// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Western Digital Corporation or its affiliates. * * Authors: * Anup Patel */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_64BIT static unsigned long stage2_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT); static unsigned long stage2_pgd_levels = 3; #define stage2_index_bits 9 #else static unsigned long stage2_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT); static unsigned long stage2_pgd_levels = 2; #define stage2_index_bits 10 #endif #define stage2_pgd_xbits 2 #define stage2_pgd_size (1UL << (HGATP_PAGE_SHIFT + stage2_pgd_xbits)) #define stage2_gpa_bits (HGATP_PAGE_SHIFT + \ (stage2_pgd_levels * stage2_index_bits) + \ stage2_pgd_xbits) #define stage2_gpa_size ((gpa_t)(1ULL << stage2_gpa_bits)) #define stage2_pte_leaf(__ptep) \ (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)) static inline unsigned long stage2_pte_index(gpa_t addr, u32 level) { unsigned long mask; unsigned long shift = HGATP_PAGE_SHIFT + (stage2_index_bits * level); if (level == (stage2_pgd_levels - 1)) mask = (PTRS_PER_PTE * (1UL << stage2_pgd_xbits)) - 1; else mask = PTRS_PER_PTE - 1; return (addr >> shift) & mask; } static inline unsigned long stage2_pte_page_vaddr(pte_t pte) { return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT); } static int stage2_page_size_to_level(unsigned long page_size, u32 *out_level) { u32 i; unsigned long psz = 1UL << 12; for (i = 0; i < stage2_pgd_levels; i++) { if (page_size == (psz << (i * stage2_index_bits))) { *out_level = i; return 0; } } return -EINVAL; } static int stage2_level_to_page_size(u32 level, unsigned long *out_pgsize) { if (stage2_pgd_levels < level) return -EINVAL; *out_pgsize = 1UL << (12 + (level * stage2_index_bits)); return 0; } static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr, pte_t **ptepp, u32 *ptep_level) { pte_t *ptep; u32 current_level = stage2_pgd_levels - 1; *ptep_level = current_level; ptep = (pte_t *)kvm->arch.pgd; ptep = &ptep[stage2_pte_index(addr, current_level)]; while (ptep && pte_val(*ptep)) { if (stage2_pte_leaf(ptep)) { *ptep_level = current_level; *ptepp = ptep; return true; } if (current_level) { current_level--; *ptep_level = current_level; ptep = (pte_t *)stage2_pte_page_vaddr(*ptep); ptep = &ptep[stage2_pte_index(addr, current_level)]; } else { ptep = NULL; } } return false; } static void stage2_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr) { struct cpumask hmask; unsigned long size = PAGE_SIZE; struct kvm_vmid *vmid = &kvm->arch.vmid; if (stage2_level_to_page_size(level, &size)) return; addr &= ~(size - 1); /* * TODO: Instead of cpu_online_mask, we should only target CPUs * where the Guest/VM is running. */ preempt_disable(); riscv_cpuid_to_hartid_mask(cpu_online_mask, &hmask); sbi_remote_hfence_gvma_vmid(cpumask_bits(&hmask), addr, size, READ_ONCE(vmid->vmid)); preempt_enable(); } static int stage2_set_pte(struct kvm *kvm, u32 level, struct kvm_mmu_memory_cache *pcache, gpa_t addr, const pte_t *new_pte) { u32 current_level = stage2_pgd_levels - 1; pte_t *next_ptep = (pte_t *)kvm->arch.pgd; pte_t *ptep = &next_ptep[stage2_pte_index(addr, current_level)]; if (current_level < level) return -EINVAL; while (current_level != level) { if (stage2_pte_leaf(ptep)) return -EEXIST; if (!pte_val(*ptep)) { if (!pcache) return -ENOMEM; next_ptep = kvm_mmu_memory_cache_alloc(pcache); if (!next_ptep) return -ENOMEM; *ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)), __pgprot(_PAGE_TABLE)); } else { if (stage2_pte_leaf(ptep)) return -EEXIST; next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep); } current_level--; ptep = &next_ptep[stage2_pte_index(addr, current_level)]; } *ptep = *new_pte; if (stage2_pte_leaf(ptep)) stage2_remote_tlb_flush(kvm, current_level, addr); return 0; } static int stage2_map_page(struct kvm *kvm, struct kvm_mmu_memory_cache *pcache, gpa_t gpa, phys_addr_t hpa, unsigned long page_size, bool page_rdonly, bool page_exec) { int ret; u32 level = 0; pte_t new_pte; pgprot_t prot; ret = stage2_page_size_to_level(page_size, &level); if (ret) return ret; /* * A RISC-V implementation can choose to either: * 1) Update 'A' and 'D' PTE bits in hardware * 2) Generate page fault when 'A' and/or 'D' bits are