG_X86_32_LAZY_GS */ .macro SAVE_ALL pt_regs_ax=%eax cld PUSH_GS pushl %fs pushl %es pushl %ds pushl \pt_regs_ax pushl %ebp pushl %edi pushl %esi pushl %edx pushl %ecx pushl %ebx movl $(__USER_DS), %edx movl %edx, %ds movl %edx, %es movl $(__KERNEL_PERCPU), %edx movl %edx, %fs SET_KERNEL_GS %edx .endm .macro RESTORE_INT_REGS popl %ebx popl %ecx popl %edx popl %esi popl %edi popl %ebp popl %eax .endm .macro RESTORE_REGS pop=0 RESTORE_INT_REGS 1: popl %ds 2: popl %es 3: popl %fs POP_GS \pop .pushsection .fixup, "ax" 4: movl $0, (%esp) jmp 1b 5: movl $0, (%esp) jmp 2b 6: movl $0, (%esp) jmp 3b .popsection _ASM_EXTABLE(1b, 4b) _ASM_EXTABLE(2b, 5b) _ASM_EXTABLE(3b, 6b) POP_GS_EX .endm ENTRY(ret_from_fork) pushl %eax call schedule_tail popl %eax /* When we fork, we trace the syscall return in the child, too. */ movl %esp, %eax call syscall_return_slowpath jmp restore_all END(ret_from_fork) ENTRY(ret_from_kernel_thread) pushl %eax call schedule_tail popl %eax movl PT_EBP(%esp), %eax call *PT_EBX(%esp) movl $0, PT_EAX(%esp) /* * Kernel threads return to userspace as if returning from a syscall. * We should check whether anything actually uses this path and, if so, * consider switching it over to ret_from_fork. */ movl %esp, %eax call syscall_return_slowpath jmp restore_all ENDPROC(ret_from_kernel_thread) /* * Return to user mode is not as complex as all this looks, * but we want the default path for a system call return to * go as quickly as possible which is why some of this is * less clear than it otherwise should be. */ # userspace resumption stub bypassing syscall exit tracing ALIGN ret_from_exception: preempt_stop(CLBR_ANY) ret_from_intr: #ifdef CONFIG_VM86 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax #else /* * We can be coming here from child spawned by kernel_thread(). */ movl PT_CS(%esp), %eax andl $SEGMENT_RPL_MASK, %eax #endif cmpl $USER_RPL, %eax jb resume_kernel # not returning to v8086 or userspace ENTRY(resume_userspace) DISABLE_INTERRUPTS(CLBR_ANY) TRACE_IRQS_OFF movl %esp, %eax call prepare_exit_to_usermode jmp restore_all END(ret_from_exception) #ifdef CONFIG_PREEMPT ENTRY(resume_kernel) DISABLE_INTERRUPTS(CLBR_ANY) need_resched: cmpl $0, PER_CPU_VAR(__preempt_count) jnz restore_all testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ? jz restore_all call preempt_schedule_irq jmp need_resched END(resume_kernel) #endif GLOBAL(__begin_SYSENTER_singlestep_region) /* * All code from here through __end_SYSENTER_singlestep_region is subject * to being single-stepped if a user program sets TF and executes SYSENTER. * There is absolutely nothing that we can do to prevent this from happening * (thanks Intel!). To keep our handling of this situation as simple as * possible, we handle TF just like AC and NT, except that our #DB handler * will ignore all of the single-step traps generated in this range. */ #ifdef CONFIG_XEN /* * Xen doesn't set %esp to be precisely what the normal SYSENTER * entry point expects, so fix it up before using the normal path. */ ENTRY(xen_sysenter_target) addl $5*4, %esp /* remove xen-provided frame */ jmp sysenter_past_esp #endif /* * 32-bit SYSENTER entry. * * 32-bit system calls through the vDSO's __kernel_vsyscall enter here * if X86_FEATURE_SEP is available. This is the preferred system call * entry on 