// SPDX-License-Identifier: GPL-2.0 /* pci_sun4v.c: SUN4V specific PCI controller support. * * Copyright (C) 2006, 2007, 2008 David S. Miller (davem@davemloft.net) */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/irq.h> #include <linux/msi.h> #include <linux/export.h> #include <linux/log2.h> #include <linux/of_device.h> #include <linux/dma-map-ops.h> #include <asm/iommu-common.h> #include <asm/iommu.h> #include <asm/irq.h> #include <asm/hypervisor.h> #include <asm/prom.h> #include "pci_impl.h" #include "iommu_common.h" #include "kernel.h" #include "pci_sun4v.h" #define DRIVER_NAME "pci_sun4v" #define PFX DRIVER_NAME ": " static unsigned long vpci_major; static unsigned long vpci_minor; struct vpci_version { unsigned long major; unsigned long minor; }; /* Ordered from largest major to lowest */ static struct vpci_version vpci_versions[] = { { .major = 2, .minor = 0 }, { .major = 1, .minor = 1 }, }; static unsigned long vatu_major = 1; static unsigned long vatu_minor = 1; #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64)) struct iommu_batch { struct device *dev; /* Device mapping is for. */ unsigned long prot; /* IOMMU page protections */ unsigned long entry; /* Index into IOTSB. */ u64 *pglist; /* List of physical pages */ unsigned long npages; /* Number of pages in list. */ }; static DEFINE_PER_CPU(struct iommu_batch, iommu_batch); static int iommu_batch_initialized; /* Interrupts must be disabled. */ static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry) { struct iommu_batch *p = this_cpu_ptr(&iommu_batch); p->dev = dev; p->prot = prot; p->entry = entry; p->npages = 0; } static inline bool iommu_use_atu(struct iommu *iommu, u64 mask) { return iommu->atu && mask > DMA_BIT_MASK(32); } /* Interrupts must be disabled. */ static long iommu_batch_flush(struct iommu_batch *p, u64 mask) { struct pci_pbm_info *pbm = p->dev->archdata.host_controller; u64 *pglist = p->pglist; u64 index_count; unsigned long devhandle = pbm->devhandle; unsigned long prot = p->prot; unsigned long entry = p->entry; unsigned long npages = p->npages; unsigned long iotsb_num; unsigned long ret; long num; /* VPCI maj=1, min=[0,1] only supports read and write */ if (vpci_major < 2) prot &= (HV_PCI_MAP_ATTR_READ | HV_PCI_MAP_ATTR_WRITE); while (npages != 0) { if (!iommu_use_atu(pbm->iommu, mask)) { num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry), npages, prot, __pa(pglist)); if (unlikely(num < 0)) { pr_err_ratelimited("%s: IOMMU map of [%08lx:%08llx:%lx:%lx:%lx] failed with status %ld\n", __func__, devhandle, HV_PCI_TSBID(0, entry), npages, prot, __pa(pglist), num); return -1; } } else { index_count = HV_PCI_IOTSB_INDEX_COUNT(npages, entry), iotsb_num = pbm->iommu->atu->iotsb->iotsb_num; ret = pci_sun4v_iotsb_map(devhandle, iotsb_num, index_count, prot, __pa(pglist), &num); if (unlikely(ret != HV_EOK)) { pr_err_ratelimited("%s: ATU map of [%08lx:%lx:%llx:%lx:%lx] failed with status %ld\n", __func__, devhandle, iotsb_num, index_count, prot, __pa(pglist), ret); return -1; } } entry += num; npages -= num; pglist += num; } p->entry = entry; p->npages = 0; return 0; } static inline void iommu_batch_new_entry(unsigned long entry, u64 mask) { struct iommu_batch *p = this_cpu_ptr(&iommu_batch); if (p->entry + p->npages == entry) return; if (p->entry != ~0UL) iommu_batch_flush(p, mask); p->entry = entry; } /* Interrupts must be disabled. */ static inline long iommu_batch_add(u64 phys_page, u64 mask) { struct iommu_batch *p = this_cpu_ptr(&iommu_batch); BUG_ON(p->npages >= PGLIST_NENTS); p->pglist[p->npages++] = phys_page; if (p->npages == PGLIST_NENTS) return iommu_batch_flush(p, mask); return 0; } /* Interrupts must be disabled. */ static inline long iommu_batch_end(u64 mask) { struct iommu_batch *p = this_cpu_ptr(&iommu_batch); BUG_ON(p->npages >= PGLIST_NENTS); return iommu_batch_flush(p, mask); } static void *dma_4v_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_addrp, gfp_t gfp, unsigned long attrs) { u64 mask; unsigned long flags, order, first_page, npages, n; unsigned long prot = 0; struct iommu *iommu; struct iommu_map_table *tbl; struct page *page; void *ret; long entry; int nid; size = IO_PAGE_ALIGN(size); order = get_order(size); if (unlikely(order >= MAX_ORDER)) return NULL; npages = size >> IO_PAGE_SHIFT; if (attrs & DMA_ATTR_WEAK_ORDERING) prot = HV_PCI_MAP_ATTR_RELAXED_ORDER; nid = dev->archdata.numa_node; page = alloc_pages_node(nid, gfp, order); if (unlikely(!page)) return NULL; first_page = (unsigned long) page_address(page); memset((char *)first_page, 0, PAGE_SIZE << order); iommu = dev->archdata.iommu; mask = dev->coherent_dma_mask; if (!iommu_use_atu(iommu, mask)) tbl = &iommu->tbl; else tbl = &iommu->atu->tbl; entry = iommu_tbl_range_alloc(dev, tbl, npages, NULL, (unsigned long)(-1), 0); if (unlikely(entry == IOMMU_ERROR_CODE)) goto range_alloc_fail; *dma_addrp = (tbl->table_map_base + (entry << IO_PAGE_SHIFT)); ret = (void *) first_page; first_page = __pa(first_page); local_irq_save(flags); iommu_batch_start(dev, (HV_PCI_MAP_ATTR_READ | prot | HV_PCI_MAP_ATTR_WRITE), entry); for (n = 0; n < npages; n++) { long err = iommu_batch_add(first_page + (n * PAGE_SIZE), mask); if (unlikely(err < 0L)) goto iommu_map_fail; } if (unlikely(iommu_batch_end(mask) < 0L)) goto iommu_map_fail; local_irq_restore(flags); return ret; iommu_map_fail: local_irq_restore(flags); iommu_tbl_range_free(tbl, *dma_addrp, npages, IOMMU_ERROR_CODE); range_alloc_fail: free_pages(first_page, order); return NULL; } unsigned long dma_4v_iotsb_bind(unsigned long devhandle, unsigned long iotsb_num, struct pci_bus *bus_dev) { struct pci_dev *pdev; unsigned long err; unsigned int bus; unsigned int device; unsigned int fun; list_for_each_entry(pdev, &bus_dev->devices, bus_list) { if (pdev->subordinate) { /* No need to bind pci bridge */ dma_4v_iotsb_bind(devhandle, iotsb_num, pdev->subordinate); } else { bus = bus_dev->number; device = PCI_SLOT(pdev->devfn); fun = PCI_FUNC(pdev->devfn); err = pci_sun4v_iotsb_bind(devhandle, iotsb_num, HV_PCI_DEVICE_BUILD(bus, device, fun)); /* If bind fails for one device it is going to fail * for rest of the devices because we are sharing * IOTSB. So in case of failure simply return with * error. */ if (err) return err; } } return 0; } static void dma_4v_iommu_demap(struct device *dev, unsigned long devhandle, dma_addr_t dvma, unsigned long iotsb_num, unsigned long entry, unsigned long npages) { unsigned long num, flags; unsigned long ret; local_irq_save(flags); do { if (dvma <= DMA_BIT_MASK(32)) { num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry), npages); } else { ret = pci_sun4v_iotsb_demap(devhandle, iotsb_num, entry, npages, &num); if (unlikely(ret != HV_EOK)) { pr_err_ratelimited("pci_iotsb_demap() failed with error: %ld\n", ret); } } entry += num; npages -= num; } while (npages != 0); local_irq_restore(flags); } static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu, dma_addr_t dvma, unsigned long attrs) { struct pci_pbm_info *pbm; struct iommu *iommu; struct atu *atu; struct iommu_map_table *tbl; unsigned long order, npages, entry; unsigned long iotsb_num; u32 devhandle; npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT; iommu = dev->archdata.iommu; pbm = dev->archdata.host_controller; atu = iommu->atu; devhandle = pbm->devhandle; if (!iommu_use_atu(iommu, dvma)) { tbl = &iommu->tbl; iotsb_num = 0; /* we don't care for legacy iommu */ } else { tbl = &atu->tbl; iotsb_num = atu->iotsb->iotsb_num; } entry = ((dvma - tbl->table_map_base) >> IO_PAGE_SHIFT); dma_4v_iommu_demap(dev, devhandle, dvma, iotsb_num, entry, npages); iommu_tbl_range_free(tbl, dvma, npages, IOMMU_ERROR_CODE); order = get_order(size); if (order < 10) free_pages((unsigned long)cpu, order); } static dma_addr_t dma_4v_map_page(struct device *dev, struct page *page, unsigned long offset, size_t sz, enum dma_data_direction direction, unsigned long attrs) { struct iommu *iommu; struct atu *atu; struct iommu_map_table *tbl; u64 mask; unsigned long flags, npages, oaddr; unsigned long i, base_paddr; unsigned long prot; dma_addr_t bus_addr, ret; long entry; iommu = dev->archdata.iommu; atu = iommu->atu; if (unlikely(direction == DMA_NONE)) goto bad; oaddr = (unsigned long)(page_address(page) + offset); npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; mask = *dev->dma_mask; if (!iommu_use_atu(iommu, mask)) tbl = &iommu->tbl; else tbl = &atu->tbl; entry = iommu_tbl_range_alloc(dev, tbl, npages, NULL, (unsigned long)(-1), 0); if (unlikely(entry == IOMMU_ERROR_CODE)) goto bad; bus_addr = (tbl->table_map_base + (entry << IO_PAGE_SHIFT)); ret = bus_addr | (oaddr & ~IO_PAGE_MASK); base_paddr = __pa(oaddr & IO_PAGE_MASK); prot = HV_PCI_MAP_ATTR_READ; if (direction != DMA_TO_DEVICE) prot |= HV_PCI_MAP_ATTR_WRITE; if (attrs & DMA_ATTR_WEAK_ORDERING) prot |= HV_PCI_MAP_ATTR_RELAXED_ORDER; local_irq_save(flags); iommu_batch_start(dev, prot, entry); for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) { long err = iommu_batch_add(base_paddr, mask); if (unlikely(err < 0L)) goto iommu_map_fail; } if (unlikely(iommu_batch_end(mask) < 0L)) goto iommu_map_fail; local_irq_restore(flags); return ret; bad: if (printk_ratelimit()) WARN_ON(1); return DMA_MAPPING_ERROR; iommu_map_fail: local_irq_restore(flags); iommu_tbl_range_free(tbl, bus_addr, npages, IOMMU_ERROR_CODE); return DMA_MAPPING_ERROR; } static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr, size_t sz, enum dma_data_direction direction, unsigned long attrs) { struct pci_pbm_info *pbm; struct iommu *iommu; struct atu *atu; struct iommu_map_table *tbl; unsigned long npages; unsigned long iotsb_num; long entry; u32 devhandle; if (unlikely(direction == DMA_NONE)) { if (printk_ratelimit()) WARN_ON(1); return; } iommu = dev->archdata.iommu; pbm = dev->archdata.host_controller; atu = iommu->atu; devhandle = pbm->devhandle; npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK); npages >>= IO_PAGE_SHIFT; bus_addr &= IO_PAGE_MASK; if (bus_addr <= DMA_BIT_MASK(32)) { iotsb_num = 0; /* we don't care for legacy iommu */ tbl = &iommu->tbl; } else { iotsb_num = atu->iotsb->iotsb_num; tbl = &atu->tbl; } entry = (bus_addr - tbl->table_map_base) >> IO_PAGE_SHIFT; dma_4v_iommu_demap(dev, devhandle, bus_addr, iotsb_num, entry, npages); iommu_tbl_range_free(tbl, bus_addr, npages, IOMMU_ERROR_CODE); } static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction, unsigned long attrs) { struct scatterlist *s, *outs, *segstart; unsigned long flags, handle, prot; dma_addr_t dma_next = 0, dma_addr; unsigned int max_seg_size; unsigned long seg_boundary_size; int outcount, incount, i; struct iommu *iommu; struct atu *atu; struct iommu_map_table *tbl; u64 mask; unsigned long base_shift; long err; BUG_ON(direction == DMA_NONE); iommu = dev->archdata.iommu; if (nelems == 0 || !iommu) return 0; atu = iommu->atu; prot = HV_PCI_MAP_ATTR_READ; if (direction != DMA_TO_DEVICE) prot |= HV_PCI_MAP_ATTR_WRITE; if (attrs & DMA_ATTR_WEAK_ORDERING) prot |= HV_PCI_MAP_ATTR_RELAXED_ORDER; outs = s = segstart = &sglist[0]; outcount = 1; incount = nelems; handle = 0; /* Init first segment length for backout at failure */ outs->dma_length = 0; local_irq_save(flags); iommu_batch_start(dev, prot, ~0UL); max_seg_size = dma_get_max_seg_size(dev); seg_boundary_size = dma_get_seg_boundary_nr_pages(dev, IO_PAGE_SHIFT); mask = *dev->dma_mask; if (!iommu_use_atu(iommu, mask)) tbl = &iommu->tbl; else tbl = &atu->tbl; base_shift = tbl->table_map_base >> IO_PAGE_SHIFT; for_each_sg(sglist, s, nelems, i) { unsigned long paddr, npages, entry, out_entry = 0, slen; slen = s->length; /* Sanity check */ if (slen == 0) { dma_next = 0; continue; } /* Allocate iommu entries for that segment */ paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s); npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE); entry = iommu_tbl_range_alloc(dev, tbl, npages, &handle, (unsigned long)(-1), 0); /* Handle failure */ if (unlikely(entry == IOMMU_ERROR_CODE)) { pr_err_ratelimited("iommu_alloc failed, iommu %p paddr %lx npages %lx\n", tbl, paddr, npages); goto iommu_map_failed; } iommu_batch_new_entry(entry, mask); /* Convert entry to a dma_addr_t */ dma_addr = tbl->table_map_base + (entry << IO_PAGE_SHIFT); dma_addr |= (s->offset & ~IO_PAGE_MASK); /* Insert into HW table */ paddr &= IO_PAGE_MASK; while (npages--) { err = iommu_batch_add(paddr, mask); if (unlikely(err < 0L)) goto iommu_map_failed; paddr += IO_PAGE_SIZE; } /* If we are in an open segment, try merging */ if (segstart != s) { /* We cannot merge if: * - allocated dma_addr isn't contiguous to previous allocation */ if ((dma_addr != dma_next) || (outs->dma_length + s->length > max_seg_size) || (is_span_boundary(out_entry, base_shift, seg_boundary_size, outs, s))) { /* Can't merge: create a new segment */ segstart = s; outcount++; outs = sg_next(outs); } else { outs->dma_length += s->length; } } if (segstart == s) { /* This is a new segment, fill entries */ outs->dma_address = dma_addr; outs->dma_length = slen; out_entry = entry; } /* Calculate next page pointer for contiguous check */ dma_next = dma_addr + slen; } err = iommu_batch_end(mask); if (unlikely(err < 0L)) goto iommu_map_failed; local_irq_restore(flags); if (outcount < incount) { outs = sg_next(outs); outs->dma_address = DMA_MAPPING_ERROR; outs->dma_length = 0; } return outcount; iommu_map_failed: for_each_sg(sglist, s, nelems, i) { if (s->dma_length != 0) { unsigned long vaddr, npages; vaddr = s->dma_address & IO_PAGE_MASK; npages = iommu_num_pages(s->dma_address, s->dma_length, IO_PAGE_SIZE); iommu_tbl_range_free(tbl, vaddr, npages, IOMMU_ERROR_CODE); /* XXX demap? XXX */ s->dma_address = DMA_MAPPING_ERROR; s->dma_length = 0; } if (s == outs) break; } local_irq_restore(flags); return 0; } static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction, unsigned long attrs) { struct pci_pbm_info *pbm; struct scatterlist *sg; struct iommu *iommu; struct atu *atu; unsigned long flags, entry; unsigned long iotsb_num; u32 devhandle; BUG_ON(direction == DMA_NONE); iommu = dev->archdata.iommu; pbm = dev->archdata.host_controller; atu = iommu->atu; devhandle = pbm->devhandle; local_irq_save(flags); sg = sglist; while (nelems--) { dma_addr_t dma_handle = sg->dma_address; unsigned int len = sg->dma_length; unsigned long npages; struct iommu_map_table *tbl; unsigned long shift = IO_PAGE_SHIFT; if (!len) break; npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE); if (dma_handle <= DMA_BIT_MASK(32)) { iotsb_num = 0; /* we don't care for legacy iommu */ tbl = &iommu->tbl; } else { iotsb_num = atu->iotsb->iotsb_num; tbl = &atu->tbl; } entry = ((dma_handle - tbl->table_map_base) >> shift); dma_4v_iommu_demap(dev, devhandle, dma_handle, iotsb_num, entry, npages); iommu_tbl_range_free(tbl, dma_handle, npages, IOMMU_ERROR_CODE); sg = sg_next(sg); } local_irq_restore(flags); } static int dma_4v_supported(struct device *dev, u64 device_mask) { struct iommu *iommu = dev->archdata.iommu; if (ali_sound_dma_hack(dev, device_mask)) return 