// SPDX-License-Identifier: GPL-2.0 /* BPF JIT compiler for RV64G * * Copyright(c) 2019 Björn Töpel * */ #include #include #include #include #include #include #include "bpf_jit.h" #define RV_FENTRY_NINSNS 2 #define RV_REG_TCC RV_REG_A6 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */ static const int regmap[] = { [BPF_REG_0] = RV_REG_A5, [BPF_REG_1] = RV_REG_A0, [BPF_REG_2] = RV_REG_A1, [BPF_REG_3] = RV_REG_A2, [BPF_REG_4] = RV_REG_A3, [BPF_REG_5] = RV_REG_A4, [BPF_REG_6] = RV_REG_S1, [BPF_REG_7] = RV_REG_S2, [BPF_REG_8] = RV_REG_S3, [BPF_REG_9] = RV_REG_S4, [BPF_REG_FP] = RV_REG_S5, [BPF_REG_AX] = RV_REG_T0, }; static const int pt_regmap[] = { [RV_REG_A0] = offsetof(struct pt_regs, a0), [RV_REG_A1] = offsetof(struct pt_regs, a1), [RV_REG_A2] = offsetof(struct pt_regs, a2), [RV_REG_A3] = offsetof(struct pt_regs, a3), [RV_REG_A4] = offsetof(struct pt_regs, a4), [RV_REG_A5] = offsetof(struct pt_regs, a5), [RV_REG_S1] = offsetof(struct pt_regs, s1), [RV_REG_S2] = offsetof(struct pt_regs, s2), [RV_REG_S3] = offsetof(struct pt_regs, s3), [RV_REG_S4] = offsetof(struct pt_regs, s4), [RV_REG_S5] = offsetof(struct pt_regs, s5), [RV_REG_T0] = offsetof(struct pt_regs, t0), }; enum { RV_CTX_F_SEEN_TAIL_CALL = 0, RV_CTX_F_SEEN_CALL = RV_REG_RA, RV_CTX_F_SEEN_S1 = RV_REG_S1, RV_CTX_F_SEEN_S2 = RV_REG_S2, RV_CTX_F_SEEN_S3 = RV_REG_S3, RV_CTX_F_SEEN_S4 = RV_REG_S4, RV_CTX_F_SEEN_S5 = RV_REG_S5, RV_CTX_F_SEEN_S6 = RV_REG_S6, }; static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx) { u8 reg = regmap[bpf_reg]; switch (reg) { case RV_CTX_F_SEEN_S1: case RV_CTX_F_SEEN_S2: case RV_CTX_F_SEEN_S3: case RV_CTX_F_SEEN_S4: case RV_CTX_F_SEEN_S5: case RV_CTX_F_SEEN_S6: __set_bit(reg, &ctx->flags); } return reg; }; static bool seen_reg(int reg, struct rv_jit_context *ctx) { switch (reg) { case RV_CTX_F_SEEN_CALL: case RV_CTX_F_SEEN_S1: case RV_CTX_F_SEEN_S2: case RV_CTX_F_SEEN_S3: case RV_CTX_F_SEEN_S4: case RV_CTX_F_SEEN_S5: case RV_CTX_F_SEEN_S6: return test_bit(reg, &ctx->flags); } return false; } static void mark_fp(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags); } static void mark_call(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags); } static bool seen_call(struct rv_jit_context *ctx) { return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags); } static void mark_tail_call(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags); } static bool seen_tail_call(struct rv_jit_context *ctx) { return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags); } static u8 rv_tail_call_reg(struct rv_jit_context *ctx) { mark_tail_call(ctx); if (seen_call(ctx)) { __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags); return RV_REG_S6; } return RV_REG_A6; } static bool is_32b_int(s64 val) { return -(1L << 31) <= val && val < (1L << 31); } static bool in_auipc_jalr_range(s64 val) { /* * auipc+jalr can reach any signed PC-relative offset in the range * [-2^31 - 2^11, 2^31 - 2^11). */ return (-(1L << 31) - (1L << 11)) <= val && val < ((1L << 31) - (1L << 11)); } /* Emit fixed-length instructions for address */ static int emit_addr(u8 rd, u64 addr, bool extra_pass, struct rv_jit_context *ctx) { /* * Use the ro_insns(RX) to calculate the offset as the BPF program will * finally run from this memory region. */ u64 ip = (u64)(ctx->ro_insns + ctx->ninsns); s64 off = addr - ip; s64 upper = (off + (1 << 11)) >> 12; s64 lower = off & 0xfff; if (extra_pass && !in_auipc_jalr_range(off)) { pr_err("bpf-jit: target offset 0x%llx is out of range\n", off); return -ERANGE; } emit(rv_auipc(rd, upper), ctx); emit(rv_addi(rd, rd, lower), ctx); return 0; } /* Emit variable-length instructions for 32-bit and 64-bit imm */ static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx) { /* Note that the immediate from the add is sign-extended, * which means that we need to compensate this by adding 2^12, * when the 12th bit is set. A simpler way of doing this, and * getting rid of the check, is to just add 2**11 before the * shift. The "Loading a 32-Bit constant" example from the * "Computer Organization and Design, RISC-V edition" book by * Patterson/Hennessy highlights this fact. * * This also means that we need to process LSB to MSB. */ s64 upper = (val + (1 << 11)) >> 12; /* Sign-extend lower 12 bits to 64 bits since immediates for li, addiw, * and addi are signed and RVC checks will perform signed comparisons. */ s64 lower = ((val & 0xfff) << 52) >> 52; int shift; if (is_32b_int(val)) { if (upper) emit_lui(rd, upper, ctx); if (!upper) { emit_li(rd, lower, ctx); return; } emit_addiw(rd, rd, lower, ctx); return; } shift = __ffs(upper); upper >>= shift; shift += 12; emit_imm(rd, upper, ctx); emit_slli(rd, rd, shift, ctx); if (lower) emit_addi(rd, rd, lower, ctx); } static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx) { int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8; if (seen_reg(RV_REG_RA, ctx)) { emit_ld(RV_REG_RA, store_offset, RV_REG_SP, ctx); store_offset -= 8; } emit_ld(RV_REG_FP, store_offset, RV_REG_SP, ctx); store_offset -= 8; if (seen_reg(RV_REG_S1, ctx)) { emit_ld(RV_REG_S1, store_offset, RV_REG_SP, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S2, ctx)) { emit_ld(RV_REG_S2, store_offset, RV_REG_SP, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S3, ctx)) { emit_ld(RV_REG_S3, store_offset, RV_REG_SP, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S4, ctx)) { emit_ld(RV_REG_S4, store_offset, RV_REG_SP, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S5, ctx)) { emit_ld(RV_REG_S5, store_offset, RV_REG_SP, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S6, ctx)) { emit_ld(RV_REG_S6, store_offset, RV_REG_SP, ctx); store_offset -= 8; } emit_addi(RV_REG_SP, RV_REG_SP, stack_adjust, ctx); /* Set return value. */ if (!is_tail_call) emit_addiw(RV_REG_A0, RV_REG_A5, 0, ctx); emit_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA, is_tail_call ? (RV_FENTRY_NINSNS + 1) * 4 : 0, /* skip reserved nops and TCC init */ ctx); } static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { switch (cond) { case BPF_JEQ: emit(rv_beq(rd, rs, rvoff >> 1), ctx); return; case BPF_JGT: emit(rv_bltu(rs, rd, rvoff >> 1), ctx); return; case BPF_JLT: emit(rv_bltu(rd, rs, rvoff >> 1), ctx); return; case BPF_JGE: emit(rv_bgeu(rd, rs, rvoff >> 1), ctx); return; case BPF_JLE: emit(rv_bgeu(rs, rd, rvoff >> 1), ctx); return; case BPF_JNE: emit(rv_bne(rd, rs, rvoff >> 1), ctx); return; case BPF_JSGT: emit(rv_blt(rs, rd, rvoff >> 1), ctx); return; case BPF_JSLT: emit(rv_blt(rd, rs, rvoff >> 1), ctx); return; case BPF_JSGE: emit(rv_bge(rd, rs, rvoff >> 1), ctx); return; case BPF_JSLE: emit(rv_bge(rs, rd, rvoff >> 1), ctx); } } static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { s64 upper, lower; if (is_13b_int(rvoff)) { emit_bcc(cond, rd, rs, rvoff, ctx); return; } /* Adjust for jal */ rvoff -= 4; /* Transform, e.g.: * bne rd,rs,foo * to * beq rd,rs,<.L1> * (auipc foo) * jal(r) foo * .L1 */ cond = invert_bpf_cond(cond); if (is_21b_int(rvoff)) { emit_bcc(cond, rd, rs, 8, ctx); emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx); return; } /* 32b No need for an additional rvoff adjustment, since we * get that from the auipc at PC', where PC = PC' + 4. */ upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit_bcc(cond, rd, rs, 12, ctx); emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx); } static void emit_zext_32(u8 reg, struct rv_jit_context *ctx) { emit_slli(reg, reg, 32, ctx); emit_srli(reg, reg, 32, ctx); } static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx) { int tc_ninsn, off, start_insn = ctx->ninsns; u8 tcc = rv_tail_call_reg(ctx); /* a0: &ctx * a1: &array * a2: index * * if (index >= array->map.max_entries) * goto out; */ tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] : ctx->offset[0]; emit_zext_32(RV_REG_A2, ctx); off = offsetof(struct bpf_array, map.max_entries); if (is_12b_check(off, insn)) return -1; emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx); off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx); /* if (--TCC < 0) * goto out; */ emit_addi(RV_REG_TCC, tcc, -1, ctx); off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); emit_branch(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx); /* prog = array->ptrs[index]; * if (!prog) * goto out; */ emit_slli(RV_REG_T2, RV_REG_A2, 3, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_A1, ctx); off = offsetof(struct bpf_array, ptrs); if (is_12b_check(off, insn)) return -1; emit_ld(RV_REG_T2, off, RV_REG_T2, ctx); off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx); /* goto *(prog->bpf_func + 4); */ off = offsetof(struct bpf_prog, bpf_func); if (is_12b_check(off, insn)) return -1; emit_ld(RV_REG_T3, off, RV_REG_T2, ctx); __build_epilogue(true, ctx); return 0; } static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn, struct rv_jit_context *ctx) { u8 code = insn->code; switch (code) { case BPF_JMP | BPF_JA: case BPF_JMP | BPF_CALL: case BPF_JMP | BPF_EXIT: case BPF_JMP | BPF_TAIL_CALL: break; default: *rd = bpf_to_rv_reg(insn->dst_reg, ctx); } if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) || code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) || code & BPF_LDX || code & BPF_STX) *rs = bpf_to_rv_reg(insn->src_reg, ctx); } static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx) { emit_mv(RV_REG_T2, *rd, ctx); emit_zext_32(RV_REG_T2, ctx); emit_mv(RV_REG_T1, *rs, ctx); emit_zext_32(RV_REG_T1, ctx); *rd = RV_REG_T2; *rs = RV_REG_T1; } static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx) { emit_addiw(RV_REG_T2, *rd, 0, ctx); emit_addiw(RV_REG_T1, *rs, 0, ctx); *rd = RV_REG_T2; *rs = RV_REG_T1; } static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx) { emit_mv(RV_REG_T2, *rd, ctx); emit_zext_32(RV_REG_T2, ctx); emit_zext_32(RV_REG_T1, ctx); *rd = RV_REG_T2; } static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx) { emit_addiw(RV_REG_T2, *rd, 0, ctx); *rd = RV_REG_T2; } static int emit_jump_and_link(u8 rd, s64 rvoff, bool fixed_addr, struct rv_jit_context *ctx) { s64 upper, lower; if (rvoff && fixed_addr && is_21b_int(rvoff)) { emit(rv_jal(rd, rvoff >> 1), ctx); return 0; } else if (in_auipc_jalr_range(rvoff)) { upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(rd, RV_REG_T1, lower), ctx); return 0; } pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff); return -ERANGE; } static bool is_signed_bpf_cond(u8 cond) { return cond == BPF_JSGT || cond == BPF_JSLT || cond == BPF_JSGE || cond == BPF_JSLE; } static int emit_call(u64 addr, bool fixed_addr, struct rv_jit_context *ctx) { s64 off = 0; u64 ip; if (addr && ctx->insns && ctx->ro_insns) { /* * Use the ro_insns(RX) to calculate the offset as the BPF * program will finally run from this memory region. */ ip = (u64)(long)(ctx->ro_insns + ctx->ninsns); off = addr - ip; } return emit_jump_and_link(RV_REG_RA, off, fixed_addr, ctx); } static void emit_atomic(u8 rd, u8 rs, s16 off, s32 imm, bool is64, struct rv_jit_context *ctx) { u8 r0; int jmp_offset; if (off) { if (is_12b_int(off)) { emit_addi(RV_REG_T1, rd, off, ctx); } else { emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rd, ctx); } rd = RV_REG_T1; } switch (imm) { /* lock *(u32/u64 *)(dst_reg + off16) = src_reg */ case BPF_ADD: emit(is64 ? rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0) : rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0), ctx); break; case BPF_AND: emit(is64 ? rv_amoand_d(RV_REG_ZERO, rs, rd, 0, 0) : rv_amoand_w(RV_REG_ZERO, rs, rd, 0, 0), ctx); break; case BPF_OR: emit(is64 ? rv_amoor_d(RV_REG_ZERO, rs, rd, 0, 0) : rv_amoor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx); break; case BPF_XOR: emit(is64 ? rv_amoxor_d(RV_REG_ZERO, rs, rd, 0, 0) : rv_amoxor_w(RV_REG_ZERO, rs, rd, 0, 0), ctx); break; /* src_reg = atomic_fetch_(dst_reg + off16, src_reg) */ case BPF_ADD | BPF_FETCH: emit(is64 ? rv_amoadd_d(rs, rs, rd, 0, 0) : rv_amoadd_w(rs, rs, rd, 0, 0), ctx); if (!is64) emit_zext_32(rs, ctx); break; case BPF_AND | BPF_FETCH: emit(is64 ? rv_amoand_d(rs, rs, rd, 0, 0) : rv_amoand_w(rs, rs, rd, 0, 0), ctx); if (!is64) emit_zext_32(rs, ctx); break; case BPF_OR | BPF_FETCH: emit(is64 ? rv_amoor_d(rs, rs, rd, 0, 0) : rv_amoor_w(rs, rs, rd, 0, 0), ctx); if (!is64) emit_zext_32(rs, ctx); break; case BPF_XOR | BPF_FETCH: emit(is64 ? rv_amoxor_d(rs, rs, rd, 0, 0) : rv_amoxor_w(rs, rs, rd, 0, 0), ctx); if (!is64) emit_zext_32(rs, ctx); break; /* src_reg = atomic_xchg(dst_reg + off16, src_reg); */ case BPF_XCHG: emit(is64 ? rv_amoswap_d(rs, rs, rd, 0, 0) : rv_amoswap_w(rs, rs, rd, 0, 0), ctx); if (!is64) emit_zext_32(rs, ctx); break; /* r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg); */ case BPF_CMPXCHG: r0 = bpf_to_rv_reg(BPF_REG_0, ctx); emit(is64 ? rv_addi(RV_REG_T2, r0, 0) : rv_addiw(RV_REG_T2, r0, 0), ctx); emit(is64 ? rv_lr_d(r0, 0, rd, 0, 0) : rv_lr_w(r0, 0, rd, 0, 0), ctx); jmp_offset = ninsns_rvoff(8); emit(rv_bne(RV_REG_T2, r0, jmp_offset >> 1), ctx); emit(is64 ? rv_sc_d(RV_REG_T3, rs, rd, 0, 0) : rv_sc_w(RV_REG_T3, rs, rd, 0, 0), ctx); jmp_offset = ninsns_rvoff(-6); emit(rv_bne(RV_REG_T3, 0, jmp_offset >> 1), ctx); emit(rv_fence(0x3, 0x3), ctx); break; } } #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0) #define BPF_FIXUP_REG_MASK GENMASK(31, 27) bool ex_handler_bpf(const struct exception_table_entry *ex, struct pt_regs *regs) { off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup); int regs_offset = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup); *(unsigned long *)((void *)regs + pt_regmap[regs_offset]) = 0; regs->epc = (unsigned long)&ex->fixup - offset; return true; } /* For accesses to BTF pointers, add an entry to the exception table */ static int add_exception_handler(const struct bpf_insn *insn, struct rv_jit_context *ctx, int dst_reg, int insn_len) { struct exception_table_entry *ex; unsigned long pc; off_t ins_offset; off_t fixup_offset; if (!ctx->insns || !ctx->ro_insns || !ctx->prog->aux->extable || (BPF_MODE(insn->code) != BPF_PROBE_MEM && BPF_MODE(insn->code) != BPF_PROBE_MEMSX)) return 0; if (WARN_ON_ONCE(ctx->nexentries >= ctx->prog->aux->num_exentries)) return -EINVAL; if (WARN_ON_ONCE(insn_len > ctx->ninsns)) return -EINVAL; if (WARN_ON_ONCE(!rvc_enabled() && insn_len == 1)) return -EINVAL; ex = &ctx->prog->aux->extable[ctx->nexentries]; pc = (unsigned long)&ctx->ro_insns[ctx->ninsns - insn_len]; /* * This is the relative offset of the instruction that may fault from * the exception table itself. This will be written to the exception * table and if this instruction faults, the destination register will * be set to '0' and the execution will jump to the next instruction. */ ins_offset = pc - (long)&ex->insn; if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN)) return -ERANGE; /* * Since the extable follows the program, the fixup offset is always * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value * to keep things simple, and put the destination register in the upper * bits. We don't need to worry about buildtime or runtime sort * modifying the upper bits because the table is already sorted, and * isn't part of the main exception table. * * The fixup_offset is set to the