not set * PTE so that software can update these bits. * * We support both options mentioned above. To achieve this, we * always set 'A' and 'D' PTE bits at time of creating stage2 * mapping. To support KVM dirty page logging with both options * mentioned above, we will write-protect stage2 PTEs to track * dirty pages. */ if (page_exec) { if (page_rdonly) prot = PAGE_READ_EXEC; else prot = PAGE_WRITE_EXEC; } else { if (page_rdonly) prot = PAGE_READ; else prot = PAGE_WRITE; } new_pte = pfn_pte(PFN_DOWN(hpa), prot); new_pte = pte_mkdirty(new_pte); return stage2_set_pte(kvm, level, pcache, gpa, &new_pte); } enum stage2_op { STAGE2_OP_NOP = 0, /* Nothing */ STAGE2_OP_CLEAR, /* Clear/Unmap */ STAGE2_OP_WP, /* Write-protect */ }; static void stage2_op_pte(struct kvm *kvm, gpa_t addr, pte_t *ptep, u32 ptep_level, enum stage2_op op) { int i, ret; pte_t *next_ptep; u32 next_ptep_level; unsigned long next_page_size, page_size; ret = stage2_level_to_page_size(ptep_level, &page_size); if (ret) return; BUG_ON(addr & (page_size - 1)); if (!pte_val(*ptep)) return; if (ptep_level && !stage2_pte_leaf(ptep)) { next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep); next_ptep_level = ptep_level - 1; ret = stage2_level_to_page_size(next_ptep_level, &next_page_size); if (ret) return; if (op == STAGE2_OP_CLEAR) set_pte(ptep, __pte(0)); for (i = 0; i < PTRS_PER_PTE; i++) stage2_op_pte(kvm, addr + i * next_page_size, &next_ptep[i], next_ptep_level, op); if (op == STAGE2_OP_CLEAR) put_page(virt_to_page(next_ptep)); } else { if (op == STAGE2_OP_CLEAR) set_pte(ptep, __pte(0)); else if (op == STAGE2_OP_WP) set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE)); stage2_remote_tlb_flush(kvm, ptep_level, addr); } } static void stage2_unmap_range(struct kvm *kvm, gpa_t start, gpa_t size, bool may_block) { int ret; pte_t *ptep; u32 ptep_level; bool found_leaf; unsigned long page_size; gpa_t addr = start, end = start + size; while (addr < end) { found_leaf = stage2_get_leaf_entry(kvm, addr, &ptep, &ptep_level); ret = stage2_level_to_page_size(ptep_level, &page_size); if (ret) break; if (!found_leaf) goto next; if (!(addr & (page_size - 1)) && ((end - addr) >= page_size)) stage2_op_pte(kvm, addr, ptep, ptep_level, STAGE2_OP_CLEAR); next: addr += page_size; /* * If the range is too large, release the kvm->mmu_lock * to prevent starvation and lockup detector warnings. */ if (may_block && addr < end) cond_resched_lock(&kvm->mmu_lock); } } static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end) { int ret; pte_t *ptep; u32 ptep_level; bool found_leaf; gpa_t addr = start; unsigned long page_size; while (addr < end) { found_leaf = stage2_get_leaf_entry(kvm, addr, &ptep, &ptep_level); ret = stage2_level_to_page_size(ptep_level, &page_size); if (ret) break; if (!found_leaf) goto next; if (!(addr & (page_size - 1)) && ((end - addr) >= page_size)) stage2_op_pte(kvm, addr, ptep, ptep_level, STAGE2_OP_WP); next: addr += page_size; } } static void stage2_wp_memory_region(struct kvm *kvm, int slot) { struct kvm_memslots *slots = kvm_memslots(kvm); struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; spin_lock(&kvm->mmu_lock); stage2_wp_range(kvm, start, end); spin_unlock(&kvm->mmu_lock); kvm_flush_remote_tlbs(kvm); } static int stage2_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa, unsigned long size, bool writable) { pte_t pte; int ret = 0; unsigned long pfn; phys_addr_t addr, end; struct kvm_mmu_memory_cache pcache; memset(&pcache, 0, sizeof(pcache)); pcache.gfp_zero = __GFP_ZERO; end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK; pfn = __phys_to_pfn(hpa); for (addr = gpa; addr < end; addr += PAGE_SIZE) { pte = pfn_pte(pfn, PAGE_KERNEL); if (!writable) pte = pte_wrprotect(pte); ret = kvm_mmu_topup_memory_cache(&pcache, stage2_pgd_levels); if (ret) goto out; spin_lock(&kvm->mmu_lock); ret = stage2_set_pte(kvm, 0, &pcache, addr, &pte); spin_unlock(&kvm->mmu_lock); if (ret) goto out; pfn++; } out: kvm_mmu_free_memory_cache(&pcache); return ret; } void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask) { phys_addr_t base_gfn = slot->base_gfn + gfn_offset; phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; stage2_wp_range(kvm, start, end); } void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) { } void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, const