32-bit systems. * * The SYSENTER instruction, in principle, should *only* occur in the * vDSO. In practice, a small number of Android devices were shipped * with a copy of Bionic that inlined a SYSENTER instruction. This * never happened in any of Google's Bionic versions -- it only happened * in a narrow range of Intel-provided versions. * * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs. * IF and VM in RFLAGS are cleared (IOW: interrupts are off). * SYSENTER does not save anything on the stack, * and does not save old EIP (!!!), ESP, or EFLAGS. * * To avoid losing track of EFLAGS.VM (and thus potentially corrupting * user and/or vm86 state), we explicitly disable the SYSENTER * instruction in vm86 mode by reprogramming the MSRs. * * Arguments: * eax system call number * ebx arg1 * ecx arg2 * edx arg3 * esi arg4 * edi arg5 * ebp user stack * 0(%ebp) arg6 */ ENTRY(entry_SYSENTER_32) movl TSS_sysenter_sp0(%esp), %esp sysenter_past_esp: pushl $__USER_DS /* pt_regs->ss */ pushl %ebp /* pt_regs->sp (stashed in bp) */ pushfl /* pt_regs->flags (except IF = 0) */ orl $X86_EFLAGS_IF, (%esp) /* Fix IF */ pushl $__USER_CS /* pt_regs->cs */ pushl $0 /* pt_regs->ip = 0 (placeholder) */ pushl %eax /* pt_regs->orig_ax */ SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */ /* * SYSENTER doesn't filter flags, so we need to clear NT, AC * and TF ourselves. To save a few cycles, we can check whether * either was set instead of doing an unconditional popfq. * This needs to happen before enabling interrupts so that * we don't get preempted with NT set. * * If TF is set, we will single-step all the way to here -- do_debug * will ignore all the traps. (Yes, this is slow, but so is * single-stepping in general. This allows us to avoid having * a more complicated code to handle the case where a user program * forces us to single-step through the SYSENTER entry code.) * * NB.: .Lsysenter_fix_flags is a label with the code under it moved * out-of-line as an optimization: NT is unlikely to be set in the * majority of the cases and instead of polluting the I$ unnecessarily, * we're keeping that code behind a branch which will predict as * not-taken and therefore its instructions won't be fetched. */ testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp) jnz .Lsysenter_fix_flags .Lsysenter_flags_fixed: /* * User mode is traced as though IRQs are on, and SYSENTER * turned them off. */ TRACE_IRQS_OFF movl %esp, %eax call do_fast_syscall_32 /* XEN PV guests always use IRET path */ ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \ "jmp .Lsyscall_32_done", X86_FEATURE_XENPV /* Opportunistic SYSEXIT */ TRACE_IRQS_ON /* User mode traces as IRQs on. */ movl PT_EIP(%esp), %edx /* pt_regs->ip */ movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */ 1: mov PT_FS(%esp), %fs PTGS_TO_GS popl %ebx /* pt_regs->bx */ addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */ popl %esi /* pt_regs->si */ popl %edi /* pt_regs->di */ popl %ebp /* pt_regs->bp */ popl %eax /* pt_regs->ax */ /* * Restore all flags except IF. (We restore IF separately because * STI gives a one-instruction window in which we won't be interrupted, * whereas POPF does not.) */ addl $PT_EFLAGS-PT_DS, %esp /* point esp at pt_regs->flags */ btr $X86_EFLAGS_IF_BIT, (%esp) popfl /* * Return back to