next instruction from the instruction * that may fault. The execution will jump to this after handling the * fault. */ fixup_offset = (long)&ex->fixup - (pc + insn_len * sizeof(u16)); if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset)) return -ERANGE; /* * The offsets above have been calculated using the RO buffer but we * need to use the R/W buffer for writes. * switch ex to rw buffer for writing. */ ex = (void *)ctx->insns + ((void *)ex - (void *)ctx->ro_insns); ex->insn = ins_offset; ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) | FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg); ex->type = EX_TYPE_BPF; ctx->nexentries++; return 0; } static int gen_jump_or_nops(void *target, void *ip, u32 *insns, bool is_call) { s64 rvoff; struct rv_jit_context ctx; ctx.ninsns = 0; ctx.insns = (u16 *)insns; if (!target) { emit(rv_nop(), &ctx); emit(rv_nop(), &ctx); return 0; } rvoff = (s64)(target - ip); return emit_jump_and_link(is_call ? RV_REG_T0 : RV_REG_ZERO, rvoff, false, &ctx); } int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type, void *old_addr, void *new_addr) { u32 old_insns[RV_FENTRY_NINSNS], new_insns[RV_FENTRY_NINSNS]; bool is_call = poke_type == BPF_MOD_CALL; int ret; if (!is_kernel_text((unsigned long)ip) && !is_bpf_text_address((unsigned long)ip)) return -ENOTSUPP; ret = gen_jump_or_nops(old_addr, ip, old_insns, is_call); if (ret) return ret; if (memcmp(ip, old_insns, RV_FENTRY_NINSNS * 4)) return -EFAULT; ret = gen_jump_or_nops(new_addr, ip, new_insns, is_call); if (ret) return ret; cpus_read_lock(); mutex_lock(&text_mutex); if (memcmp(ip, new_insns, RV_FENTRY_NINSNS * 4)) ret = patch_text(ip, new_insns, RV_FENTRY_NINSNS); mutex_unlock(&text_mutex); cpus_read_unlock(); return ret; } static void store_args(int nregs, int args_off, struct rv_jit_context *ctx) { int i; for (i = 0; i < nregs; i++) { emit_sd(RV_REG_FP, -args_off, RV_REG_A0 + i, ctx); args_off -= 8; } } static void restore_args(int nregs, int args_off, struct rv_jit_context *ctx) { int i; for (i = 0; i < nregs; i++) { emit_ld(RV_REG_A0 + i, -args_off, RV_REG_FP, ctx); args_off -= 8; } } static int invoke_bpf_prog(struct bpf_tramp_link *l, int args_off, int retval_off, int run_ctx_off, bool save_ret, struct rv_jit_context *ctx) { int ret, branch_off; struct bpf_prog *p = l->link.prog; int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); if (l->cookie) { emit_imm(RV_REG_T1, l->cookie, ctx); emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_T1, ctx); } else { emit_sd(RV_REG_FP, -run_ctx_off + cookie_off, RV_REG_ZERO, ctx); } /* arg1: prog */ emit_imm(RV_REG_A0, (const s64)p, ctx); /* arg2: &run_ctx */ emit_addi(RV_REG_A1, RV_REG_FP, -run_ctx_off, ctx); ret = emit_call((const u64)bpf_trampoline_enter(p), true, ctx); if (ret) return ret; /* store prog start time */ emit_mv(RV_REG_S1, RV_REG_A0, ctx); /* if (__bpf_prog_enter(prog) == 0) * goto skip_exec_of_prog; */ branch_off = ctx->ninsns; /* nop reserved for conditional jump */ emit(rv_nop(), ctx); /* arg1: &args_off */ emit_addi(RV_REG_A0, RV_REG_FP, -args_off, ctx); if (!p->jited) /* arg2: progs[i]->insnsi for interpreter */ emit_imm(RV_REG_A1, (const s64)p->insnsi, ctx); ret = emit_call((const u64)p->bpf_func, true, ctx); if (ret) return ret; if (save_ret) { emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx); emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx); } /* update branch with beqz */ if (ctx->insns) { int offset = ninsns_rvoff(ctx->ninsns - branch_off); u32 insn = rv_beq(RV_REG_A0, RV_REG_ZERO, offset >> 1); *(u32 *)(ctx->insns + branch_off) = insn; } /* arg1: prog */ emit_imm(RV_REG_A0, (const s64)p, ctx); /* arg2: prog start time */ emit_mv(RV_REG_A1, RV_REG_S1, ctx); /* arg3: &run_ctx */ emit_addi(RV_REG_A2, RV_REG_FP, -run_ctx_off, ctx); ret = emit_call((const u64)bpf_trampoline_exit(p), true, ctx); return ret; } static int __arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, const struct btf_func_model *m, struct bpf_tramp_links *tlinks, void *func_addr, u32 flags, struct rv_jit_context *ctx) { int i, ret, offset; int *branches_off = NULL; int stack_size = 0, nregs = m->nr_args; int retval_off, args_off, nregs_off, ip_off, run_ctx_off, sreg_off; struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; void *orig_call = func_addr; bool save_ret; u32 insn; /* Two types of generated trampoline stack layout: * * 1. trampoline called from function entry * -------------------------------------- * FP + 8 [ RA to parent func ] return address to parent * function * FP + 0 [ FP of parent func ] frame pointer of parent * function * FP - 8 [ T0 to traced func ] return address of traced * function * FP - 16 [ FP of traced func ] frame pointer of traced * function * -------------------------------------- * * 2. trampoline called directly * -------------------------------------- * FP - 8 [ RA to caller func ] return address to caller * function * FP - 16 [ FP of caller func ] frame pointer of caller * function * -------------------------------------- * * FP - retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or * BPF_TRAMP_F_RET_FENTRY_RET * [ argN ] * [ ... ] * FP - args_off [ arg1 ] * * FP - nregs_off [ regs count ] * * FP - ip_off [ traced func ] BPF_TRAMP_F_IP_ARG * * FP - run_ctx_off [ bpf_tramp_run_ctx ] * * FP - sreg_off [ callee saved reg ] * * [ pads ] pads for 16 bytes alignment */ if (flags & (BPF_TRAMP_F_ORIG_STACK | BPF_TRAMP_F_SHARE_IPMODIFY)) return -ENOTSUPP; /* extra regiters for struct arguments */ for (i = 0; i < m->nr_args; i++) if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) nregs += round_up(m->arg_size[i], 8) / 8 - 1; /* 8 arguments passed by registers */ if (nregs > 8) return -ENOTSUPP; /* room of trampoline frame to store return address and frame pointer */ stack_size += 16; save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); if (save_ret) { stack_size += 16; /* Save both A5 (BPF R0) and A0 */ retval_off = stack_size; } stack_size += nregs * 8; args_off = stack_size; stack_size += 8; nregs_off = stack_size; if (flags & BPF_TRAMP_F_IP_ARG) { stack_size += 8; ip_off = stack_size; } stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8); run_ctx_off = stack_size; stack_size += 8; sreg_off = stack_size; stack_size = round_up(stack_size, 16); if (func_addr) { /* For the trampoline called from function entry, * the frame of traced function and the frame of * trampoline need to be considered. */ emit_addi(RV_REG_SP, RV_REG_SP, -16, ctx); emit_sd(RV_REG_SP, 8, RV_REG_RA, ctx); emit_sd(RV_REG_SP, 0, RV_REG_FP, ctx); emit_addi(RV_REG_FP, RV_REG_SP, 16, ctx); emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx); emit_sd(RV_REG_SP, stack_size - 8, RV_REG_T0, ctx); emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx); emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx); } else { /* For the trampoline called directly, just handle * the frame of trampoline. */ emit_addi(RV_REG_SP, RV_REG_SP, -stack_size, ctx); emit_sd(RV_REG_SP, stack_size - 8, RV_REG_RA, ctx); emit_sd(RV_REG_SP, stack_size - 16, RV_REG_FP, ctx); emit_addi(RV_REG_FP, RV_REG_SP, stack_size, ctx); } /* callee saved register S1 to pass start time */ emit_sd(RV_REG_FP, -sreg_off, RV_REG_S1, ctx); /* store ip address of the traced function */ if (flags & BPF_TRAMP_F_IP_ARG) { emit_imm(RV_REG_T1, (const s64)func_addr, ctx); emit_sd(RV_REG_FP, -ip_off, RV_REG_T1, ctx); } emit_li(RV_REG_T1, nregs, ctx); emit_sd(RV_REG_FP, -nregs_off, RV_REG_T1, ctx); store_args(nregs, args_off, ctx); /* skip to actual body of traced function */ if (flags & BPF_TRAMP_F_SKIP_FRAME) orig_call += RV_FENTRY_NINSNS * 4; if (flags & BPF_TRAMP_F_CALL_ORIG) { emit_imm(RV_REG_A0, (const s64)im, ctx); ret = emit_call((const u64)__bpf_tramp_enter, true, ctx); if (ret) return ret; } for (i = 0; i < fentry->nr_links; i++) { ret = invoke_bpf_prog(fentry->links[i], args_off, retval_off, run_ctx_off, flags & BPF_TRAMP_F_RET_FENTRY_RET, ctx); if (ret) return ret; } if (fmod_ret->nr_links) { branches_off = kcalloc(fmod_ret->nr_links, sizeof(int), GFP_KERNEL); if (!branches_off) return -ENOMEM; /* cleanup to avoid garbage return value confusion */ emit_sd(RV_REG_FP, -retval_off, RV_REG_ZERO, ctx); for (i = 0; i < fmod_ret->nr_links; i++) { ret = invoke_bpf_prog(fmod_ret->links[i], args_off, retval_off, run_ctx_off, true, ctx); if (ret) goto out; emit_ld(RV_REG_T1, -retval_off, RV_REG_FP, ctx); branches_off[i] = ctx->ninsns; /* nop reserved for conditional jump */ emit(rv_nop(), ctx); } } if (flags & BPF_TRAMP_F_CALL_ORIG) { restore_args(nregs, args_off, ctx); ret = emit_call((const u64)orig_call, true, ctx); if (ret) goto out; emit_sd(RV_REG_FP, -retval_off, RV_REG_A0, ctx); emit_sd(RV_REG_FP, -(retval_off - 8), regmap[BPF_REG_0], ctx); im->ip_after_call = ctx->insns + ctx->ninsns; /* 2 nops reserved for auipc+jalr pair */ emit(rv_nop(), ctx); emit(rv_nop(), ctx); } /* update branches saved in invoke_bpf_mod_ret with bnez */ for (i = 0; ctx->insns && i < fmod_ret->nr_links; i++) { offset = ninsns_rvoff(ctx->ninsns - branches_off[i]); insn = rv_bne(RV_REG_T1, RV_REG_ZERO, offset >> 1); *(u32 *)(ctx->insns + branches_off[i]) = insn; } for (i = 0; i < fexit->nr_links; i++) { ret = invoke_bpf_prog(fexit->links[i], args_off, retval_off, run_ctx_off, false, ctx); if (ret) goto out; } if (flags & BPF_TRAMP_F_CALL_ORIG) { im->ip_epilogue = ctx->insns + ctx->ninsns; emit_imm(RV_REG_A0, (const s64)im, ctx); ret = emit_call((const u64)__bpf_tramp_exit, true, ctx); if (ret) goto out; } if (flags & BPF_TRAMP_F_RESTORE_REGS) restore_args(nregs, args_off, ctx); if (save_ret) { emit_ld(RV_REG_A0, -retval_off, RV_REG_FP, ctx); emit_ld(regmap[BPF_REG_0], -(retval_off - 8), RV_REG_FP, ctx); } emit_ld(RV_REG_S1, -sreg_off, RV_REG_FP, ctx); if (func_addr) { /* trampoline called from function entry */ emit_ld(RV_REG_T0, stack_size - 8, RV_REG_SP, ctx); emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx); emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx); emit_ld(RV_REG_RA, 8, RV_REG_SP, ctx); emit_ld(RV_REG_FP, 0, RV_REG_SP, ctx); emit_addi(RV_REG_SP, RV_REG_SP, 