/* SPDX-License-Identifier: GPL-2.0 */ /* * pgtable.h: SpitFire page table operations. * * Copyright 1996,1997 David S. Miller (davem@caip.rutgers.edu) * Copyright 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #ifndef _SPARC64_PGTABLE_H #define _SPARC64_PGTABLE_H /* This file contains the functions and defines necessary to modify and use * the SpitFire page tables. */ #include #include #include #include #include #include #include #include #include /* The kernel image occupies 0x4000000 to 0x6000000 (4MB --> 96MB). * The page copy blockops can use 0x6000000 to 0x8000000. * The 8K TSB is mapped in the 0x8000000 to 0x8400000 range. * The 4M TSB is mapped in the 0x8400000 to 0x8800000 range. * The PROM resides in an area spanning 0xf0000000 to 0x100000000. * The vmalloc area spans 0x100000000 to 0x200000000. * Since modules need to be in the lowest 32-bits of the address space, * we place them right before the OBP area from 0x10000000 to 0xf0000000. * There is a single static kernel PMD which maps from 0x0 to address * 0x400000000. */ #define TLBTEMP_BASE _AC(0x0000000006000000,UL) #define TSBMAP_8K_BASE _AC(0x0000000008000000,UL) #define TSBMAP_4M_BASE _AC(0x0000000008400000,UL) #define MODULES_VADDR _AC(0x0000000010000000,UL) #define MODULES_LEN _AC(0x00000000e0000000,UL) #define MODULES_END _AC(0x00000000f0000000,UL) #define LOW_OBP_ADDRESS _AC(0x00000000f0000000,UL) #define HI_OBP_ADDRESS _AC(0x0000000100000000,UL) #define VMALLOC_START _AC(0x0000000100000000,UL) #define VMEMMAP_BASE VMALLOC_END /* PMD_SHIFT determines the size of the area a second-level page * table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (_AC(1,UL) << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PMD_BITS (PAGE_SHIFT - 3) /* PUD_SHIFT determines the size of the area a third-level page * table can map */ #define PUD_SHIFT (PMD_SHIFT + PMD_BITS) #define PUD_SIZE (_AC(1,UL) << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE-1)) #define PUD_BITS (PAGE_SHIFT - 3) /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ #define PGDIR_SHIFT (PUD_SHIFT + PUD_BITS) #define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PGDIR_BITS (PAGE_SHIFT - 3) #if (MAX_PHYS_ADDRESS_BITS > PGDIR_SHIFT + PGDIR_BITS) #error MAX_PHYS_ADDRESS_BITS exceeds what kernel page tables can support #endif #if (PGDIR_SHIFT + PGDIR_BITS) != 53 #error Page table parameters do not cover virtual address space properly. #endif #if (PMD_SHIFT != HPAGE_SHIFT) #error PMD_SHIFT must equal HPAGE_SHIFT for transparent huge pages. #endif #ifndef __ASSEMBLY__ extern unsigned long VMALLOC_END; #define vmemmap ((struct page *)VMEMMAP_BASE) #include bool kern_addr_valid(unsigned long addr); /* Entries per page directory level. */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) #define PTRS_PER_PMD (1UL << PMD_BITS) #define PTRS_PER_PUD (1UL << PUD_BITS) #define PTRS_PER_PGD (1UL << PGDIR_BITS) /* Kernel has a separate 44bit address space. */ #define FIRST_USER_ADDRESS 0UL #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %p(%016lx) seen at (%pS)\n", \ __FILE__, __LINE__, &(e), pmd_val(e), __builtin_return_address(0)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %p(%016lx) seen at (%pS)\n", \ __FILE__, __LINE__, &(e), pud_val(e), __builtin_return_address(0)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %p(%016lx) seen at (%pS)\n", \ __FILE__, __LINE__, &(e), pgd_val(e), __builtin_return_address(0)) #endif /* !