struct kvm_memory_slot *memslot) { kvm_flush_remote_tlbs(kvm); } void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free) { } void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) { } void kvm_arch_flush_shadow_all(struct kvm *kvm) { kvm_riscv_stage2_free_pgd(kvm); } void kvm_arch_flush_shadow_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) { gpa_t gpa = slot->base_gfn << PAGE_SHIFT; phys_addr_t size = slot->npages << PAGE_SHIFT; spin_lock(&kvm->mmu_lock); stage2_unmap_range(kvm, gpa, size, false); spin_unlock(&kvm->mmu_lock); } void kvm_arch_commit_memory_region(struct kvm *kvm, struct kvm_memory_slot *old, const struct kvm_memory_slot *new, enum kvm_mr_change change) { /* * At this point memslot has been committed and there is an * allocated dirty_bitmap[], dirty pages will be tracked while * the memory slot is write protected. */ if (change != KVM_MR_DELETE && new->flags & KVM_MEM_LOG_DIRTY_PAGES) stage2_wp_memory_region(kvm, new->id); } int kvm_arch_prepare_memory_region(struct kvm *kvm, const struct kvm_memory_slot *old, struct kvm_memory_slot *new, enum kvm_mr_change change) { hva_t hva, reg_end, size; gpa_t base_gpa; bool writable; int ret = 0; if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && change != KVM_MR_FLAGS_ONLY) return 0; /* * Prevent userspace from creating a memory region outside of the GPA * space addressable by the KVM guest GPA space. */ if ((new->base_gfn + new->npages) >= (stage2_gpa_size >> PAGE_SHIFT)) return -EFAULT; hva = new->userspace_addr; size = new->npages << PAGE_SHIFT; reg_end = hva + size; base_gpa = new->base_gfn << PAGE_SHIFT; writable = !(new->flags & KVM_MEM_READONLY); mmap_read_lock(current->mm); /* * A memory region could potentially cover multiple VMAs, and * any holes between them, so iterate over all of them to find * out if we can map any of them right now. * * +--------------------------------------------+ * +---------------+----------------+ +----------------+ * | : VMA 1 | VMA 2 | | VMA 3 : | * +---------------+----------------+ +----------------+ * | memory region | * +--------------------------------------------+ */ do { struct vm_area_struct *vma = find_vma(current->mm, hva); hva_t vm_start, vm_end; if (!vma || vma->vm_start >= reg_end) break; /* * Mapping a read-only VMA is only allowed if the * memory region is configured as read-only. */ if (writable && !(vma->vm_flags & VM_WRITE)) { ret = -EPERM; break; } /* Take the intersection of this VMA with the memory region */ vm_start = max(hva, vma->vm_start); vm_end = min(reg_end, vma->vm_end); if (vma->vm_flags & VM_PFNMAP) { gpa_t gpa = base_gpa + (vm_start - hva); phys_addr_t pa; pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; pa += vm_start - vma->vm_start; /* IO region dirty page logging not allowed */ if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) { ret = -EINVAL; goto out; } ret = stage2_ioremap(kvm, gpa, pa, vm_end - vm_start, writable); if (ret) break; } hva = vm_end; } while (hva < reg_end); if (change == KVM_MR_FLAGS_ONLY) goto out; spin_lock(&kvm->mmu_lock); if (ret) stage2_unmap_range(kvm, base_gpa, size, false); spin_unlock(&kvm->mmu_lock); out: mmap_read_unlock(current->mm); return ret; } bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) { if (!kvm->arch.pgd) return false; stage2_unmap_range(kvm, range->start << PAGE_SHIFT, (range->end - range->start) << PAGE_SHIFT, range->may_block); return false; } bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { int ret; kvm_pfn_t pfn = pte_pfn(range->pte); if (!kvm->arch.pgd) return false; WARN_ON(range->end - range->start != 1); ret = stage2_map_page(kvm, NULL, range->start << PAGE_SHIFT, __pfn_to_phys(pfn), PAGE_SIZE, true, true); if (ret) { kvm_debug("Failed to map stage2 page (error %d)\n", ret); return true; } return false; } bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { pte_t *ptep; u32 ptep_level = 0; u64 size = (range->end - range->start) << PAGE_SHIFT; if (!kvm->arch.pgd) return false; WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE); if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT, &ptep, &ptep_level)) return false; return