16, ctx); if (flags & BPF_TRAMP_F_SKIP_FRAME) /* return to parent function */ emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx); else /* return to traced function */ emit_jalr(RV_REG_ZERO, RV_REG_T0, 0, ctx); } else { /* trampoline called directly */ emit_ld(RV_REG_RA, stack_size - 8, RV_REG_SP, ctx); emit_ld(RV_REG_FP, stack_size - 16, RV_REG_SP, ctx); emit_addi(RV_REG_SP, RV_REG_SP, stack_size, ctx); emit_jalr(RV_REG_ZERO, RV_REG_RA, 0, ctx); } ret = ctx->ninsns; out: kfree(branches_off); return ret; } int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, const struct btf_func_model *m, u32 flags, struct bpf_tramp_links *tlinks, void *func_addr) { int ret; struct rv_jit_context ctx; ctx.ninsns = 0; ctx.insns = NULL; ctx.ro_insns = NULL; ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx); if (ret < 0) return ret; if (ninsns_rvoff(ret) > (long)image_end - (long)image) return -EFBIG; ctx.ninsns = 0; /* * The bpf_int_jit_compile() uses a RW buffer (ctx.insns) to write the * JITed instructions and later copies it to a RX region (ctx.ro_insns). * It also uses ctx.ro_insns to calculate offsets for jumps etc. As the * trampoline image uses the same memory area for writing and execution, * both ctx.insns and ctx.ro_insns can be set to image. */ ctx.insns = image; ctx.ro_insns = image; ret = __arch_prepare_bpf_trampoline(im, m, tlinks, func_addr, flags, &ctx); if (ret < 0) return ret; bpf_flush_icache(ctx.insns, ctx.insns + ctx.ninsns); return ninsns_rvoff(ret); } int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx, bool extra_pass) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || BPF_CLASS(insn->code) == BPF_JMP; int s, e, rvoff, ret, i = insn - ctx->prog->insnsi; struct bpf_prog_aux *aux = ctx->prog->aux; u8 rd = -1, rs = -1, code = insn->code; s16 off = insn->off; s32 imm = insn->imm; init_regs(&rd, &rs, insn, ctx); switch (code) { /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext */ emit_zext_32(rd, ctx); break; } switch (insn->off) { case 0: emit_mv(rd, rs, ctx); break; case 8: case 16: emit_slli(RV_REG_T1, rs, 64 - insn->off, ctx); emit_srai(rd, RV_REG_T1, 64 - insn->off, ctx); break; case 32: emit_addiw(rd, rs, 0, ctx); break; } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: emit_add(rd, rd, rs, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: if (is64) emit_sub(rd, rd, rs, ctx); else emit_subw(rd, rd, rs, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: emit_and(rd, rd, rs, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: emit_or(rd, rd, rs, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: emit_xor(rd, rd, rs, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: if (off) emit(is64 ? rv_div(rd, rd, rs) : rv_divw(rd, rd, rs), ctx); else emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: if (off) emit(is64 ? rv_rem(rd, rd, rs) : rv_remw(rd, rd, rs), ctx); else emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: emit_sub(rd, RV_REG_ZERO, rd, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm) { case 16: emit_slli(rd, rd, 48, ctx); emit_srli(rd, rd, 48, ctx); break; case 32: if (!aux->verifier_zext) emit_zext_32(rd, ctx); break; case 64: /* Do nothing */ break; } break; case BPF_ALU | BPF_END | BPF_FROM_BE: case BPF_ALU64 | BPF_END | BPF_FROM_LE: emit_li(RV_REG_T2, 0, ctx); emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); if (imm == 16) goto out_be; emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); if (imm == 32) goto out_be; emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_slli(RV_REG_T2, RV_REG_T2, 8, ctx); emit_srli(rd, rd, 8, ctx); out_be: emit_andi(RV_REG_T1, rd, 0xff, ctx); emit_add(RV_REG_T2, RV_REG_T2, RV_REG_T1, ctx); emit_mv(rd, RV_REG_T2, ctx); break; /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: emit_imm(rd, imm, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP imm */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: if (is_12b_int(imm)) { emit_addi(rd, rd, imm, ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit_add(rd, rd, RV_REG_T1, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: if (is_12b_int(-imm)) { emit_addi(rd, rd, -imm, ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit_sub(rd, rd, RV_REG_T1, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: if (is_12b_int(imm)) { emit_andi(rd, rd, imm, ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit_and(rd, rd, RV_REG_T1, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: if (is_12b_int(imm)) { emit(rv_ori(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit_or(rd, rd, RV_REG_T1, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: if (is_12b_int(imm)) { emit(rv_xori(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit_xor(rd, rd, RV_REG_T1, ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_mul(rd, rd, RV_REG_T1) : rv_mulw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: emit_imm(RV_REG_T1, imm, ctx); if (off) emit(is64 ? rv_div(rd, rd, RV_REG_T1) : rv_divw(rd, rd, RV_REG_T1), ctx); else emit(is64 ? rv_divu(rd, rd, RV_REG_T1) : rv_divuw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: emit_imm(RV_REG_T1, imm, ctx); if (off) emit(is64 ? rv_rem(rd, rd, RV_REG_T1) : rv_remw(rd, rd, RV_REG_T1), ctx); else emit(is64 ? rv_remu(rd, rd, RV_REG_T1) : rv_remuw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: emit_slli(rd, rd, imm, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: if (is64) emit_srli(rd, rd, imm, ctx); else emit(rv_srliw(rd, rd, imm), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: if (is64) emit_srai(rd, rd, imm, ctx); else emit(rv_sraiw(rd, rd, imm), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* JUMP off */ case BPF_JMP | BPF_JA: case BPF_JMP32 | BPF_JA: if (BPF_CLASS(code) == BPF_JMP) rvoff = rv_offset(i, off, ctx); else rvoff = rv_offset(i, imm, ctx); ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx); if (ret) return ret; break; /* IF (dst COND src) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: rvoff = rv_offset(i, off, ctx); if (!is64) { s = ctx->ninsns; if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd_rs(&rd, &rs, ctx); else emit_zext_32_rd_rs(&rd, &rs, ctx); e = ctx->ninsns; /* Adjust for extra insns */ rvoff -= ninsns_rvoff(e - s); } if (BPF_OP(code) == BPF_JSET) { /* Adjust for and */ rvoff -= 4; emit_and(RV_REG_T1, rd, rs, ctx); emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx); } else { emit_branch(BPF_OP(code), rd, rs, rvoff, ctx); } break; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: rvoff = rv_offset(i, off, ctx); s = ctx->ninsns; if (imm) { emit_imm(RV_REG_T1, imm, ctx); rs = RV_REG_T1; } else { /* If imm is 0, simply use zero register. */ rs = RV_REG_ZERO; } if (!is64) { if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd(&rd, ctx); else emit_zext_32_rd_t1(&rd, ctx); } e = ctx->ninsns; /* Adjust for extra insns */ rvoff -= ninsns_rvoff(e - s); emit_branch(BPF_OP(code), rd, rs, rvoff, ctx); break; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: rvoff = rv_offset(i, off, ctx); s = ctx->ninsns; if (is_12b_int(imm)) { emit_andi(RV_REG_T1, rd, imm, ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit_and(RV_REG_T1, rd, RV_REG_T1, ctx); } /* For jset32, we should clear the upper 32 bits of t1, but * sign-extension is sufficient here and saves one instruction, * as t1 is used only in comparison against zero. */ if (!is64 && imm < 0) emit_addiw(RV_REG_T1, RV_REG_T1, 0, ctx); e = ctx->ninsns; rvoff -= ninsns_rvoff(e - s); emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx); break; /* function call */ case BPF_JMP | BPF_CALL: { bool fixed_addr; u64 addr; mark_call(ctx); ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, &fixed_addr); if (ret < 0) return ret; ret = emit_call(addr, fixed_addr, ctx); if (ret) return ret; if (insn->src_reg != BPF_PSEUDO_CALL) emit_mv(bpf_to_rv_reg(BPF_REG_0, ctx), RV_REG_A0, ctx); break; } /* tail call */ case BPF_JMP | BPF_TAIL_CALL: if (emit_bpf_tail_call(i, ctx)) return -1; break; /* function return */ case BPF_JMP | BPF_EXIT: if (i == ctx->prog->len - 1) break; rvoff = epilogue_offset(ctx); ret = emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx); if (ret) return ret; break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { struct bpf_insn insn1 = insn[1]; u64 imm64; imm64 = (u64)insn1.imm << 32 | (u32)imm; if (bpf_pseudo_func(insn)) { /* fixed-length insns for extra jit pass */ ret = emit_addr(rd, imm64, extra_pass, ctx); if (ret) return ret; } else { emit_imm(rd, imm64, ctx); } return 1; } /* LDX: dst = *(unsigned size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: case BPF_LDX | BPF_PROBE_MEM | BPF_B: case BPF_LDX | BPF_PROBE_MEM | BPF_H: case BPF_LDX | BPF_PROBE_MEM | BPF_W: case BPF_LDX | BPF_PROBE_MEM | BPF_DW: /* LDSX: dst = *(signed size *)(src + off) */ case BPF_LDX | BPF_MEMSX | BPF_B: case BPF_LDX | BPF_MEMSX | BPF_H: case BPF_LDX | BPF_MEMSX | BPF_W: case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: { int insn_len, insns_start; bool sign_ext; sign_ext = BPF_MODE(insn->code) == BPF_MEMSX || BPF_MODE(insn->code) == BPF_PROBE_MEMSX; switch (BPF_SIZE(code)) { case BPF_B: if (is_12b_int(off)) { insns_start = ctx->ninsns; if (sign_ext) emit(rv_lb(rd, off, rs), ctx); else emit(rv_lbu(rd, off, rs), ctx); insn_len = ctx->ninsns - insns_start; break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rs, ctx); insns_start = ctx->ninsns; if (sign_ext) emit(rv_lb(rd, 0, RV_REG_T1), ctx); else emit(rv_lbu(rd, 0, RV_REG_T1), ctx); insn_len = ctx->ninsns - insns_start; break; case BPF_H: if (is_12b_int(off)) { insns_start = ctx->ninsns; if (sign_ext) emit(rv_lh(rd, off, rs), ctx); else emit(rv_lhu(rd, off, rs), ctx); insn_len = ctx->ninsns - insns_start; break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rs, ctx); insns_start = ctx->ninsns; if (sign_ext) emit(rv_lh(rd, 0, RV_REG_T1), ctx); else emit(rv_lhu(rd, 0, RV_REG_T1), ctx); insn_len = ctx->ninsns - insns_start; break; case BPF_W: if (is_12b_int(off)) { insns_start = ctx->ninsns; if (sign_ext) emit(rv_lw(rd, off, rs), ctx); else emit(rv_lwu(rd, off, rs), ctx); insn_len = ctx->ninsns - insns_start; break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rs, ctx); insns_start = ctx->ninsns; if (sign_ext) emit(rv_lw(rd, 0, RV_REG_T1), ctx); else emit(rv_lwu(rd, 0, RV_REG_T1), ctx); insn_len = ctx->ninsns - insns_start; break; case BPF_DW: if (is_12b_int(off)) { insns_start = ctx->ninsns; emit_ld(rd, off, rs, ctx); insn_len = ctx->ninsns - insns_start; break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rs, ctx); insns_start = ctx->ninsns; emit_ld(rd, 0, RV_REG_T1, ctx); insn_len = ctx->ninsns - insns_start; break; } ret = add_exception_handler(insn, ctx, rd, insn_len); if (ret) return ret; if (BPF_SIZE(code) != BPF_DW && insn_is_zext(&insn[1])) return 1; break; } /* speculation barrier */ case BPF_ST | BPF_NOSPEC: break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sb(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit_add(RV_REG_T2, RV_REG_T2, rd, ctx); emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_H: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sh(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit_add(RV_REG_T2, RV_REG_T2, rd, ctx); emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_W: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit_sw(rd, off, RV_REG_T1, ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit_add(RV_REG_T2, RV_REG_T2, rd, ctx); emit_sw(RV_REG_T2, 0, RV_REG_T1, ctx); break; case BPF_ST | BPF_MEM | BPF_DW: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit_sd(rd, off, RV_REG_T1, ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit_add(RV_REG_T2, RV_REG_T2, rd, ctx); emit_sd(RV_REG_T2, 0, RV_REG_T1, ctx); break; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_B: if (is_12b_int(off)) { emit(rv_sb(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rd, ctx); emit(rv_sb(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_H: if (is_12b_int(off)) { emit(rv_sh(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rd, ctx); emit(rv_sh(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_W: if (is_12b_int(off)) { emit_sw(rd, off, rs, ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rd, ctx); emit_sw(RV_REG_T1, 0, rs, ctx); break; case BPF_STX | BPF_MEM | BPF_DW: if (is_12b_int(off)) { emit_sd(rd, off, rs, ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit_add(RV_REG_T1, RV_REG_T1, rd, ctx); emit_sd(RV_REG_T1, 0, rs, ctx); break; case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: emit_atomic(rd, rs, off, imm, BPF_SIZE(code) == BPF_DW, ctx); break; default: pr_err("bpf-jit: unknown opcode %02x\n", code); return -EINVAL; } return 0; } void bpf_jit_build_prologue(struct rv_jit_context *ctx) { int i, stack_adjust = 0, store_offset, bpf_stack_adjust; bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16); if (bpf_stack_adjust) mark_fp(ctx); if (seen_reg(RV_REG_RA, ctx)) stack_adjust += 8; stack_adjust += 8; /* RV_REG_FP */ if (seen_reg(RV_REG_S1, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S2, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S3, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S4, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S5, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S6, ctx)) stack_adjust += 8; stack_adjust = round_up(stack_adjust, 16); stack_adjust += bpf_stack_adjust; store_offset = stack_adjust - 8; /* nops reserved for auipc+jalr pair */ for (i = 0; i < RV_FENTRY_NINSNS; i++) emit(rv_nop(), ctx); /* First instruction is always setting the tail-call-counter * (TCC) register. This instruction is skipped for tail calls. * Force using a 4-byte (non-compressed) instruction. */ emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx); emit_addi(RV_REG_SP, RV_REG_SP, -stack_adjust, ctx); if (seen_reg(RV_REG_RA, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_RA, ctx); store_offset -= 8; } emit_sd(RV_REG_SP, store_offset, RV_REG_FP, ctx); store_offset -= 8; if (seen_reg(RV_REG_S1, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_S1, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S2, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_S2, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S3, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_S3, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S4, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_S4, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S5, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_S5, ctx); store_offset -= 8; } if (seen_reg(RV_REG_S6, ctx)) { emit_sd(RV_REG_SP, store_offset, RV_REG_S6, ctx); store_offset -= 8; } emit_addi(RV_REG_FP, RV_REG_SP, stack_adjust, ctx); if (bpf_stack_adjust) emit_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust, ctx); /* Program contains calls and tail calls, so RV_REG_TCC need * to be saved across calls. */ if (seen_tail_call(ctx) && seen_call(ctx)) emit_mv(RV_REG_TCC_SAVED, RV_REG_TCC, ctx); ctx->stack_size = stack_adjust; } void bpf_jit_build_epilogue(struct rv_jit_context *ctx) { __build_epilogue(false, ctx); } bool bpf_jit_supports_kfunc_call(void) { return true; }