the vDSO, which will pop ecx and edx. * Don't bother with DS and ES (they already contain __USER_DS). */ sti sysexit .pushsection .fixup, "ax" 2: movl $0, PT_FS(%esp) jmp 1b .popsection _ASM_EXTABLE(1b, 2b) PTGS_TO_GS_EX .Lsysenter_fix_flags: pushl $X86_EFLAGS_FIXED popfl jmp .Lsysenter_flags_fixed GLOBAL(__end_SYSENTER_singlestep_region) ENDPROC(entry_SYSENTER_32) /* * 32-bit legacy system call entry. * * 32-bit x86 Linux system calls traditionally used the INT $0x80 * instruction. INT $0x80 lands here. * * This entry point can be used by any 32-bit perform system calls. * Instances of INT $0x80 can be found inline in various programs and * libraries. It is also used by the vDSO's __kernel_vsyscall * fallback for hardware that doesn't support a faster entry method. * Restarted 32-bit system calls also fall back to INT $0x80 * regardless of what instruction was originally used to do the system * call. (64-bit programs can use INT $0x80 as well, but they can * only run on 64-bit kernels and therefore land in * entry_INT80_compat.) * * This is considered a slow path. It is not used by most libc * implementations on modern hardware except during process startup. * * Arguments: * eax system call number * ebx arg1 * ecx arg2 * edx arg3 * esi arg4 * edi arg5 * ebp arg6 */ ENTRY(entry_INT80_32) ASM_CLAC pushl %eax /* pt_regs->orig_ax */ SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */ /* * User mode is traced as though IRQs are on, and the interrupt gate * turned them off. */ TRACE_IRQS_OFF movl %esp, %eax call do_int80_syscall_32 .Lsyscall_32_done: restore_all: TRACE_IRQS_IRET restore_all_notrace: #ifdef CONFIG_X86_ESPFIX32 ALTERNATIVE "jmp restore_nocheck", "", X86_BUG_ESPFIX movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS /* * Warning: PT_OLDSS(%esp) contains the wrong/random values if we * are returning to the kernel. * See comments in process.c:copy_thread() for details. */ movb PT_OLDSS(%esp), %ah movb PT_CS(%esp), %al andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax je ldt_ss # returning to user-space with LDT SS #endif restore_nocheck: RESTORE_REGS 4 # skip orig_eax/error_code irq_return: INTERRUPT_RETURN .section .fixup, "ax" ENTRY(iret_exc ) pushl $0 # no error code pushl $do_iret_error jmp error_code .previous _ASM_EXTABLE(irq_return, iret_exc) #ifdef CONFIG_X86_ESPFIX32 ldt_ss: /* * Setup and switch to ESPFIX stack * * We're returning to userspace with a 16 bit stack. The CPU will not * restore the high word of ESP for us on executing iret... This is an * "official" bug of all the x86-compatible CPUs, which we can work * around to make dosemu and wine happy. We do this by preloading the * high word of ESP with the high word of the userspace ESP while * compensating for the offset by changing to the ESPFIX segment with * a base address that matches for the difference. */ #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8) mov %esp, %edx /* load kernel esp */ mov PT_OLDESP(%esp), %eax /* load userspace esp */ mov %dx, %ax /* eax: new kernel esp */ sub %eax, %edx /* offset (low word is 0) */ shr $16, %edx mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */ mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */ pushl $__ESPFIX_SS pushl %eax /* new kernel esp */ /* * Disable interrupts, but do not irqtrace