// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2009 Sunplus Core Technology Co., Ltd. * Lennox Wu * Chen Liqin * Copyright (C) 2012 Regents of the University of California */ #include #include #include #include #include #include #include #include #include #include #include #include "../kernel/head.h" static void die_kernel_fault(const char *msg, unsigned long addr, struct pt_regs *regs) { bust_spinlocks(1); pr_alert("Unable to handle kernel %s at virtual address " REG_FMT "\n", msg, addr); bust_spinlocks(0); die(regs, "Oops"); make_task_dead(SIGKILL); } static inline void no_context(struct pt_regs *regs, unsigned long addr) { const char *msg; /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) return; /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ if (addr < PAGE_SIZE) msg = "NULL pointer dereference"; else { if (kfence_handle_page_fault(addr, regs->cause == EXC_STORE_PAGE_FAULT, regs)) return; msg = "paging request"; } die_kernel_fault(msg, addr, regs); } static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault) { if (!user_mode(regs)) { no_context(regs, addr); return; } if (fault & VM_FAULT_OOM) { /* * We ran out of memory, call the OOM killer, and return the userspace * (which will retry the fault, or kill us if we got oom-killed). */ pagefault_out_of_memory(); return; } else if (fault & (VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) { /* Kernel mode? Handle exceptions or die */ do_trap(regs, SIGBUS, BUS_ADRERR, addr); return; } else if (fault & VM_FAULT_SIGSEGV) { do_trap(regs, SIGSEGV, SEGV_MAPERR, addr); return; } BUG(); } static inline void bad_area_nosemaphore(struct pt_regs *regs, int code, unsigned long addr) { /* * Something tried to access memory that isn't in our memory map. * Fix it, but check if it's kernel or user first. */ /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { do_trap(regs, SIGSEGV, code, addr); return; } no_context(regs, addr); } static inline void bad_area(struct pt_regs *regs, struct mm_struct *mm, int code, unsigned long addr) { mmap_read_unlock(mm); bad_area_nosemaphore(regs, code, addr); } static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr) { pgd_t *pgd, *pgd_k; pud_t *pud_k; p4d_t *p4d_k; pmd_t *pmd_k; pte_t *pte_k; int index; unsigned long pfn; /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) return do_trap(regs, SIGSEGV, code, addr); /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk->active_mm->pgd" here. * We might be inside an interrupt in the middle * of a task switch. */ index = pgd_index(addr); pfn = csr_read(CSR_SATP) & SATP_PPN; pgd = (pgd_t *)pfn_to_virt(pfn) + index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) { no_context(regs, addr); return; } set_pgd(pgd, *pgd_k); p4d_k = p4d_offset(pgd_k, addr); if (!p4d_present(*p4d_k)) { no_context(regs, addr); return; } pud_k = pud_offset(p4d_k, addr); if (!pud_present(*pud_k)) { no_context(regs, addr); return; } if (pud_leaf(*pud_k)) goto flush_tlb; /* * Since the vmalloc area is global, it is unnecessary * to copy individual PTEs */ pmd_k = pmd_offset(pud_k, addr); if (!pmd_present(*pmd_k)) { no_context(regs, addr); return; } if (pmd_leaf(*pmd_k)) goto flush_tlb; /* * Make sure the actual PTE exists as well to * catch kernel vmalloc-area accesses to non-mapped * addresses. If we don't do this, this will just * silently loop forever. */ pte_k = pte_offset_kernel(pmd_k, addr); if (!pte_present(*pte_k)) { no_context(regs, addr); return; } /* * The kernel assumes that TLBs don't cache invalid * entries, but in RISC-V, SFENCE.VMA specifies an * ordering constraint, not a cache flush; it is * necessary even after writing invalid entries. */ flush_tlb: local_flush_tlb_page(addr); } static inline bool access_error(unsigned long cause, struct vm_area_struct *vma) { switch (cause) { case EXC_INST_PAGE_FAULT: if (!