(__ASSEMBLY__) */ /* PTE bits which are the same in SUN4U and SUN4V format. */ #define _PAGE_VALID _AC(0x8000000000000000,UL) /* Valid TTE */ #define _PAGE_R _AC(0x8000000000000000,UL) /* Keep ref bit uptodate*/ #define _PAGE_SPECIAL _AC(0x0200000000000000,UL) /* Special page */ #define _PAGE_PMD_HUGE _AC(0x0100000000000000,UL) /* Huge page */ #define _PAGE_PUD_HUGE _PAGE_PMD_HUGE /* Advertise support for _PAGE_SPECIAL */ #define __HAVE_ARCH_PTE_SPECIAL /* SUN4U pte bits... */ #define _PAGE_SZ4MB_4U _AC(0x6000000000000000,UL) /* 4MB Page */ #define _PAGE_SZ512K_4U _AC(0x4000000000000000,UL) /* 512K Page */ #define _PAGE_SZ64K_4U _AC(0x2000000000000000,UL) /* 64K Page */ #define _PAGE_SZ8K_4U _AC(0x0000000000000000,UL) /* 8K Page */ #define _PAGE_NFO_4U _AC(0x1000000000000000,UL) /* No Fault Only */ #define _PAGE_IE_4U _AC(0x0800000000000000,UL) /* Invert Endianness */ #define _PAGE_SOFT2_4U _AC(0x07FC000000000000,UL) /* Software bits, set 2 */ #define _PAGE_SPECIAL_4U _AC(0x0200000000000000,UL) /* Special page */ #define _PAGE_PMD_HUGE_4U _AC(0x0100000000000000,UL) /* Huge page */ #define _PAGE_RES1_4U _AC(0x0002000000000000,UL) /* Reserved */ #define _PAGE_SZ32MB_4U _AC(0x0001000000000000,UL) /* (Panther) 32MB page */ #define _PAGE_SZ256MB_4U _AC(0x2001000000000000,UL) /* (Panther) 256MB page */ #define _PAGE_SZALL_4U _AC(0x6001000000000000,UL) /* All pgsz bits */ #define _PAGE_SN_4U _AC(0x0000800000000000,UL) /* (Cheetah) Snoop */ #define _PAGE_RES2_4U _AC(0x0000780000000000,UL) /* Reserved */ #define _PAGE_PADDR_4U _AC(0x000007FFFFFFE000,UL) /* (Cheetah) pa[42:13] */ #define _PAGE_SOFT_4U _AC(0x0000000000001F80,UL) /* Software bits: */ #define _PAGE_EXEC_4U _AC(0x0000000000001000,UL) /* Executable SW bit */ #define _PAGE_MODIFIED_4U _AC(0x0000000000000800,UL) /* Modified (dirty) */ #define _PAGE_ACCESSED_4U _AC(0x0000000000000400,UL) /* Accessed (ref'd) */ #define _PAGE_READ_4U _AC(0x0000000000000200,UL) /* Readable SW Bit */ #define _PAGE_WRITE_4U _AC(0x0000000000000100,UL) /* Writable SW Bit */ #define _PAGE_PRESENT_4U _AC(0x0000000000000080,UL) /* Present */ #define _PAGE_L_4U _AC(0x0000000000000040,UL) /* Locked TTE */ #define _PAGE_CP_4U _AC(0x0000000000000020,UL) /* Cacheable in P-Cache */ #define _PAGE_CV_4U _AC(0x0000000000000010,UL) /* Cacheable in V-Cache */ #define _PAGE_E_4U _AC(0x0000000000000008,UL) /* side-Effect */ #define _PAGE_P_4U _AC(0x0000000000000004,UL) /* Privileged Page */ #define _PAGE_W_4U _AC(0x0000000000000002,UL) /* Writable */ /* SUN4V pte bits... */ #define _PAGE_NFO_4V _AC(0x4000000000000000,UL) /* No Fault Only */ #define _PAGE_SOFT2_4V _AC(0x3F00000000000000,UL) /* Software bits, set 2 */ #define _PAGE_MODIFIED_4V _AC(0x2000000000000000,UL) /* Modified (dirty) */ #define _PAGE_ACCESSED_4V _AC(0x1000000000000000,UL) /* Accessed (ref'd) */ #define _PAGE_READ_4V _AC(0x0800000000000000,UL) /* Readable SW Bit */ #define _PAGE_WRITE_4V _AC(0x0400000000000000,UL) /* Writable SW Bit */ #define _PAGE_SPECIAL_4V _AC(0x0200000000000000,UL) /* Special page */ #define _PAGE_PMD_HUGE_4V _AC(0x0100000000000000,UL) /* Huge page */ #define _PAGE_PADDR_4V _AC(0x00FFFFFFFFFFE000,UL) /* paddr[55:13] */ #define _PAGE_IE_4V _AC(0x0000000000001000,UL) /* Invert Endianness */ #define _PAGE_E_4V _AC(0x0000000000000800,UL) /* side-Effect */ #define _PAGE_CP_4V _AC(0x0000000000000400,UL) /* Cacheable in P-Cache */ #define _PAGE_CV_4V _AC(0x0000000000000200,UL) /* Cacheable in V-Cache */ /* Bit 9 is used to enable MCD corruption detection instead on M7 */ #define _PAGE_MCD_4V _AC(0x0000000000000200,UL) /* Memory Corruption */ #define _PAGE_P_4V _AC(0x0000000000000100,UL) /* Privileged Page */ #define _PAGE_EXEC_4V _AC(0x0000000000000080,UL) /* Executable Page */ #define _PAGE_W_4V _AC(0x0000000000000040,UL) /* Writable */ #define _PAGE_SOFT_4V _AC(0x0000000000000030,UL) /* Software bits */ #define _PAGE_PRESENT_4V _AC(0x0000000000000010,UL) /* Present */ #define _PAGE_RESV_4V _AC(0x0000000000000008,UL) /* Reserved */ #define _PAGE_SZ16GB_4V _AC(0x0000000000000007,UL) /* 16GB Page */ #define _PAGE_SZ2GB_4V _AC(0x0000000000000006,UL) /* 2GB Page */ #define _PAGE_SZ256MB_4V _AC(0x0000000000000005,UL) /* 256MB Page */ #define _PAGE_SZ32MB_4V _AC(0x0000000000000004,UL) /* 32MB Page */ #define _PAGE_SZ4MB_4V _AC(0x0000000000000003,UL) /* 4MB Page */ #define _PAGE_SZ512K_4V _AC(0x0000000000000002,UL) /* 512K Page */ #define _PAGE_SZ64K_4V _AC(0x0000000000000001,UL) /* 64K Page */ #define _PAGE_SZ8K_4V _AC(0x0000000000000000,UL) /* 8K Page */ #define _PAGE_SZALL_4V _AC(0x0000000000000007,UL) /* All pgsz bits */ #define _PAGE_SZBITS_4U _PAGE_SZ8K_4U #define _PAGE_SZBITS_4V _PAGE_SZ8K_4V #if REAL_HPAGE_SHIFT != 22 #error REAL_HPAGE_SHIFT and _PAGE_SZHUGE_foo must match up #endif #define _PAGE_SZHUGE_4U _PAGE_SZ4MB_4U #define _PAGE_SZHUGE_4V _PAGE_SZ4MB_4V /* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */ #define __P000 __pgprot(0) #define __P001 __pgprot(0) #define __P010 __pgprot(0) #define __P011 __pgprot(0) #define __P100 __pgprot(0) #define __P101 __pgprot(0) #define __P110 __pgprot(0) #define __P111 __pgprot(0) #define __S000 __pgprot(0) #define __S001 __pgprot(0) #define __S010 __pgprot(0) #define __S011 __pgprot(0) #define __S100 __pgprot(0) #define __S101 __pgprot(0) #define __S110 __pgprot(0) #define __S111 __pgprot(0) #ifndef __ASSEMBLY__ pte_t mk_pte_io(unsigned long, pgprot_t, int, unsigned long); unsigned long pte_sz_bits(unsigned long size); extern pgprot_t PAGE_KERNEL; extern pgprot_t PAGE_KERNEL_LOCKED; extern pgprot_t PAGE_COPY; extern pgprot_t PAGE_SHARED; /* XXX This ugliness is for the atyfb driver's sparc mmap() support. XXX */ extern unsigned long _PAGE_IE; extern unsigned long _PAGE_E; extern unsigned long _PAGE_CACHE; extern unsigned long pg_iobits; extern unsigned long _PAGE_ALL_SZ_BITS; extern struct page *mem_map_zero; #define ZERO_PAGE(vaddr) (mem_map_zero) /* This macro must be updated when the size of struct page grows above 80 * or reduces below 64. * The idea that compiler optimizes out switch() statement, and only * leaves clrx instructions */ #define mm_zero_struct_page(pp) do { \ unsigned long *_pp = (void *)(pp); \ \ /* Check that struct page is either 64, 72, or 80 bytes */ \ BUILD_BUG_ON(sizeof(struct page) & 7); \ BUILD_BUG_ON(sizeof(struct page) < 64); \ BUILD_BUG_ON(sizeof(struct page) > 80); \ \ switch (sizeof(struct page)) { \ case 80: \ _pp[9] = 0; /* fallthrough */ \ case 72: \ _pp[8] = 0; /* fallthrough */ \ default: \ _pp[7] = 0; \ _pp[6] = 0; \ _pp[5] = 0; \ _pp[4] = 0; \ _pp[3] = 0; \ _pp[2] = 0; \ _pp[1] = 0; \ _pp[0] = 0; \ } \ } while (0) /* PFNs are real physical page numbers. However, mem_map only begins to record * per-page information starting at pfn_base. This is to handle systems where * the first physical page in the machine is at some huge physical address, * such as 4GB. This is common on a partitioned E10000, for example. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) { unsigned long paddr = pfn << PAGE_SHIFT; BUILD_BUG_ON(_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL); return __pte(paddr | pgprot_val(prot)); } #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { pte_t pte = pfn_pte(page_nr, pgprot); return __pmd(pte_val(pte)); } #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) #endif /* This one can be done with two shifts. */ static inline unsigned long pte_pfn(pte_t pte) { unsigned long ret; __asm__ __volatile__( "\n661: sllx %1, %2, %0\n" " srlx %0, %3, %0\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sllx %1, %4, %0\n" " srlx %0, %5, %0\n" " .previous\n" : "=r" (ret) : "r" (pte_val(pte)), "i" (21), "i" (21 + PAGE_SHIFT), "i" (8), "i" (8 + PAGE_SHIFT)); return ret; } #define pte_page(x) pfn_to_page(pte_pfn(x)) static inline pte_t pte_modify(pte_t pte, pgprot_t prot) { unsigned long mask, tmp; /* SUN4U: 0x630107ffffffec38 (negated == 0x9cfef800000013c7) * SUN4V: 0x33ffffffffffee07 (negated == 0xcc000000000011f8) * * Even if we use negation tricks the result is still a 6 * instruction sequence, so don't try to play fancy and just * do the most straightforward implementation. * * Note: We encode this into 3 sun4v 2-insn patch sequences. */ BUILD_BUG_ON(_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL); __asm__ __volatile__( "\n661: sethi %%uhi(%2), %1\n" " sethi %%hi(%2), %0\n" "\n662: or %1, %%ulo(%2), %1\n" " or %0, %%lo(%2), %0\n" "\n663: sllx %1, 32, %1\n" " or %0, %1, %0\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%3), %1\n" " sethi %%hi(%3), %0\n" " .word 662b\n" " or %1, %%ulo(%3), %1\n" " or %0, %%lo(%3), %0\n" " .word 663b\n" " sllx %1, 32, %1\n" " or %0, %1, %0\n" " .previous\n" " .section .sun_m7_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%4), %1\n" " sethi %%hi(%4), %0\n" " .word 662b\n" " or %1, %%ulo(%4), %1\n" " or %0, %%lo(%4), %0\n" " .word 663b\n" " sllx %1, 32, %1\n" " or %0, %1, %0\n" " .previous\n" : "=r" (mask), "=r" (tmp) : "i" (_PAGE_PADDR_4U | _PAGE_MODIFIED_4U | _PAGE_ACCESSED_4U | _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_E_4U | _PAGE_SPECIAL | _PAGE_PMD_HUGE | _PAGE_SZALL_4U), "i" (_PAGE_PADDR_4V | _PAGE_MODIFIED_4V | _PAGE_ACCESSED_4V | _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_E_4V | _PAGE_SPECIAL | _PAGE_PMD_HUGE | _PAGE_SZALL_4V), "i" (_PAGE_PADDR_4V | _PAGE_MODIFIED_4V | _PAGE_ACCESSED_4V | _PAGE_CP_4V | _PAGE_E_4V | _PAGE_SPECIAL | _PAGE_PMD_HUGE | _PAGE_SZALL_4V)); return __pte((pte_val(pte) & mask) | (pgprot_val(prot) & ~mask)); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_modify(pte, newprot); return __pmd(pte_val(pte)); } #endif static inline pgprot_t pgprot_noncached(pgprot_t prot) { unsigned long val = pgprot_val(prot); __asm__ __volatile__( "\n661: andn %0, %2, %0\n" " or %0, %3, %0\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " andn %0, %4, %0\n" " or %0, %5, %0\n" " .previous\n" " .section .sun_m7_2insn_patch, \"ax\"\n" " .word 661b\n" " andn %0, %6, %0\n" " or %0, %5, %0\n" " .previous\n" : "=r" (val) : "0" (val), "i" (_PAGE_CP_4U | _PAGE_CV_4U), "i" (_PAGE_E_4U), "i" (_PAGE_CP_4V | _PAGE_CV_4V), "i" (_PAGE_E_4V), "i" (_PAGE_CP_4V)); return __pgprot(val); } /* Various pieces of code check for platform support by ifdef testing * on "pgprot_noncached". That's broken and should be fixed, but for * now... */ #define pgprot_noncached pgprot_noncached #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) extern pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, struct page *page, int writable); #define arch_make_huge_pte arch_make_huge_pte static inline unsigned long __pte_default_huge_mask(void) { unsigned long mask; __asm__ __volatile__( "\n661: sethi %%uhi(%1), %0\n" " sllx %0, 32, %0\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " mov %2, %0\n" " nop\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_SZHUGE_4U), "i" (_PAGE_SZHUGE_4V)); return mask; } static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | __pte_default_huge_mask()); } static inline bool is_default_hugetlb_pte(pte_t pte) { unsigned long mask = __pte_default_huge_mask(); return (pte_val(pte) & mask) == mask; } static inline bool is_hugetlb_pmd(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_PMD_HUGE); } static inline bool is_hugetlb_pud(pud_t pud) { return !!