1; if (device_mask < iommu->dma_addr_mask) return 0; return 1; } static const struct dma_map_ops sun4v_dma_ops = { .alloc = dma_4v_alloc_coherent, .free = dma_4v_free_coherent, .map_page = dma_4v_map_page, .unmap_page = dma_4v_unmap_page, .map_sg = dma_4v_map_sg, .unmap_sg = dma_4v_unmap_sg, .dma_supported = dma_4v_supported, }; static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm, struct device *parent) { struct property *prop; struct device_node *dp; dp = pbm->op->dev.of_node; prop = of_find_property(dp, "66mhz-capable", NULL); pbm->is_66mhz_capable = (prop != NULL); pbm->pci_bus = pci_scan_one_pbm(pbm, parent); /* XXX register error interrupt handlers XXX */ } static unsigned long probe_existing_entries(struct pci_pbm_info *pbm, struct iommu_map_table *iommu) { struct iommu_pool *pool; unsigned long i, pool_nr, cnt = 0; u32 devhandle; devhandle = pbm->devhandle; for (pool_nr = 0; pool_nr < iommu->nr_pools; pool_nr++) { pool = &(iommu->pools[pool_nr]); for (i = pool->start; i <= pool->end; i++) { unsigned long ret, io_attrs, ra; ret = pci_sun4v_iommu_getmap(devhandle, HV_PCI_TSBID(0, i), &io_attrs, &ra); if (ret == HV_EOK) { if (page_in_phys_avail(ra)) { pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, i), 1); } else { cnt++; __set_bit(i, iommu->map); } } } } return cnt; } static int pci_sun4v_atu_alloc_iotsb(struct pci_pbm_info *pbm) { struct atu *atu = pbm->iommu->atu; struct atu_iotsb *iotsb; void *table; u64 table_size; u64 iotsb_num; unsigned long order; unsigned long err; iotsb = kzalloc(sizeof(*iotsb), GFP_KERNEL); if (!iotsb) { err = -ENOMEM; goto out_err; } atu->iotsb = iotsb; /* calculate size of IOTSB */ table_size = (atu->size / IO_PAGE_SIZE) * 8; order = get_order(table_size); table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order); if (!table) { err = -ENOMEM; goto table_failed; } iotsb->table = table; iotsb->ra = __pa(table); iotsb->dvma_size = atu->size; iotsb->dvma_base = atu->base; iotsb->table_size = table_size; iotsb->page_size = IO_PAGE_SIZE; /* configure and register IOTSB with HV */ err = pci_sun4v_iotsb_conf(pbm->devhandle, iotsb->ra, iotsb->table_size, iotsb->page_size, iotsb->dvma_base, &iotsb_num); if (err) { pr_err(PFX "pci_iotsb_conf failed error: %ld\n", err); goto iotsb_conf_failed; } iotsb->iotsb_num = iotsb_num; err = dma_4v_iotsb_bind(pbm->devhandle, iotsb_num, pbm->pci_bus); if (err) { pr_err(PFX "pci_iotsb_bind failed error: %ld\n", err); goto iotsb_conf_failed; } return 0; iotsb_conf_failed: free_pages((unsigned long)table, order); table_failed: kfree(iotsb); out_err: return err; } static int pci_sun4v_atu_init(struct pci_pbm_info *pbm) { struct atu *atu = pbm->iommu->atu; unsigned long err; const u64 *ranges; u64 map_size, num_iotte; u64 dma_mask; const u32 *page_size; int len; ranges = of_get_property(pbm->op->dev.of_node, "iommu-address-ranges", &len); if (!ranges) { pr_err(PFX "No iommu-address-ranges\n"); return -EINVAL; } page_size = of_get_property(pbm->op->dev.of_node, "iommu-pagesizes", NULL); if (!page_size) { pr_err(PFX "No iommu-pagesizes\n"); return -EINVAL; } /* There are 4 iommu-address-ranges supported. Each range is pair of * {base, size}. The ranges[0] and ranges[1] are 32bit address space * while ranges[2] and ranges[3] are 64bit space. We want to use 64bit * address ranges to support 64bit addressing. Because 'size' for * address ranges[2] and ranges[3] are same we can select either of * ranges[2] or ranges[3] for mapping. However due to 'size' is too * large for OS to allocate IOTSB we are using fix size 32G * (ATU_64_SPACE_SIZE) which is more than enough for all PCIe devices * to share. */ atu->ranges = (struct atu_ranges *)ranges; atu->base = atu->ranges[3].base; atu->size = ATU_64_SPACE_SIZE; /* Create