// SPDX-License-Identifier: GPL-2.0 /* * This code is used on x86_64 to create page table identity mappings on * demand by building up a new set of page tables (or appending to the * existing ones), and then switching over to them when ready. * * Copyright (C) 2015-2016 Yinghai Lu * Copyright (C) 2016 Kees Cook */ /* * Since we're dealing with identity mappings, physical and virtual * addresses are the same, so override these defines which are ultimately * used by the headers in misc.h. */ #define __pa(x) ((unsigned long)(x)) #define __va(x) ((void *)((unsigned long)(x))) /* No PAGE_TABLE_ISOLATION support needed either: */ #undef CONFIG_PAGE_TABLE_ISOLATION #include "error.h" #include "misc.h" /* These actually do the work of building the kernel identity maps. */ #include #include #include #include #include /* Use the static base for this part of the boot process */ #undef __PAGE_OFFSET #define __PAGE_OFFSET __PAGE_OFFSET_BASE #include "../../mm/ident_map.c" #define _SETUP #include /* For COMMAND_LINE_SIZE */ #undef _SETUP extern unsigned long get_cmd_line_ptr(void); /* Used by PAGE_KERN* macros: */ pteval_t __default_kernel_pte_mask __read_mostly = ~0; /* Used to track our page table allocation area. */ struct alloc_pgt_data { unsigned char *pgt_buf; unsigned long pgt_buf_size; unsigned long pgt_buf_offset; }; /* * Allocates space for a page table entry, using struct alloc_pgt_data * above. Besides the local callers, this is used as the allocation * callback in mapping_info below. */ static void *alloc_pgt_page(void *context) { struct alloc_pgt_data *pages = (struct alloc_pgt_data *)context; unsigned char *entry; /* Validate there is space available for a new page. */ if (pages->pgt_buf_offset >= pages->pgt_buf_size) { debug_putstr("out of pgt_buf in " __FILE__ "!?\n"); debug_putaddr(pages->pgt_buf_offset); debug_putaddr(pages->pgt_buf_size); return NULL; } entry = pages->pgt_buf + pages->pgt_buf_offset; pages->pgt_buf_offset += PAGE_SIZE; return entry; } /* Used to track our allocated page tables. */ static struct alloc_pgt_data pgt_data; /* The top level page table entry pointer. */ static unsigned long top_level_pgt; phys_addr_t physical_mask = (1ULL << __PHYSICAL_MASK_SHIFT) - 1; /* * Mapping information structure passed to kernel_ident_mapping_init(). * Due to relocation, pointers must be assigned at run time not build time. */ static struct x86_mapping_info mapping_info; /* * Adds the specified range to the identity mappings. */ void kernel_add_identity_map(unsigned long start, unsigned long end) { int ret; /* Align boundary to 2M. */ start = round_down(start, PMD_SIZE); end = round_up(end, PMD_SIZE); if (start >= end) return; /* Build the mapping. */ ret = kernel_ident_mapping_init(&mapping_info, (pgd_t *)top_level_pgt, start, end); if (ret) error("Error: kernel_ident_mapping_init() failed\n"); } /* Locates and clears a region for a new top level page table. */ void initialize_identity_maps(void *rmode) { unsigned long cmdline; /* Exclude the encryption mask from __PHYSICAL_MASK */ physical_mask &= ~sme_me_mask; /* Init mapping_info with run-time function/buffer pointers. */ mapping_info.alloc_pgt_page = alloc_pgt_page; mapping_info.context = &pgt_data; mapping_info.page_flag = __PAGE_KERNEL_LARGE_EXEC | sme_me_mask; mapping_info.kernpg_flag = _KERNPG_TABLE; /* * It should be impossible for this not to already be true, * but since calling this a second time would rewind the other * counters, let's just make sure this is reset too. */ pgt_data.pgt_buf_offset = 0; /* * If we came here via startup_32(), cr3 will be _pgtable already * and we must append to the existing area instead of entirely * overwriting it. * * With 5-level paging, we use '_pgtable' to allocate the p4d page table, * the top-level page table is allocated separately. * * p4d_offset(top_level_pgt, 0) would cover both the 4- and 5-level * cases. On 4-level paging it's equal to 'top_level_pgt'. */ top_level_pgt = read_cr3_pa(); if (p4d_offset((pgd_t *)top_level_pgt, 0) == (p4d_t *)_pgtable) { pgt_data.pgt_buf = _pgtable + BOOT_INIT_PGT_SIZE; pgt_data.pgt_buf_size = BOOT_PGT_SIZE - BOOT_INIT_PGT_SIZE; memset(pgt_data.pgt_buf, 0, pgt_data.pgt_buf_size); } else { pgt_data.pgt_buf = _pgtable; pgt_data.pgt_buf_size = BOOT_PGT_SIZE; memset(pgt_data.pgt_buf, 0, pgt_data.pgt_buf_size); top_level_pgt = (unsigned long)alloc_pgt_page(&pgt_data); } /* * New page-table is set up - map the kernel image, boot_params and the * command line. The uncompressed kernel requires boot_params and the * command line to be mapped in the identity mapping. Map them * explicitly here in case the compressed kernel does not touch them, * or does not touch all the pages covering them. */ kernel_add_identity_map((unsigned long)_head, (unsigned long)_end); boot_params = rmode; kernel_add_identity_map((unsigned long)boot_params, (unsigned long)(boot_params + 1)); cmdline = get_cmd_line_ptr(); kernel_add_identity_map(cmdline, cmdline + COMMAND_LINE_SIZE); sev_prep_identity_maps(top_level_pgt); /* Load the new page-table. */ write_cr3(top_level_pgt); } static pte_t *split_large_pmd(struct x86_mapping_info *info, pmd_t *pmdp, unsigned long __address) { unsigned long page_flags; unsigned long address; pte_t *pte; pmd_t pmd; int i; pte = (pte_t *)info->alloc_pgt_page(info->context); if (!pte) return NULL; address = __address & PMD_MASK; /* No large page - clear PSE flag */ page_flags = info->page_flag & ~_PAGE_PSE; /* Populate the PTEs */ for (i = 0; i < PTRS_PER_PMD; i++) { set_pte(&pte[i], __pte(address | page_flags)); address += PAGE_SIZE; } /* * Ideally we need to clear the large PMD first and do a TLB * flush before we write the new PMD. But the 2M range of the * PMD might contain the code we execute and/or the stack * we are on, so we can't do that. But that should be safe here * because we are going from large to small mappings and we are * also the only user of the page-table, so there is no chance * of a TLB multihit. */ pmd = __pmd((unsigned long)pte | info->kernpg_flag); set_pmd(pmdp, pmd); /* Flush TLB to establish the new PMD */ write_cr3(top_level_pgt); return pte + pte_index(__address); } static void clflush_page(unsigned long address) { unsigned int flush_size; char *cl, *start, *end; /* * Hardcode cl-size to 64 - CPUID can't be used here because that might * cause another #VC exception and the GHCB is not ready to use yet. */ flush_size = 64; start = (char *)(address & PAGE_MASK); end = start + PAGE_SIZE; /* * First make sure there are no pending writes on the cache-lines to * flush. */ asm volatile("mfence" : : : "memory"); for (cl = start; cl != end; cl += flush_size) clflush(cl); } static int set_clr_page_flags(struct x86_mapping_info *info, unsigned long address, pteval_t set, pteval_t clr) { pgd_t *pgdp = (pgd_t *)top_level_pgt; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep, pte; /* * First make sure there is a PMD mapping for 'address'. * It should already exist, but keep things generic. * * To map the page just read from it and fault it in if there is no * mapping yet. kernel_add_identity_map() can't be called here because * that would unconditionally map the address on PMD level, destroying * any PTE-level mappings that might already exist. Use assembly here * so the access won't be optimized away. */ asm volatile("mov %[address], %%r9" :: [address] "g" (*(unsigned long *)address) : "r9", "memory"); /* * The page is mapped at least with PMD size - so skip checks and walk * directly to the PMD. */ p4dp = p4d_offset(pgdp, address); pudp = pud_offset(p4dp, address); pmdp = pmd_offset(pudp, address); if (pmd_large(*pmdp)) ptep = split_large_pmd(info, pmdp, address); else ptep = pte_offset_kernel(pmdp, address); if (!ptep) return -ENOMEM; /* * Changing encryption attributes of a page requires to flush it from * the caches. */ if ((set | clr) & _PAGE_ENC) { clflush_page(address); /* * If the encryption attribute is being cleared, change the page state * to shared in the RMP table. */ if (clr) snp_set_page_shared(__pa(address & PAGE_MASK)); } /* Update PTE */ pte = *ptep; pte = pte_set_flags(pte, set); pte = pte_clear_flags(pte, clr); set_pte(ptep, pte); /* * If the encryption attribute is being set, then change the page state to * private in the RMP entry. The page state change must be done after the PTE * is updated. */ if (set & _PAGE_ENC) snp_set_page_private(__pa(address & PAGE_MASK)); /* Flush TLB after changing encryption attribute */ write_cr3(top_level_pgt); return 0; } int set_page_decrypted(unsigned long address) { return set_clr_page_flags(&mapping_info, address, 0, _PAGE_ENC); } int set_page_encrypted(unsigned long address) { return set_clr_page_flags(&mapping_info, address, _PAGE_ENC, 0); } int set_page_non_present(unsigned long address) { return set_clr_page_flags(&mapping_info, address, 0, _PAGE_PRESENT); } static void do_pf_error(const char *msg, unsigned long error_code, unsigned long address, unsigned long ip) { error_putstr(msg); error_putstr("\nError Code: "); error_puthex(error_code); error_putstr("\nCR2: 0x"); error_puthex(address); error_putstr("\nRIP relative to _head: 0x"); error_puthex(ip - (unsigned long)_head); error_putstr("\n"); error("Stopping.\n"); } void do_boot_page_fault(struct pt_regs *regs, unsigned long error_code) { unsigned long address = native_read_cr2(); unsigned long end; bool ghcb_fault; ghcb_fault = sev_es_check_ghcb_fault(address); address &= PMD_MASK; end = address + PMD_SIZE; /* * Check for unexpected error codes. Unexpected are: * - Faults on present pages * - User faults * - Reserved bits set */ if (error_code & (X86_PF_PROT | X86_PF_USER | X86_PF_RSVD)) do_pf_error("Unexpected page-fault:", error_code, address, regs->ip); else if (ghcb_fault) do_pf_error("Page-fault on GHCB page:", error_code, address, regs->ip); /* * Error code is sane - now identity map the 2M region around * the faulting address. */ kernel_add_identity_map(address, end); }