ptep_test_and_clear_young(NULL, 0, ptep); } bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) { pte_t *ptep; u32 ptep_level = 0; u64 size = (range->end - range->start) << PAGE_SHIFT; if (!kvm->arch.pgd) return false; WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE); if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT, &ptep, &ptep_level)) return false; return pte_young(*ptep); } int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot, gpa_t gpa, unsigned long hva, bool is_write) { int ret; kvm_pfn_t hfn; bool writeable; short vma_pageshift; gfn_t gfn = gpa >> PAGE_SHIFT; struct vm_area_struct *vma; struct kvm *kvm = vcpu->kvm; struct kvm_mmu_memory_cache *pcache = &vcpu->arch.mmu_page_cache; bool logging = (memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY)) ? true : false; unsigned long vma_pagesize, mmu_seq; mmap_read_lock(current->mm); vma = find_vma_intersection(current->mm, hva, hva + 1); if (unlikely(!vma)) { kvm_err("Failed to find VMA for hva 0x%lx\n", hva); mmap_read_unlock(current->mm); return -EFAULT; } if (is_vm_hugetlb_page(vma)) vma_pageshift = huge_page_shift(hstate_vma(vma)); else vma_pageshift = PAGE_SHIFT; vma_pagesize = 1ULL << vma_pageshift; if (logging || (vma->vm_flags & VM_PFNMAP)) vma_pagesize = PAGE_SIZE; if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE) gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; mmap_read_unlock(current->mm); if (vma_pagesize != PGDIR_SIZE && vma_pagesize != PMD_SIZE && vma_pagesize != PAGE_SIZE) { kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize); return -EFAULT; } /* We need minimum second+third level pages */ ret = kvm_mmu_topup_memory_cache(pcache, stage2_pgd_levels); if (ret) { kvm_err("Failed to topup stage2 cache\n"); return ret; } mmu_seq = kvm->mmu_notifier_seq; hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable); if (hfn == KVM_PFN_ERR_HWPOISON) { send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, vma_pageshift, current); return 0; } if (is_error_noslot_pfn(hfn)) return -EFAULT; /* * If logging is active then we allow writable pages only * for write faults. */ if (logging && !is_write) writeable = false; spin_lock(&kvm->mmu_lock); if (mmu_notifier_retry(kvm, mmu_seq)) goto out_unlock; if (writeable) { kvm_set_pfn_dirty(hfn); mark_page_dirty(kvm, gfn); ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT, vma_pagesize, false, true); } else { ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT, vma_pagesize, true, true); } if (ret) kvm_err("Failed to map in stage2\n"); out_unlock: spin_unlock(&kvm->mmu_lock); kvm_set_pfn_accessed(hfn); kvm_release_pfn_clean(hfn); return ret; } int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm) { struct page *pgd_page; if (kvm->arch.pgd != NULL) { kvm_err("kvm_arch already initialized?\n"); return -EINVAL; } pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(stage2_pgd_size)); if (!pgd_page) return -ENOMEM; kvm->arch.pgd = page_to_virt(pgd_page); kvm->arch.pgd_phys = page_to_phys(pgd_page); return 0; } void kvm_riscv_stage2_free_pgd(struct kvm *kvm) { void *pgd = NULL; spin_lock(&kvm->mmu_lock); if (kvm->arch.pgd) { stage2_unmap_range(kvm, 0UL, stage2_gpa_size, false); pgd = READ_ONCE(kvm->arch.pgd); kvm->arch.pgd = NULL; kvm->arch.pgd_phys = 0; } spin_unlock(&kvm->mmu_lock); if (pgd) free_pages((unsigned long)pgd, get_order(stage2_pgd_size)); } void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu) { unsigned long hgatp = stage2_mode; struct kvm_arch *k = &vcpu->kvm->arch; hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) & HGATP_VMID_MASK; hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN; csr_write(CSR_HGATP, hgatp); if (!kvm_riscv_stage2_vmid_bits()) __kvm_riscv_hfence_gvma_all(); } void kvm_riscv_stage2_mode_detect(void) { #ifdef CONFIG_64BIT /* Try Sv48x4 stage2 mode */ csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT); if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) { stage2_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT); stage2_pgd_levels = 4; } csr_write(CSR_HGATP, 0); __kvm_riscv_hfence_gvma_all(); #endif } unsigned long kvm_riscv_stage2_mode(void) { return stage2_mode >> HGATP_MODE_SHIFT; } int kvm_riscv_stage2_gpa_bits(void) { return stage2_gpa_bits; }