IOTSB */ err = pci_sun4v_atu_alloc_iotsb(pbm); if (err) { pr_err(PFX "Error creating ATU IOTSB\n"); return err; } /* Create ATU iommu map. * One bit represents one iotte in IOTSB table. */ dma_mask = (roundup_pow_of_two(atu->size) - 1UL); num_iotte = atu->size / IO_PAGE_SIZE; map_size = num_iotte / 8; atu->tbl.table_map_base = atu->base; atu->dma_addr_mask = dma_mask; atu->tbl.map = kzalloc(map_size, GFP_KERNEL); if (!atu->tbl.map) return -ENOMEM; iommu_tbl_pool_init(&atu->tbl, num_iotte, IO_PAGE_SHIFT, NULL, false /* no large_pool */, 0 /* default npools */, false /* want span boundary checking */); return 0; } static int pci_sun4v_iommu_init(struct pci_pbm_info *pbm) { static const u32 vdma_default[] = { 0x80000000, 0x80000000 }; struct iommu *iommu = pbm->iommu; unsigned long num_tsb_entries, sz; u32 dma_mask, dma_offset; const u32 *vdma; vdma = of_get_property(pbm->op->dev.of_node, "virtual-dma", NULL); if (!vdma) vdma = vdma_default; if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) { printk(KERN_ERR PFX "Strange virtual-dma[%08x:%08x].\n", vdma[0], vdma[1]); return -EINVAL; } dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL); num_tsb_entries = vdma[1] / IO_PAGE_SIZE; dma_offset = vdma[0]; /* Setup initial software IOMMU state. */ spin_lock_init(&iommu->lock); iommu->ctx_lowest_free = 1; iommu->tbl.table_map_base = dma_offset; iommu->dma_addr_mask = dma_mask; /* Allocate and initialize the free area map. */ sz = (num_tsb_entries + 7) / 8; sz = (sz + 7UL) & ~7UL; iommu->tbl.map = kzalloc(sz, GFP_KERNEL); if (!iommu->tbl.map) { printk(KERN_ERR PFX "Error, kmalloc(arena.map) failed.\n"); return -ENOMEM; } iommu_tbl_pool_init(&iommu->tbl, num_tsb_entries, IO_PAGE_SHIFT, NULL, false /* no large_pool */, 0 /* default npools */, false /* want span boundary checking */); sz = probe_existing_entries(pbm, &iommu->tbl); if (sz) printk("%s: Imported %lu TSB entries from OBP\n", pbm->name, sz); return 0; } #ifdef CONFIG_PCI_MSI struct pci_sun4v_msiq_entry { u64 version_type; #define MSIQ_VERSION_MASK 0xffffffff00000000UL #define MSIQ_VERSION_SHIFT 32 #define MSIQ_TYPE_MASK 0x00000000000000ffUL #define MSIQ_TYPE_SHIFT 0 #define MSIQ_TYPE_NONE 0x00 #define MSIQ_TYPE_MSG 0x01 #define MSIQ_TYPE_MSI32 0x02 #define MSIQ_TYPE_MSI64 0x03 #define MSIQ_TYPE_INTX 0x08 #define MSIQ_TYPE_NONE2 0xff u64 intx_sysino; u64 reserved1; u64 stick; u64 req_id; /* bus/device/func */ #define MSIQ_REQID_BUS_MASK 0xff00UL #define MSIQ_REQID_BUS_SHIFT 8 #define MSIQ_REQID_DEVICE_MASK 0x00f8UL #define MSIQ_REQID_DEVICE_SHIFT 3 #define MSIQ_REQID_FUNC_MASK 0x0007UL #define MSIQ_REQID_FUNC_SHIFT 0 u64 msi_address; /* The format of this value is message type dependent. * For MSI bits 15:0 are the data from the MSI packet. * For MSI-X bits 31:0 are the data from the MSI packet. * For MSG, the message code and message routing code where: * bits 39:32 is the bus/device/fn of the msg target-id * bits 18:16 is the message routing code * bits 7:0 is the message code * For INTx the low order 2-bits are: * 00 - INTA * 01 - INTB * 10 - INTC * 11 - INTD */ u64 msi_data; u64 reserved2; }; static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long *head) { unsigned long err, limit; err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head); if (unlikely(err)) return -ENXIO; limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry); if (unlikely(*head >= limit)) return -EFBIG; return 0; } static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long *head, unsigned long *msi) { struct pci_sun4v_msiq_entry *ep; unsigned long err, type; /* Note: void pointer arithmetic, 'head' is a byte offset */ ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) * (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry))) + *head); if ((ep->version_type & MSIQ_TYPE_MASK) == 0) return 0; type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT; if (unlikely(type != MSIQ_TYPE_MSI32 && type != MSIQ_TYPE_MSI64)) return -EINVAL; *msi = ep->msi_data; err = pci_sun4v_msi_setstate(pbm->devhandle, ep->msi_data /* msi_num */, HV_MSISTATE_IDLE); if (unlikely(err)) return -ENXIO; /* Clear the entry. */ ep->version_type &= ~MSIQ_TYPE_MASK; (*head) += sizeof(struct pci_sun4v_msiq_entry); if (*head >= (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry))) *head = 0; return 1; } static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long head) { unsigned long err; err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head); if (unlikely(err)) return -EINVAL; return 0; } static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long msi, int is_msi64) { if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid, (is_msi64 ? HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32))) return -ENXIO; if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE)) return -ENXIO; if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID)) return -ENXIO; return 0; } static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi) { unsigned long err, msiqid; err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid); if (err) return -ENXIO; pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID); return 0; } static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm) { unsigned long q_size, alloc_size, pages, order; int i; q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry); alloc_size = (pbm->msiq_num * q_size); order = get_order(alloc_size); pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order); if (pages == 0UL) { printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n", order); return -ENOMEM; } memset((char *)pages, 0, PAGE_SIZE << order); pbm->msi_queues = (void *) pages; for (i = 0; i < pbm->msiq_num; i++) { unsigned long err, base = __pa(pages + (i * q_size)); unsigned long ret1, ret2; err = pci_sun4v_msiq_conf(pbm->devhandle, pbm->msiq_first + i, base, pbm->msiq_ent_count); if (err) { printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n", err); goto h_error; } err = pci_sun4v_msiq_info(pbm->devhandle, pbm->msiq_first + i, &ret1, &ret2); if (err) { printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n", err); goto h_error; } if (ret1 != base || ret2 != pbm->msiq_ent_count) { printk(KERN_ERR "MSI: Bogus qconf " "expected[%lx:%x] got[%lx:%lx]\n", base, pbm->msiq_ent_count, ret1, ret2); goto h_error; } } return 0; h_error: free_pages(pages, order); return -EINVAL; } static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm) { unsigned long q_size, alloc_size, pages, order; int i; for (i = 0; i < pbm->msiq_num; i++) { unsigned long msiqid = pbm->msiq_first + i; (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0); } q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry); alloc_size = (pbm->msiq_num * q_size); order = get_order(alloc_size); pages = (unsigned long) pbm->msi_queues; free_pages(pages, order); pbm->msi_queues = NULL; } static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm, unsigned long msiqid, unsigned long devino) { unsigned int irq = sun4v_build_irq(pbm->devhandle, devino); if (!irq) return -ENOMEM; if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID)) return -EINVAL; if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE)) return -EINVAL; return irq; } static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = { .get_head = pci_sun4v_get_head, .dequeue_msi = pci_sun4v_dequeue_msi, .set_head = pci_sun4v_set_head, .msi_setup = pci_sun4v_msi_setup, .msi_teardown = pci_sun4v_msi_teardown, .msiq_alloc = pci_sun4v_msiq_alloc, .msiq_free = pci_sun4v_msiq_free, .msiq_build_irq = pci_sun4v_msiq_build_irq, }; static void pci_sun4v_msi_init(struct pci_pbm_info *pbm) { sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops); } #else /* CONFIG_PCI_MSI */ static void pci_sun4v_msi_init(struct pci_pbm_info *pbm) { } #endif /* !