this section: we * will soon execute iret and the tracer was already set to * the irqstate after the IRET: */ DISABLE_INTERRUPTS(CLBR_EAX) lss (%esp), %esp /* switch to espfix segment */ jmp restore_nocheck #endif ENDPROC(entry_INT80_32) .macro FIXUP_ESPFIX_STACK /* * Switch back for ESPFIX stack to the normal zerobased stack * * We can't call C functions using the ESPFIX stack. This code reads * the high word of the segment base from the GDT and swiches to the * normal stack and adjusts ESP with the matching offset. */ #ifdef CONFIG_X86_ESPFIX32 /* fixup the stack */ mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */ mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */ shl $16, %eax addl %esp, %eax /* the adjusted stack pointer */ pushl $__KERNEL_DS pushl %eax lss (%esp), %esp /* switch to the normal stack segment */ #endif .endm .macro UNWIND_ESPFIX_STACK #ifdef CONFIG_X86_ESPFIX32 movl %ss, %eax /* see if on espfix stack */ cmpw $__ESPFIX_SS, %ax jne 27f movl $__KERNEL_DS, %eax movl %eax, %ds movl %eax, %es /* switch to normal stack */ FIXUP_ESPFIX_STACK 27: #endif .endm /* * Build the entry stubs with some assembler magic. * We pack 1 stub into every 8-byte block. */ .align 8 ENTRY(irq_entries_start) vector=FIRST_EXTERNAL_VECTOR .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR) pushl $(~vector+0x80) /* Note: always in signed byte range */ vector=vector+1 jmp common_interrupt .align 8 .endr END(irq_entries_start) /* * the CPU automatically disables interrupts when executing an IRQ vector, * so IRQ-flags tracing has to follow that: */ .p2align CONFIG_X86_L1_CACHE_SHIFT common_interrupt: ASM_CLAC addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */ SAVE_ALL TRACE_IRQS_OFF movl %esp, %eax call do_IRQ jmp ret_from_intr ENDPROC(common_interrupt) #define BUILD_INTERRUPT3(name, nr, fn) \ ENTRY(name) \ ASM_CLAC; \ pushl $~(nr); \ SAVE_ALL; \ TRACE_IRQS_OFF \ movl %esp, %eax; \ call fn; \ jmp ret_from_intr; \ ENDPROC(name) #ifdef CONFIG_TRACING # define TRACE_BUILD_INTERRUPT(name, nr) BUILD_INTERRUPT3(trace_##name, nr, smp_trace_##name) #else # define TRACE_BUILD_INTERRUPT(name, nr) #endif #define BUILD_INTERRUPT(name, nr) \ BUILD_INTERRUPT3(name, nr, smp_##name); \ TRACE_BUILD_INTERRUPT(name, nr) /* The include is where all of the SMP etc. interrupts come from */ #include <asm/entry_arch.h> ENTRY(coprocessor_error) ASM_CLAC pushl $0 pushl $do_coprocessor_error jmp error_code END(coprocessor_error) ENTRY(simd_coprocessor_error) ASM_CLAC pushl $0 #ifdef CONFIG_X86_INVD_BUG /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */ ALTERNATIVE "pushl $do_general_protection", \ "pushl $do_simd_coprocessor_error", \ X86_FEATURE_XMM #else pushl $do_simd_coprocessor_error #endif jmp error_code END(simd_coprocessor_error) ENTRY(device_not_available) ASM_CLAC pushl $-1 # mark this as an int pushl $do_device_not_available jmp error_code END(device_not_available) #ifdef CONFIG_PARAVIRT ENTRY(native_iret) iret _ASM_EXTABLE(native_iret, iret_exc) END(native_iret) #endif ENTRY(overflow) ASM_CLAC pushl $0 pushl $do_overflow jmp error_code END(overflow) ENTRY(bounds) ASM_CLAC pushl $0 pushl $do_bounds jmp error_code END(bounds) ENTRY(invalid_op) ASM_CLAC pushl $0 pushl $do_invalid_op jmp error_code END(invalid_op) ENTRY(coprocessor_segment_overrun) ASM_CLAC