(pud_val(pud) & _PAGE_PUD_HUGE); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline pmd_t pmd_mkhuge(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_mkhuge(pte); pte_val(pte) |= _PAGE_PMD_HUGE; return __pmd(pte_val(pte)); } #endif #else static inline bool is_hugetlb_pte(pte_t pte) { return false; } #endif static inline pte_t pte_mkdirty(pte_t pte) { unsigned long val = pte_val(pte), tmp; __asm__ __volatile__( "\n661: or %0, %3, %0\n" " nop\n" "\n662: nop\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%4), %1\n" " sllx %1, 32, %1\n" " .word 662b\n" " or %1, %%lo(%4), %1\n" " or %0, %1, %0\n" " .previous\n" : "=r" (val), "=r" (tmp) : "0" (val), "i" (_PAGE_MODIFIED_4U | _PAGE_W_4U), "i" (_PAGE_MODIFIED_4V | _PAGE_W_4V)); return __pte(val); } static inline pte_t pte_mkclean(pte_t pte) { unsigned long val = pte_val(pte), tmp; __asm__ __volatile__( "\n661: andn %0, %3, %0\n" " nop\n" "\n662: nop\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%4), %1\n" " sllx %1, 32, %1\n" " .word 662b\n" " or %1, %%lo(%4), %1\n" " andn %0, %1, %0\n" " .previous\n" : "=r" (val), "=r" (tmp) : "0" (val), "i" (_PAGE_MODIFIED_4U | _PAGE_W_4U), "i" (_PAGE_MODIFIED_4V | _PAGE_W_4V)); return __pte(val); } static inline pte_t pte_mkwrite(pte_t pte) { unsigned long val = pte_val(pte), mask; __asm__ __volatile__( "\n661: mov %1, %0\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%2), %0\n" " sllx %0, 32, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_WRITE_4U), "i" (_PAGE_WRITE_4V)); return __pte(val | mask); } static inline pte_t pte_wrprotect(pte_t pte) { unsigned long val = pte_val(pte), tmp; __asm__ __volatile__( "\n661: andn %0, %3, %0\n" " nop\n" "\n662: nop\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%4), %1\n" " sllx %1, 32, %1\n" " .word 662b\n" " or %1, %%lo(%4), %1\n" " andn %0, %1, %0\n" " .previous\n" : "=r" (val), "=r" (tmp) : "0" (val), "i" (_PAGE_WRITE_4U | _PAGE_W_4U), "i" (_PAGE_WRITE_4V | _PAGE_W_4V)); return __pte(val); } static inline pte_t pte_mkold(pte_t pte) { unsigned long mask; __asm__ __volatile__( "\n661: mov %1, %0\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%2), %0\n" " sllx %0, 32, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_ACCESSED_4U), "i" (_PAGE_ACCESSED_4V)); mask |= _PAGE_R; return __pte(pte_val(pte) & ~mask); } static inline pte_t pte_mkyoung(pte_t pte) { unsigned long mask; __asm__ __volatile__( "\n661: mov %1, %0\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%2), %0\n" " sllx %0, 32, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_ACCESSED_4U), "i" (_PAGE_ACCESSED_4V)); mask |= _PAGE_R; return __pte(pte_val(pte) | mask); } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } static inline pte_t pte_mkmcd(pte_t pte) { pte_val(pte) |= _PAGE_MCD_4V; return pte; } static inline pte_t pte_mknotmcd(pte_t pte) { pte_val(pte) &= ~_PAGE_MCD_4V; return pte; } static inline unsigned long pte_young(pte_t pte) { unsigned long mask; __asm__ __volatile__( "\n661: mov %1, %0\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%2), %0\n" " sllx %0, 32, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_ACCESSED_4U), "i" (_PAGE_ACCESSED_4V)); return (pte_val(pte) & mask); } static inline unsigned long pte_dirty(pte_t pte) { unsigned long mask; __asm__ __volatile__( "\n661: mov %1, %0\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%2), %0\n" " sllx %0, 32, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_MODIFIED_4U), "i" (_PAGE_MODIFIED_4V)); return (pte_val(pte) & mask); } static inline unsigned long pte_write(pte_t pte) { unsigned long mask; __asm__ __volatile__( "\n661: mov %1, %0\n" " nop\n" " .section .sun4v_2insn_patch, \"ax\"\n" " .word 661b\n" " sethi %%uhi(%2), %0\n" " sllx %0, 32, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_WRITE_4U), "i" (_PAGE_WRITE_4V)); return (pte_val(pte) & mask); } static inline unsigned long pte_exec(pte_t pte) { unsigned long mask; __asm__ __volatile__( "\n661: sethi %%hi(%1), %0\n" " .section .sun4v_1insn_patch, \"ax\"\n" " .word 661b\n" " mov %2, %0\n" " .previous\n" : "=r" (mask) : "i" (_PAGE_EXEC_4U), "i" (_PAGE_EXEC_4V)); return (pte_val(pte) & mask); } static inline unsigned long pte_present(pte_t pte) { unsigned long val = pte_val(pte); __asm__ __volatile__( "\n661: and %0, %2, %0\n" " .section .sun4v_1insn_patch, \"ax\"\n" " .word 661b\n" " and %0, %3, %0\n" " .previous\n" : "=r" (val) : "0" (val), "i" (_PAGE_PRESENT_4U), "i" (_PAGE_PRESENT_4V)); return val; } #define pte_accessible pte_accessible static inline unsigned long pte_accessible(struct mm_struct *mm, pte_t a) { return pte_val(a) & _PAGE_VALID; } static inline unsigned long pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline unsigned long pmd_large(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); return pte_val(pte) & _PAGE_PMD_HUGE; } static inline unsigned long pmd_pfn(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); return pte_pfn(pte); } #define pmd_write pmd_write static inline unsigned long pmd_write(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); return pte_write(pte); } #define pud_write(pud) pte_write(__pte(pud_val(pud))) #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline unsigned long pmd_dirty(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); return pte_dirty(pte); } static inline unsigned long pmd_young(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); return pte_young(pte); } static inline unsigned long pmd_trans_huge(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); return pte_val(pte) & _PAGE_PMD_HUGE; } static inline pmd_t pmd_mkold(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_mkold(pte); return __pmd(pte_val(pte)); } static inline pmd_t pmd_wrprotect(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_wrprotect(pte); return __pmd(pte_val(pte)); } static inline pmd_t pmd_mkdirty(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_mkdirty(pte); return __pmd(pte_val(pte)); } static inline pmd_t pmd_mkclean(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_mkclean(pte); return __pmd(pte_val(pte)); } static inline pmd_t pmd_mkyoung(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_mkyoung(pte); return __pmd(pte_val(pte)); } static inline pmd_t pmd_mkwrite(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); pte = pte_mkwrite(pte); return __pmd(pte_val(pte)); } static inline pgprot_t pmd_pgprot(pmd_t entry) { unsigned long val = pmd_val(entry); return __pgprot(val); } #endif static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != 0UL; } #define pmd_none(pmd) (!pmd_val(pmd)) /* pmd_bad() is only called on non-trans-huge PMDs. Our encoding is * very simple, it's just the physical address. PTE tables are of * size PAGE_SIZE so make sure the sub-PAGE_SIZE bits are clear and * the top bits outside of the range of any physical address size we * support are clear as well. We also validate the physical itself. */ #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (pud_val(pud) & ~PAGE_MASK) #define pgd_none(pgd) (!pgd_val(pgd)) #define pgd_bad(pgd) (pgd_val(pgd) & ~PAGE_MASK) #ifdef CONFIG_TRANSPARENT_HUGEPAGE void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd); #else static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd) { *pmdp = pmd; } #endif static inline void