// SPDX-License-Identifier: GPL-2.0 /* * Access kernel memory without faulting -- s390 specific implementation. * * Copyright IBM Corp. 2009, 2015 * * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>, * */ #include <linux/uaccess.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/gfp.h> #include <linux/cpu.h> #include <asm/ctl_reg.h> #include <asm/io.h> static notrace long s390_kernel_write_odd(void *dst, const void *src, size_t size) { unsigned long aligned, offset, count; char tmp[8]; aligned = (unsigned long) dst & ~7UL; offset = (unsigned long) dst & 7UL; size = min(8UL - offset, size); count = size - 1; asm volatile( " bras 1,0f\n" " mvc 0(1,%4),0(%5)\n" "0: mvc 0(8,%3),0(%0)\n" " ex %1,0(1)\n" " lg %1,0(%3)\n" " lra %0,0(%0)\n" " sturg %1,%0\n" : "+&a" (aligned), "+&a" (count), "=m" (tmp) : "a" (&tmp), "a" (&tmp[offset]), "a" (src) : "cc", "memory", "1"); return size; } /* * s390_kernel_write - write to kernel memory bypassing DAT * @dst: destination address * @src: source address * @size: number of bytes to copy * * This function writes to kernel memory bypassing DAT and possible page table * write protection. It writes to the destination using the sturg instruction. * Therefore we have a read-modify-write sequence: the function reads eight * bytes from destination at an eight byte boundary, modifies the bytes * requested and writes the result back in a loop. * * Note: this means that this function may not be called concurrently on * several cpus with overlapping words, since this may potentially * cause data corruption. */ void notrace s390_kernel_write(void *dst, const void *src, size_t size) { long copied; while (size) { copied = s390_kernel_write_odd(dst, src, size); dst += copied; src += copied; size -= copied; } } static int __memcpy_real(void *dest, void *src, size_t count) { register unsigned long _dest asm("2") = (unsigned long) dest; register unsigned long _len1 asm("3") = (unsigned long) count; register unsigned long _src asm("4") = (unsigned long) src; register unsigned long _len2 asm("5") = (unsigned long) count; int rc = -EFAULT; asm volatile ( "0: mvcle %1,%2,0x0\n" "1: jo 0b\n" " lhi %0,0x0\n" "2:\n" EX_TABLE(1b,2b) : "+d" (rc), "+d" (_dest), "+d" (_src), "+d" (_len1), "+d" (_len2), "=m" (*((long *) dest)) : "m" (*((long *) src)) : "cc", "memory"); return rc; } static unsigned long _memcpy_real(unsigned long dest, unsigned long src, unsigned long count) { int irqs_disabled, rc; unsigned long flags; if (!count) return 0; flags = __arch_local_irq_stnsm(0xf8UL); irqs_disabled = arch_irqs_disabled_flags(flags); if (!irqs_disabled) trace_hardirqs_off(); rc = __memcpy_real((void *) dest, (void *) src, (size_t) count); if (!irqs_disabled) trace_hardirqs_on(); __arch_local_irq_ssm(flags); return rc; } /* * Copy memory in real mode (kernel to kernel) */ int memcpy_real(void *dest, void *src, size_t count) { if (S390_lowcore.nodat_stack != 0) return CALL_ON_STACK(_memcpy_real, S390_lowcore.nodat_stack, 3, dest, src, count); /* * This is a really early memcpy_real call, the stacks are * not set up yet. Just call _memcpy_real on the early boot * stack */ return _memcpy_real((unsigned long) dest,(unsigned long) src, (unsigned long) count); } /* * Copy memory in absolute mode (kernel to kernel) */ void memcpy_absolute(void *dest, void *src, size_t count) { unsigned long cr0, flags, prefix; flags = arch_local_irq_save(); __ctl_store(cr0, 0, 0); __ctl_clear_bit(0, 28); /* disable lowcore protection */ prefix = store_prefix(); if (prefix) { local_mcck_disable(); set_prefix(0); memcpy(dest, src, count); set_prefix(prefix); local_mcck_enable(); } else { memcpy(dest, src, count); } __ctl_load(cr0, 0, 0); arch_local_irq_restore(flags); } /* * Copy memory from kernel (real) to user (virtual) */ int copy_to_user_real(void __user *dest, void *src, unsigned long count) { int offs = 0, size, rc; char *buf; buf = (char *) __get_free_page(GFP_KERNEL); if (!buf) return -ENOMEM; rc = -EFAULT; while (offs < count) { size = min(PAGE_SIZE, count - offs); if (memcpy_real(buf, src + offs, size)) goto out; if (copy_to_user(dest + offs, buf, size)) goto out; offs += size; } rc = 0; out: free_page((unsigned long) buf); return rc; } /* * Check if physical address is within prefix or zero page */ static int is_swapped(unsigned long addr) { unsigned long lc; int cpu; if (addr < sizeof(struct lowcore)) return 1; for_each_online_cpu(cpu) { lc = (unsigned long) lowcore_ptr[cpu]; if (addr > lc + sizeof(struct lowcore) - 1 || addr < lc) continue; return 1; } return 0; } /* * Convert a physical pointer for /dev/mem access * * For swapped prefix pages a new buffer is returned that contains a copy of * the absolute memory. The buffer size is maximum one page large. */ void *xlate_dev_mem_ptr(phys_addr_t addr) { void *bounce = (void *) addr; unsigned long size; get_online_cpus(); preempt_disable(); if (is_swapped(addr)) { size = PAGE_SIZE - (addr & ~PAGE_MASK); bounce = (void *) __get_free_page(GFP_ATOMIC); if (bounce) memcpy_absolute(bounce, (void *) addr, size); } preempt_enable(); put_online_cpus(); return bounce; } /* * Free converted buffer for /dev/mem access (if necessary) */ void unxlate_dev_mem_ptr(phys_addr_t addr, void *buf) { if ((void *) addr != buf) free_page((unsigned long) buf); }