pushl $0 pushl $do_coprocessor_segment_overrun jmp error_code END(coprocessor_segment_overrun) ENTRY(invalid_TSS) ASM_CLAC pushl $do_invalid_TSS jmp error_code END(invalid_TSS) ENTRY(segment_not_present) ASM_CLAC pushl $do_segment_not_present jmp error_code END(segment_not_present) ENTRY(stack_segment) ASM_CLAC pushl $do_stack_segment jmp error_code END(stack_segment) ENTRY(alignment_check) ASM_CLAC pushl $do_alignment_check jmp error_code END(alignment_check) ENTRY(divide_error) ASM_CLAC pushl $0 # no error code pushl $do_divide_error jmp error_code END(divide_error) #ifdef CONFIG_X86_MCE ENTRY(machine_check) ASM_CLAC pushl $0 pushl machine_check_vector jmp error_code END(machine_check) #endif ENTRY(spurious_interrupt_bug) ASM_CLAC pushl $0 pushl $do_spurious_interrupt_bug jmp error_code END(spurious_interrupt_bug) #ifdef CONFIG_XEN ENTRY(xen_hypervisor_callback) pushl $-1 /* orig_ax = -1 => not a system call */ SAVE_ALL TRACE_IRQS_OFF /* * Check to see if we got the event in the critical * region in xen_iret_direct, after we've reenabled * events and checked for pending events. This simulates * iret instruction's behaviour where it delivers a * pending interrupt when enabling interrupts: */ movl PT_EIP(%esp), %eax cmpl $xen_iret_start_crit, %eax jb 1f cmpl $xen_iret_end_crit, %eax jae 1f jmp xen_iret_crit_fixup ENTRY(xen_do_upcall) 1: mov %esp, %eax call xen_evtchn_do_upcall #ifndef CONFIG_PREEMPT call xen_maybe_preempt_hcall #endif jmp ret_from_intr ENDPROC(xen_hypervisor_callback) /* * Hypervisor uses this for application faults while it executes. * We get here for two reasons: * 1. Fault while reloading DS, ES, FS or GS * 2. Fault while executing IRET * Category 1 we fix up by reattempting the load, and zeroing the segment * register if the load fails. * Category 2 we fix up by jumping to do_iret_error. We cannot use the * normal Linux return path in this case because if we use the IRET hypercall * to pop the stack frame we end up in an infinite loop of failsafe callbacks. * We distinguish between categories by maintaining a status value in EAX. */ ENTRY(xen_failsafe_callback) pushl %eax movl $1, %eax 1: mov 4(%esp), %ds 2: mov 8(%esp), %es 3: mov 12(%esp), %fs 4: mov 16(%esp), %gs /* EAX == 0 => Category 1 (Bad segment) EAX != 0 => Category 2 (Bad IRET) */ testl %eax, %eax popl %eax lea 16(%esp), %esp jz 5f jmp iret_exc 5: pushl $-1 /* orig_ax = -1 => not a system call */ SAVE_ALL jmp ret_from_exception .section .fixup, "ax" 6: xorl %eax, %eax movl %eax, 4(%esp) jmp 1b 7: xorl %eax, %eax movl %eax, 8(%esp) jmp 2b 8: xorl %eax, %eax movl %eax, 12(%esp) jmp 3b 9: xorl %eax, %eax movl %eax, 16(%esp) jmp 4b .previous _ASM_EXTABLE(1b, 6b) _ASM_EXTABLE(2b, 7b) _ASM_EXTABLE(3b, 8b) _ASM_EXTABLE(4b, 9b) ENDPROC(xen_failsafe_callback) BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR, xen_evtchn_do_upcall) #endif /* CONFIG_XEN */ #if IS_ENABLED(CONFIG_HYPERV) BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR, hyperv_vector_handler) #endif /* CONFIG_HYPERV */ #ifdef CONFIG_FUNCTION_TRACER #ifdef CONFIG_DYNAMIC_FTRACE ENTRY(mcount) ret END(mcount) ENTRY(ftrace_caller) pushl %eax pushl %ecx pushl %edx pushl $0 /* Pass NULL as regs pointer */ movl 4*4(%esp), %eax movl 0x4(%ebp), %edx movl function_trace_op, %ecx subl $MCOUNT_INSN_SIZE, %eax .globl ftrace_call ftrace_call: call ftrace_stub addl $4, %esp /* skip NULL pointer */ popl %edx popl %ecx popl %eax ftrace_ret: #ifdef CONFIG_FUNCTION_GRAPH_TRACER .globl ftrace_graph_call ftrace_graph_call: jmp ftrace_stub #endif .globl ftrace_stub ftrace_stub: ret END(ftrace_caller) ENTRY(ftrace_regs_caller) pushf /* push flags before compare (in cs location) */ /* * i386 does not save SS and ESP when coming from kernel. * Instead, to get sp, ®s->sp is used (see ptrace.h). * Unfortunately, that means eflags must be at the same location * as the current return ip is. We move the return ip into the * ip location, and move flags into the return ip location. */ pushl 4(%esp) /* save return ip into ip slot */ pushl $0 /* Load 0 into orig_ax */ pushl %gs pushl %fs pushl %es pushl %ds pushl %eax pushl %ebp pushl %edi pushl %esi pushl %edx pushl %ecx pushl %ebx movl 13*4(%esp), %eax /* Get the saved flags */ movl %eax, 14*4(%esp) /* Move saved flags into regs->flags location */ /* clobbering return ip */ movl $__KERNEL_CS, 13*4(%esp) movl 12*4(%esp), %eax /* Load ip (1st parameter) */ subl $MCOUNT_INSN_SIZE, %eax /* Adjust ip */ movl 0x4(%ebp), %edx /* Load parent ip (2nd parameter) */ movl function_trace_op, %ecx /* Save ftrace_pos in 3rd parameter */ pushl %esp /* Save pt_regs as 4th parameter */ GLOBAL(ftrace_regs_call) call ftrace_stub addl $4, %esp /* Skip pt_regs */ movl 14*4(%esp), %eax /* Move flags back into cs */ movl %eax, 13*4(%esp) /* Needed to keep addl from modifying flags */ movl 12*4(%esp), %eax /* Get return ip from regs->ip */ movl %eax, 14*4(%esp) /* Put return ip back for ret */ popl %ebx popl %ecx popl %edx popl %esi popl %edi popl %ebp popl %eax popl %ds popl %es popl %fs popl %gs addl $8, %esp /* Skip orig_ax and ip */ popf /* Pop flags at end (no addl to corrupt flags) */ jmp ftrace_ret popf jmp ftrace_stub #else /* ! CONFIG_DYNAMIC_FTRACE */ ENTRY(mcount) cmpl $__PAGE_OFFSET, %esp jb ftrace_stub /* Paging not enabled yet? */ cmpl $ftrace_stub, ftrace_trace_function jnz trace #ifdef CONFIG_FUNCTION_GRAPH_TRACER cmpl $ftrace_stub, ftrace_graph_return jnz ftrace_graph_caller cmpl $ftrace_graph_entry_stub, ftrace_graph_entry jnz ftrace_graph_caller #endif .globl ftrace_stub ftrace_stub: ret /* taken from glibc */ trace: pushl %eax pushl %ecx pushl %edx movl 0xc(%esp), %eax movl 0x4(%ebp), %edx subl $MCOUNT_INSN_SIZE, %eax call *ftrace_trace_function popl %edx popl %ecx popl %eax jmp ftrace_stub END(mcount) #endif /* CONFIG_DYNAMIC_FTRACE */ #endif /* CONFIG_FUNCTION_TRACER */ #ifdef CONFIG_FUNCTION_GRAPH_TRACER ENTRY(ftrace_graph_caller) pushl %eax pushl %ecx pushl %edx movl 0xc(%esp), %eax lea 0x4(%ebp), %edx movl (%ebp), %ecx subl $MCOUNT_INSN_SIZE, %eax call prepare_ftrace_return popl %edx popl %ecx popl %eax ret END(ftrace_graph_caller) .globl return_to_handler return_to_handler: pushl %eax pushl %edx movl %ebp, %eax call ftrace_return_to_handler movl %eax, %ecx popl %edx popl %eax jmp *%ecx #endif #ifdef CONFIG_TRACING ENTRY(trace_page_fault) ASM_CLAC pushl $trace_do_page_fault jmp error_code END(trace_page_fault) #endif ENTRY(page_fault) ASM_CLAC pushl $do_page_fault ALIGN error_code: /* the function address is in %gs's slot on the stack */ pushl %fs pushl %es pushl %ds pushl %eax pushl %ebp pushl %edi pushl %esi pushl %edx pushl %ecx pushl %ebx cld movl $(__KERNEL_PERCPU), %ecx movl %ecx, %fs UNWIND_ESPFIX_STACK GS_TO_REG %ecx movl PT_GS(%esp), %edi # get the function address movl PT_ORIG_EAX(%esp), %edx # get the error code movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart REG_TO_PTGS %ecx SET_KERNEL_GS %ecx movl $(__USER_DS), %ecx movl %ecx, %ds movl %ecx, %es TRACE_IRQS_OFF movl %esp, %eax # pt_regs pointer call *%edi jmp ret_from_exception END(page_fault) ENTRY(debug) /* * #DB can happen at the first instruction of * entry_SYSENTER_32 or in Xen's SYSENTER prologue. If this * happens, then we will be running on a very small stack. We * need to detect this condition and switch to the thread * stack before calling any C code at all. * * If you edit this code, keep in mind that NMIs can happen in here. */ ASM_CLAC pushl $-1 # mark this as an int SAVE_ALL xorl %edx, %edx # error code 0 movl %esp, %eax # pt_regs pointer /* Are we currently on the SYSENTER stack? */ PER_CPU(cpu_tss + CPU_TSS_SYSENTER_stack + SIZEOF_SYSENTER_stack, %ecx) subl %eax, %ecx /* ecx = (end of SYSENTER_stack) - esp */ cmpl $SIZEOF_SYSENTER_stack, %ecx jb .Ldebug_from_sysenter_stack TRACE_IRQS_OFF call do_debug jmp ret_from_exception .Ldebug_from_sysenter_stack: /* We're on the SYSENTER stack. Switch off. */ movl %esp, %ebp movl PER_CPU_VAR(cpu_current_top_of_stack), %esp TRACE_IRQS_OFF call do_debug movl %ebp, %esp jmp ret_from_exception END(debug) /* * NMI is doubly nasty. It can happen on the first instruction of * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32 * switched stacks. We handle both conditions by simply checking whether we * interrupted kernel code running on the SYSENTER stack. */ ENTRY(nmi) ASM_CLAC #ifdef CONFIG_X86_ESPFIX32 pushl %eax movl %ss, %eax cmpw $__ESPFIX_SS, %ax popl %eax je nmi_espfix_stack #endif pushl %eax # pt_regs->orig_ax SAVE_ALL xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer /* Are we currently on the SYSENTER stack? */ PER_CPU(cpu_tss + CPU_TSS_SYSENTER_stack + SIZEOF_SYSENTER_stack, %ecx) subl %eax, %ecx /* ecx = (end of SYSENTER_stack) - esp */ cmpl $SIZEOF_SYSENTER_stack, %ecx jb .Lnmi_from_sysenter_stack /* Not on SYSENTER stack. */ call do_nmi jmp restore_all_notrace .Lnmi_from_sysenter_stack: /* * We're on the SYSENTER stack. Switch off. No one (not even debug) * is using the thread stack right now, so it's safe for us to use it. */ movl %esp, %ebp movl PER_CPU_VAR(cpu_current_top_of_stack), %esp call do_nmi movl %ebp, %esp jmp restore_all_notrace #ifdef CONFIG_X86_ESPFIX32 nmi_espfix_stack: /* * create the pointer to lss back */ pushl %ss pushl %esp addl $4, (%esp) /* copy the iret frame of 12 bytes */ .rept 3 pushl 16(%esp) .endr pushl %eax SAVE_ALL FIXUP_ESPFIX_STACK # %eax == %esp xorl %edx, %edx # zero error code call do_nmi RESTORE_REGS lss 12+4(%esp), %esp # back to espfix stack jmp irq_return #endif END(nmi) ENTRY(int3) ASM_CLAC pushl $-1 # mark this as an int SAVE_ALL TRACE_IRQS_OFF xorl %edx, %edx # zero error code movl %esp, %eax # pt_regs pointer call do_int3 jmp ret_from_exception END(int3) ENTRY(general_protection) pushl $do_general_protection jmp error_code END(general_protection) #ifdef CONFIG_KVM_GUEST ENTRY(async_page_fault) ASM_CLAC pushl $do_async_page_fault jmp error_code END(async_page_fault) #endif