(CONFIG_PCI_MSI) */ static int pci_sun4v_pbm_init(struct pci_pbm_info *pbm, struct platform_device *op, u32 devhandle) { struct device_node *dp = op->dev.of_node; int err; pbm->numa_node = of_node_to_nid(dp); pbm->pci_ops = &sun4v_pci_ops; pbm->config_space_reg_bits = 12; pbm->index = pci_num_pbms++; pbm->op = op; pbm->devhandle = devhandle; pbm->name = dp->full_name; printk("%s: SUN4V PCI Bus Module\n", pbm->name); printk("%s: On NUMA node %d\n", pbm->name, pbm->numa_node); pci_determine_mem_io_space(pbm); pci_get_pbm_props(pbm); err = pci_sun4v_iommu_init(pbm); if (err) return err; pci_sun4v_msi_init(pbm); pci_sun4v_scan_bus(pbm, &op->dev); /* if atu_init fails its not complete failure. * we can still continue using legacy iommu. */ if (pbm->iommu->atu) { err = pci_sun4v_atu_init(pbm); if (err) { kfree(pbm->iommu->atu); pbm->iommu->atu = NULL; pr_err(PFX "ATU init failed, err=%d\n", err); } } pbm->next = pci_pbm_root; pci_pbm_root = pbm; return 0; } static int pci_sun4v_probe(struct platform_device *op) { const struct linux_prom64_registers *regs; static int hvapi_negotiated = 0; struct pci_pbm_info *pbm; struct device_node *dp; struct iommu *iommu; struct atu *atu; u32 devhandle; int i, err = -ENODEV; static bool hv_atu = true; dp = op->dev.of_node; if (!hvapi_negotiated++) { for (i = 0; i < ARRAY_SIZE(vpci_versions); i++) { vpci_major = vpci_versions[i].major; vpci_minor = vpci_versions[i].minor; err = sun4v_hvapi_register(HV_GRP_PCI, vpci_major, &vpci_minor); if (!err) break; } if (err) { pr_err(PFX "Could not register hvapi, err=%d\n", err); return err; } pr_info(PFX "Registered hvapi major[%lu] minor[%lu]\n", vpci_major, vpci_minor); err = sun4v_hvapi_register(HV_GRP_ATU, vatu_major, &vatu_minor); if (err) { /* don't return an error if we fail to register the * ATU group, but ATU hcalls won't be available. */ hv_atu = false; } else { pr_info(PFX "Registered hvapi ATU major[%lu] minor[%lu]\n", vatu_major, vatu_minor); } dma_ops = &sun4v_dma_ops; } regs = of_get_property(dp, "reg", NULL); err = -ENODEV; if (!regs) { printk(KERN_ERR PFX "Could not find config registers\n"); goto out_err; } devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff; err = -ENOMEM; if (!iommu_batch_initialized) { for_each_possible_cpu(i) { unsigned long page = get_zeroed_page(GFP_KERNEL); if (!page) goto out_err; per_cpu(iommu_batch, i).pglist = (u64 *) page; } iommu_batch_initialized = 1; } pbm = kzalloc(sizeof(*pbm), GFP_KERNEL); if (!pbm) { printk(KERN_ERR PFX "Could not allocate pci_pbm_info\n"); goto out_err; } iommu = kzalloc(sizeof(struct iommu), GFP_KERNEL); if (!iommu) { printk(KERN_ERR PFX "Could not allocate pbm iommu\n"); goto out_free_controller; } pbm->iommu = iommu; iommu->atu = NULL; if (hv_atu) { atu = kzalloc(sizeof(*atu), GFP_KERNEL); if (!atu) pr_err(PFX "Could not allocate atu\n"); else iommu->atu = atu; } err = pci_sun4v_pbm_init(pbm, op, devhandle); if (err) goto out_free_iommu; dev_set_drvdata(&op->dev, pbm); return 0; out_free_iommu: kfree(iommu->atu); kfree(pbm->iommu); out_free_controller: kfree(pbm); out_err: return err; } static const struct of_device_id pci_sun4v_match[] = { { .name = "pci", .compatible = "SUNW,sun4v-pci", }, {}, }; static struct platform_driver pci_sun4v_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = pci_sun4v_match, }, .probe = pci_sun4v_probe, }; static int __init pci_sun4v_init(void) { return platform_driver_register(&pci_sun4v_driver); } subsys_initcall(pci_sun4v_init);