######################################################################## # Implement fast SHA-256 with AVX1 instructions. (x86_64) # # Copyright (C) 2013 Intel Corporation. # # Authors: # James Guilford <james.guilford@intel.com> # Kirk Yap <kirk.s.yap@intel.com> # Tim Chen <tim.c.chen@linux.intel.com> # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials # provided with the distribution. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ######################################################################## # # This code is described in an Intel White-Paper: # "Fast SHA-256 Implementations on Intel Architecture Processors" # # To find it, surf to http://www.intel.com/p/en_US/embedded # and search for that title. # ######################################################################## # This code schedules 1 block at a time, with 4 lanes per block ######################################################################## #include <linux/linkage.h> #include <linux/cfi_types.h> ## assume buffers not aligned #define VMOVDQ vmovdqu ################################ Define Macros # addm [mem], reg # Add reg to mem using reg-mem add and store .macro addm p1 p2 add \p1, \p2 mov \p2, \p1 .endm .macro MY_ROR p1 p2 shld $(32-(\p1)), \p2, \p2 .endm ################################ # COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask # Load xmm with mem and byte swap each dword .macro COPY_XMM_AND_BSWAP p1 p2 p3 VMOVDQ \p2, \p1 vpshufb \p3, \p1, \p1 .endm ################################ X0 = %xmm4 X1 = %xmm5 X2 = %xmm6 X3 = %xmm7 XTMP0 = %xmm0 XTMP1 = %xmm1 XTMP2 = %xmm2 XTMP3 = %xmm3 XTMP4 = %xmm8 XFER = %xmm9 XTMP5 = %xmm11 SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00 BYTE_FLIP_MASK = %xmm13 NUM_BLKS = %rdx # 3rd arg INP = %rsi # 2nd arg CTX = %rdi # 1st arg SRND = %rsi # clobbers INP c = %ecx d = %r8d e = %edx TBL = %r12 a = %eax b = %ebx f = %r9d g = %r10d h = %r11d y0 = %r13d y1 = %r14d y2 = %r15d _INP_END_SIZE = 8 _INP_SIZE = 8 _XFER_SIZE = 16 _XMM_SAVE_SIZE = 0 _INP_END = 0 _INP = _INP_END + _INP_END_SIZE _XFER = _INP + _INP_SIZE _XMM_SAVE = _XFER + _XFER_SIZE STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE # rotate_Xs # Rotate values of symbols X0...X3 .macro rotate_Xs X_ = X0 X0 = X1 X1 = X2 X2 = X3 X3 = X_ .endm # ROTATE_ARGS # Rotate values of symbols a...h .macro ROTATE_ARGS TMP_ = h h = g g = f f = e e = d d = c c = b b = a a = TMP_ .endm .macro FOUR_ROUNDS_AND_SCHED ## compute s0 four at a time and s1 two at a time ## compute W[-16] + W[-7] 4 at a time mov e, y0 # y0 = e MY_ROR (25-11), y0 # y0 = e >> (25-11) mov a, y1 # y1 = a vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7] MY_ROR (22-13), y1 # y1 = a >> (22-13) xor e, y0 # y0 = e ^ (e >> (25-11)) mov f, y2 # y2 = f MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) xor a, y1 # y1 = a ^ (a >> (22-13) xor g, y2 # y2 = f^g vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16] xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) ## compute s0 vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15] xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor g, y2 # y2 = CH = ((f^g)&e)^g MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y0, y2 # y2 = S1 + CH add _XFER(%rsp), y2 # y2 = k + w + S1 + CH mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a vpsrld $7, XTMP1, XTMP2 or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c vpslld $(32-7), XTMP1, XTMP3 and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS mov e, y0 # y0 = e mov a, y1 # y1 = a MY_ROR (25-11), y0 # y0 = e >> (25-11) xor e, y0 # y0 = e ^ (e >> (25-11)) mov f, y2 # y2 = f MY_ROR (22-13), y1 # y1 = a >> (22-13) vpsrld $18, XTMP1, XTMP2 # xor a, y1 # y1 = a ^ (a >> (22-13) MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) xor g, y2 # y2 = f^g vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3 MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) vpslld $(32-18), XTMP1, XTMP1 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) xor g, y2 # y2 = CH = ((f^g)&e)^g vpxor XTMP1, XTMP3, XTMP3 # add y0, y2 # y2 = S1 + CH add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0 or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c ## compute low s1 vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS mov e, y0 # y0 = e mov a, y1 # y1 = a MY_ROR (25-11), y0 # y0 = e >> (25-11) xor e, y0 # y0 = e ^ (e >> (25-11)) MY_ROR (22-13), y1 # y1 = a >> (22-13) mov f, y2 # y2 = f xor a, y1 # y1 = a ^ (a >> (22-13) MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} xor g, y2 # y2 = f^g vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA} xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA} MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) xor