(vma->vm_flags & VM_EXEC)) { return true; } break; case EXC_LOAD_PAGE_FAULT: /* Write implies read */ if (!(vma->vm_flags & (VM_READ | VM_WRITE))) { return true; } break; case EXC_STORE_PAGE_FAULT: if (!(vma->vm_flags & VM_WRITE)) { return true; } break; default: panic("%s: unhandled cause %lu", __func__, cause); } return false; } /* * This routine handles page faults. It determines the address and the * problem, and then passes it off to one of the appropriate routines. */ void handle_page_fault(struct pt_regs *regs) { struct task_struct *tsk; struct vm_area_struct *vma; struct mm_struct *mm; unsigned long addr, cause; unsigned int flags = FAULT_FLAG_DEFAULT; int code = SEGV_MAPERR; vm_fault_t fault; cause = regs->cause; addr = regs->badaddr; tsk = current; mm = tsk->mm; if (kprobe_page_fault(regs, cause)) return; /* * Fault-in kernel-space virtual memory on-demand. * The 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if ((!IS_ENABLED(CONFIG_MMU) || !IS_ENABLED(CONFIG_64BIT)) && unlikely(addr >= VMALLOC_START && addr < VMALLOC_END)) { vmalloc_fault(regs, code, addr); return; } /* Enable interrupts if they were enabled in the parent context. */ if (!regs_irqs_disabled(regs)) local_irq_enable(); /* * If we're in an interrupt, have no user context, or are running * in an atomic region, then we must not take the fault. */ if (unlikely(faulthandler_disabled() || !mm)) { tsk->thread.bad_cause = cause; no_context(regs, addr); return; } if (user_mode(regs)) flags |= FAULT_FLAG_USER; if (!user_mode(regs) && addr < TASK_SIZE && unlikely(!(regs->status & SR_SUM))) { if (fixup_exception(regs)) return; die_kernel_fault("access to user memory without uaccess routines", addr, regs); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); if (cause == EXC_STORE_PAGE_FAULT) flags |= FAULT_FLAG_WRITE; else if (cause == EXC_INST_PAGE_FAULT) flags |= FAULT_FLAG_INSTRUCTION; if (!(flags & FAULT_FLAG_USER)) goto lock_mmap; vma = lock_vma_under_rcu(mm, addr); if (!vma) goto lock_mmap; if (unlikely(access_error(cause, vma))) { vma_end_read(vma); goto lock_mmap; } fault = handle_mm_fault(vma, addr, flags | FAULT_FLAG_VMA_LOCK, regs); if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) vma_end_read(vma); if (!(fault & VM_FAULT_RETRY)) { count_vm_vma_lock_event(VMA_LOCK_SUCCESS); goto done; } count_vm_vma_lock_event(VMA_LOCK_RETRY); if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) no_context(regs, addr); return; } lock_mmap: retry: vma = lock_mm_and_find_vma(mm, addr, regs); if (unlikely(!vma)) { tsk->thread.bad_cause = cause; bad_area_nosemaphore(regs, code, addr); return; } /* * Ok, we have a good vm_area for this memory access, so * we can handle it. */ code = SEGV_ACCERR; if (unlikely(access_error(cause, vma))) { tsk->thread.bad_cause = cause; bad_area(regs, mm, code, addr); return; } /* * If for any reason at all we could not handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, addr, flags, regs); /* * If we need to retry but a fatal signal is pending, handle the * signal first. We do not need to release the mmap_lock because it * would already be released in __lock_page_or_retry in mm/filemap.c. */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) no_context(regs, addr); return; } /* The fault is fully completed (including releasing mmap lock) */ if (fault & VM_FAULT_COMPLETED) return; if (unlikely(fault & VM_FAULT_RETRY)) { flags |= FAULT_FLAG_TRIED; /* * No need to mmap_read_unlock(mm) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } mmap_read_unlock(mm); done: if (unlikely(fault & VM_FAULT_ERROR)) { tsk->thread.bad_cause = cause; mm_fault_error(regs, addr, fault); return; } return; }