pmd_set(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep) { unsigned long val = __pa((unsigned long) (ptep)); pmd_val(*pmdp) = val; } #define pud_set(pudp, pmdp) \ (pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)))) static inline unsigned long __pmd_page(pmd_t pmd) { pte_t pte = __pte(pmd_val(pmd)); unsigned long pfn; pfn = pte_pfn(pte); return ((unsigned long) __va(pfn << PAGE_SHIFT)); } static inline unsigned long pud_page_vaddr(pud_t pud) { pte_t pte = __pte(pud_val(pud)); unsigned long pfn; pfn = pte_pfn(pte); return ((unsigned long) __va(pfn << PAGE_SHIFT)); } #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) #define pud_page(pud) virt_to_page((void *)pud_page_vaddr(pud)) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) #define pud_present(pud) (pud_val(pud) != 0U) #define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) #define pgd_page_vaddr(pgd) \ ((unsigned long) __va(pgd_val(pgd))) #define pgd_present(pgd) (pgd_val(pgd) != 0U) #define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) static inline unsigned long pud_large(pud_t pud) { pte_t pte = __pte(pud_val(pud)); return pte_val(pte) & _PAGE_PMD_HUGE; } static inline unsigned long pud_pfn(pud_t pud) { pte_t pte = __pte(pud_val(pud)); return pte_pfn(pte); } /* Same in both SUN4V and SUN4U. */ #define pte_none(pte) (!pte_val(pte)) #define pgd_set(pgdp, pudp) \ (pgd_val(*(pgdp)) = (__pa((unsigned long) (pudp)))) /* to find an entry in a page-table-directory. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* Find an entry in the third-level page table.. */ #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)) #define pud_offset(pgdp, address) \ ((pud_t *) pgd_page_vaddr(*(pgdp)) + pud_index(address)) /* Find an entry in the second-level page table.. */ #define pmd_offset(pudp, address) \ ((pmd_t *) pud_page_vaddr(*(pudp)) + \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))) /* Find an entry in the third-level page table.. */ #define pte_index(dir, address) \ ((pte_t *) __pmd_page(*(dir)) + \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) #define pte_offset_kernel pte_index #define pte_offset_map pte_index #define pte_unmap(pte) do { } while (0) /* We cannot include at this point yet: */ extern struct mm_struct init_mm; /* Actual page table PTE updates. */ void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr, pte_t *ptep, pte_t orig, int fullmm, unsigned int hugepage_shift); static void maybe_tlb_batch_add(struct mm_struct *mm, unsigned long vaddr, pte_t *ptep, pte_t orig, int fullmm, unsigned int hugepage_shift) { /* It is more efficient to let flush_tlb_kernel_range() * handle init_mm tlb flushes. * * SUN4V NOTE: _PAGE_VALID is the same value in both the SUN4U * and SUN4V pte layout, so this inline test is fine. */ if (likely(mm != &init_mm) && pte_accessible(mm, orig)) tlb_batch_add(mm, vaddr, ptep, orig, fullmm, hugepage_shift); } #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = *pmdp; set_pmd_at(mm, addr, pmdp, __pmd(0UL)); return pmd; } static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int fullmm) { pte_t orig = *ptep; *ptep = pte; maybe_tlb_batch_add(mm, addr, ptep, orig, fullmm, PAGE_SHIFT); } #define set_pte_at(mm,addr,ptep,pte) \ __set_pte_at((mm), (addr), (ptep), (pte), 0) #define pte_clear(mm,addr,ptep) \ set_pte_at((mm), (addr), (ptep), __pte(0UL)) #define __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL #define pte_clear_not_present_full(mm,addr,ptep,fullmm) \ __set_pte_at((mm), (addr), (ptep), __pte(0UL), (fullmm)) #ifdef DCACHE_ALIASING_POSSIBLE #define __HAVE_ARCH_MOVE_PTE #define move_pte(pte, prot, old_addr, new_addr) \ ({ \ pte_t newpte = (pte); \ if (tlb_type != hypervisor && pte_present(pte)) { \ unsigned long this_pfn = pte_pfn(pte); \ \ if (pfn_valid(this_pfn) && \ (((old_addr) ^ (new_addr)) & (1 << 13))) \ flush_dcache_page_all(current->mm, \ pfn_to_page(this_pfn)); \ } \ newpte; \ }) #endif extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; void paging_init(void); unsigned long find_ecache_flush_span(unsigned long size); struct seq_file; void mmu_info(struct seq_file *); struct vm_area_struct; void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *); #ifdef CONFIG_TRANSPARENT_HUGEPAGE void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd); #define __HAVE_ARCH_PMDP_INVALIDATE extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PGTABLE_DEPOSIT void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #define __HAVE_ARCH_PGTABLE_WITHDRAW pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif /* Encode and de-code a swap entry */ #define __swp_type(entry) (((entry).val >> PAGE_SHIFT) & 0xffUL) #define __swp_offset(entry) ((entry).val >> (PAGE_SHIFT + 8UL)) #define __swp_entry(type, offset) \ ( (swp_entry_t) \ { \ (((long)(type) << PAGE_SHIFT) | \ ((long)(offset) << (PAGE_SHIFT + 8UL))) \ } ) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) int page_in_phys_avail(unsigned long paddr); /* * For sparc32&64, the pfn in io_remap_pfn_range() carries in * its high 4 bits. These macros/functions put it there or get it from there. */ #define MK_IOSPACE_PFN(space, pfn) (pfn | (space << (BITS_PER_LONG - 4))) #define GET_IOSPACE(pfn) (pfn >> (BITS_PER_LONG - 4)) #define GET_PFN(pfn) (pfn & 0x0fffffffffffffffUL) int remap_pfn_range(struct vm_area_struct *, unsigned long, unsigned long, unsigned long, pgprot_t); void adi_restore_tags(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte); int adi_save_tags(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t oldpte); #define __HAVE_ARCH_DO_SWAP_PAGE static inline void arch_do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t pte, pte_t oldpte) { /* If this is a new page being mapped in, there can be no * ADI tags stored away for this page. Skip looking for * stored tags */ if (pte_none(oldpte)) return; if (adi_state.enabled && (pte_val(pte) & _PAGE_MCD_4V)) adi_restore_tags(mm, vma, addr, pte); } #define __HAVE_ARCH_UNMAP_ONE static inline int arch_unmap_one(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, pte_t oldpte) { if (adi_state.enabled && (pte_val(oldpte) & _PAGE_MCD_4V)) return adi_save_tags(mm, vma, addr, oldpte); return 0; } static inline int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot) { unsigned long offset = GET_PFN(pfn) << PAGE_SHIFT; int space = GET_IOSPACE(pfn); unsigned long phys_base; phys_base = offset | (((unsigned long) space) << 32UL); return remap_pfn_range(vma, from, phys_base >> PAGE_SHIFT, size, prot); } #define io_remap_pfn_range io_remap_pfn_range #include #include /* We provide our own get_unmapped_area to cope with VA holes and * SHM area cache aliasing for userland. */ #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN /* We provide a special get_unmapped_area for framebuffer mmaps to try and use * the largest alignment possible such that larget PTEs can be used. */ unsigned long get_fb_unmapped_area(struct file *filp, unsigned long, unsigned long, unsigned long, unsigned long); #define HAVE_ARCH_FB_UNMAPPED_AREA void pgtable_cache_init(void); void sun4v_register_fault_status(void); void sun4v_ktsb_register(void); void __init cheetah_ecache_flush_init(void); void sun4v_patch_tlb_handlers(void); extern unsigned long cmdline_memory_size; asmlinkage void do_sparc64_fault(struct pt_regs *regs); #endif /* !(__ASSEMBLY__) */ #endif /* !(_SPARC64_PGTABLE_H) */