g, y2 # y2 = CH = ((f^g)&e)^g MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) vpxor XTMP3, XTMP2, XTMP2 # add y0, y2 # y2 = S1 + CH MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA} mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA} or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 ## compute high s1 vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC} or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS mov e, y0 # y0 = e MY_ROR (25-11), y0 # y0 = e >> (25-11) mov a, y1 # y1 = a MY_ROR (22-13), y1 # y1 = a >> (22-13) xor e, y0 # y0 = e ^ (e >> (25-11)) mov f, y2 # y2 = f MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC} xor a, y1 # y1 = a ^ (a >> (22-13) xor g, y2 # y2 = f^g vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC} xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC} xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor g, y2 # y2 = CH = ((f^g)&e)^g vpxor XTMP3, XTMP2, XTMP2 MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y0, y2 # y2 = S1 + CH add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC} mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00} or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]} and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS rotate_Xs .endm ## input is [rsp + _XFER + %1 * 4] .macro DO_ROUND round mov e, y0 # y0 = e MY_ROR (25-11), y0 # y0 = e >> (25-11) mov a, y1 # y1 = a xor e, y0 # y0 = e ^ (e >> (25-11)) MY_ROR (22-13), y1 # y1 = a >> (22-13) mov f, y2 # y2 = f xor a, y1 # y1 = a ^ (a >> (22-13) MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) xor g, y2 # y2 = f^g xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) and e, y2 # y2 = (f^g)&e xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor g, y2 # y2 = CH = ((f^g)&e)^g add y0, y2 # y2 = S1 + CH MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) offset = \round * 4 + _XFER # add offset(%rsp), y2 # y2 = k + w + S1 + CH mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS .endm ######################################################################## ## void sha256_transform_avx(state sha256_state *state, const u8 *data, int blocks) ## arg 1 : pointer to state ## arg 2 : pointer to input data ## arg 3 : Num blocks ######################################################################## .text SYM_TYPED_FUNC_START(sha256_transform_avx) pushq %rbx pushq %r12 pushq %r13 pushq %r14 pushq %r15 pushq %rbp movq %rsp, %rbp subq $STACK_SIZE, %rsp # allocate stack space and $~15, %rsp # align stack pointer shl $6, NUM_BLKS # convert to bytes jz done_hash add INP, NUM_BLKS # pointer to end of data mov NUM_BLKS, _INP_END(%rsp) ## load initial digest mov 4*0(CTX), a mov 4*1(CTX), b mov 4*2(CTX), c mov 4*3(CTX), d mov 4*4(CTX), e mov 4*5(CTX), f mov 4*6(CTX), g mov 4*7(CTX), h vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK vmovdqa _SHUF_00BA(%rip), SHUF_00BA vmovdqa _SHUF_DC00(%rip), SHUF_DC00 loop0: lea K256(%rip), TBL ## byte swap first 16 dwords COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK mov INP, _INP(%rsp) ## schedule 48 input dwords, by doing 3 rounds of 16 each mov $3, SRND .align 16 loop1: vpaddd (TBL), X0, XFER vmovdqa XFER, _XFER(%rsp) FOUR_ROUNDS_AND_SCHED vpaddd 1*16(TBL), X0, XFER vmovdqa XFER, _XFER(%rsp) FOUR_ROUNDS_AND_SCHED vpaddd 2*16(TBL), X0, XFER vmovdqa XFER, _XFER(%rsp) FOUR_ROUNDS_AND_SCHED vpaddd 3*16(TBL), X0, XFER vmovdqa XFER, _XFER(%rsp) add $4*16, TBL FOUR_ROUNDS_AND_SCHED sub $1, SRND jne loop1 mov $2, SRND loop2: vpaddd (TBL), X0, XFER vmovdqa XFER, _XFER(%rsp) DO_ROUND 0 DO_ROUND 1 DO_ROUND 2 DO_ROUND 3 vpaddd 1*16(TBL), X1, XFER vmovdqa XFER, _XFER(%rsp) add $2*16, TBL DO_ROUND 0 DO_ROUND 1 DO_ROUND 2 DO_ROUND 3 vmovdqa X2, X0 vmovdqa X3, X1 sub $1, SRND jne loop2 addm (4*0)(CTX),a addm (4*1)(CTX),b addm (4*2)(CTX),c addm (4*3)(CTX),d addm (4*4)(CTX),e addm (4*5)(CTX),f addm (4*6)(CTX),g addm (4*7)(CTX),h mov _INP(%rsp), INP add $64, INP cmp _INP_END(%rsp), INP jne loop0 done_hash: mov %rbp, %rsp popq %rbp popq %r15 popq %r14 popq %r13 popq %r12 popq %rbx RET SYM_FUNC_END(sha256_transform_avx) .section .rodata.cst256.K256, "aM", @progbits, 256 .align 64 K256: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16 .align 16 PSHUFFLE_BYTE_FLIP_MASK: .octa 0x0c0d0e0f08090a0b0405060700010203 .section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16 .align 16 # shuffle xBxA -> 00BA _SHUF_00BA: .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100 .section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16 .align 16 # shuffle xDxC -> DC00 _SHUF_DC00: .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF