// SPDX-License-Identifier: GPL-2.0-only /* bpf_jit_comp.c: BPF JIT compiler * * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation * * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com) * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org> */ #include <linux/moduleloader.h> #include <asm/cacheflush.h> #include <asm/asm-compat.h> #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include "bpf_jit32.h" static inline void bpf_flush_icache(void *start, void *end) { smp_wmb(); flush_icache_range((unsigned long)start, (unsigned long)end); } static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image, struct codegen_context *ctx) { int i; const struct sock_filter *filter = fp->insns; if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { /* Make stackframe */ if (ctx->seen & SEEN_DATAREF) { /* If we call any helpers (for loads), save LR */ EMIT(PPC_INST_MFLR | __PPC_RT(R0)); PPC_BPF_STL(0, 1, PPC_LR_STKOFF); /* Back up non-volatile regs. */ PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D))); PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL))); } if (ctx->seen & SEEN_MEM) { /* * Conditionally save regs r15-r31 as some will be used * for M[] data. */ for (i = r_M; i < (r_M+16); i++) { if (ctx->seen & (1 << (i-r_M))) PPC_BPF_STL(i, 1, -(REG_SZ*(32-i))); } } PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME); } if (ctx->seen & SEEN_DATAREF) { /* * If this filter needs to access skb data, * prepare r_D and r_HL: * r_HL = skb->len - skb->data_len * r_D = skb->data */ PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, data_len)); PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len)); PPC_SUB(r_HL, r_HL, r_scratch1); PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data)); } if (ctx->seen & SEEN_XREG) { /* * TODO: Could also detect whether first instr. sets X and * avoid this (as below, with A). */ PPC_LI(r_X, 0); } /* make sure we dont leak kernel information to user */ if (bpf_needs_clear_a(&filter[0])) PPC_LI(r_A, 0); } static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) { int i; if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { PPC_ADDI(1, 1, BPF_PPC_STACKFRAME); if (ctx->seen & SEEN_DATAREF) { PPC_BPF_LL(0, 1, PPC_LR_STKOFF); PPC_MTLR(0); PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D))); PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL))); } if (ctx->seen & SEEN_MEM) { /* Restore any saved non-vol registers */ for (i = r_M; i < (r_M+16); i++) { if (ctx->seen & (1 << (i-r_M))) PPC_BPF_LL(i, 1, -(REG_SZ*(32-i))); } } } /* The RETs have left a return value in R3. */ PPC_BLR(); } #define CHOOSE_LOAD_FUNC(K, func) \ ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) /* Assemble the body code between the prologue & epilogue. */ static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, struct codegen_context *ctx, unsigned int *addrs) { const struct sock_filter *filter = fp->insns; int flen = fp->len; u8 *func; unsigned int true_cond; int i; /* Start of epilogue code */ unsigned int exit_addr = addrs[flen]; for (i = 0; i < flen; i++) { unsigned int K = filter[i].k; u16 code = bpf_anc_helper(&filter[i]); /* * addrs[] maps a BPF bytecode address into a real offset from * the start of the body code. */ addrs[i] = ctx->idx * 4; switch (code) { /*** ALU ops ***/ case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ ctx->seen |= SEEN_XREG; PPC_ADD(r_A, r_A, r_X); break; case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ if (!K) break; PPC_ADDI(r_A, r_A, IMM_L(K)); if (K >= 32768) PPC_ADDIS(r_A, r_A, IMM_HA(K)); break; case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ ctx->seen |= SEEN_XREG; PPC_SUB(r_A, r_A, r_X); break; case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ if (!K) break; PPC_ADDI(r_A, r_A, IMM_L(-K)); if (K >= 32768) PPC_ADDIS(r_A, r_A, IMM_HA(-K)); break; case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ ctx->seen |= SEEN_XREG; PPC_MULW(r_A, r_A, r_X); break; case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ if (K < 32768) PPC_MULI(r_A, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_MULW(r_A, r_A, r_scratch1); } break; case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */ case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ ctx->seen |= SEEN_XREG; PPC_CMPWI(r_X, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } if (code == (BPF_ALU | BPF_MOD | BPF_X)) { PPC_DIVWU(r_scratch1, r_A, r_X); PPC_MULW(r_scratch1, r_X, r_scratch1); PPC_SUB(r_A, r_A, r_scratch1); } else { PPC_DIVWU(r_A, r_A, r_X); } break; case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */ PPC_LI32(r_scratch2, K); PPC_DIVWU(r_scratch1, r_A, r_scratch2); PPC_MULW(r_scratch1, r_scratch2, r_scratch1); PPC_SUB(r_A, r_A, r_scratch1); break; case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */ if (K == 1) break; PPC_LI32(r_scratch1, K); PPC_DIVWU(r_A, r_A, r_scratch1); break; case BPF_ALU | BPF_AND | BPF_X: ctx->seen |= SEEN_XREG; PPC_AND(r_A, r_A, r_X); break; case BPF_ALU | BPF_AND | BPF_K: if (!IMM_H(K)) PPC_ANDI(r_A, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_AND(r_A, r_A, r_scratch1); } break; case BPF_ALU | BPF_OR | BPF_X: ctx->seen |= SEEN_XREG; PPC_OR(r_A, r_A, r_X); break; case BPF_ALU | BPF_OR | BPF_K: if (IMM_L(K)) PPC_ORI(r_A, r_A, IMM_L(K)); if (K >= 65536) PPC_ORIS(r_A, r_A, IMM_H(K)); break; case BPF_ANC | SKF_AD_ALU_XOR_X: case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */ ctx->seen |= SEEN_XREG; PPC_XOR(r_A, r_A, r_X); break; case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ if (IMM_L(K)) PPC_XORI(r_A, r_A, IMM_L(K)); if (K >= 65536) PPC_XORIS(r_A, r_A, IMM_H(K)); break; case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */ ctx->seen |= SEEN_XREG; PPC_SLW(r_A, r_A, r_X); break; case BPF_ALU | BPF_LSH | BPF_K: if (K == 0) break; else PPC_SLWI(r_A, r_A, K); break; case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */ ctx->seen |= SEEN_XREG; PPC_SRW(r_A, r_A, r_X); break; case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */ if (K == 0) break; else PPC_SRWI(r_A, r_A, K); break; case BPF_ALU | BPF_NEG: PPC_NEG(r_A, r_A); break; case BPF_RET | BPF_K: PPC_LI32(r_ret, K); if (!K) { if (ctx->pc_ret0 == -1) ctx->pc_ret0 = i; } /* * If this isn't the very last instruction, branch to * the epilogue if we've stuff to clean up. Otherwise, * if there's nothing to tidy, just return. If we /are/ * the last instruction, we're about to fall through to * the epilogue to return. */ if (i != flen - 1) { /* * Note: 'seen' is properly valid only on pass * #2. Both parts of this conditional are the * same instruction size though, meaning the * first pass will still correctly determine the * code size/addresses. */ if (ctx->seen) PPC_JMP(exit_addr); else PPC_BLR(); } break; case BPF_RET | BPF_A: PPC_MR(r_ret, r_A); if (i != flen - 1) { if (ctx->seen) PPC_JMP(exit_addr); else PPC_BLR(); } break; case BPF_MISC | BPF_TAX: /* X = A */ PPC_MR(r_X, r_A); break; case BPF_MISC | BPF_TXA: /* A = X */ ctx->seen |= SEEN_XREG; PPC_MR(r_A, r_X); break; /*** Constant loads/M[] access ***/ case BPF_LD | BPF_IMM: /* A = K */ PPC_LI32(r_A, K); break; case BPF_LDX | BPF_IMM: /* X = K */ PPC_LI32(r_X, K); break; case BPF_LD | BPF_MEM: /* A = mem[K] */ PPC_MR(r_A, r_M + (K & 0xf)); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_LDX | BPF_MEM: /* X = mem[K] */ PPC_MR(r_X, r_M + (K & 0xf)); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_ST: /* mem[K] = A */ PPC_MR(r_M + (K & 0xf), r_A); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_STX: /* mem[K] = X */ PPC_MR(r_M + (K & 0xf), r_X); ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); break; case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); break; case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */ PPC_LWZ_OFFS(r_A, r_skb, K); break; case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */ PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); break; /*** Ancillary info loads ***/ case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff, protocol)); break; case BPF_ANC | SKF_AD_IFINDEX: case BPF_ANC | SKF_AD_HATYPE: BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2); PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, dev)); PPC_CMPDI(r_scratch1, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { /* Exit, returning 0; first pass hits here. */ PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } if (code == (BPF_ANC | SKF_AD_IFINDEX)) { PPC_LWZ_OFFS(r_A, r_scratch1, offsetof(struct net_device, ifindex)); } else { PPC_LHZ_OFFS(r_A, r_scratch1, offsetof(struct net_device, type)); } break; case BPF_ANC | SKF_AD_MARK: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, mark)); break; case BPF_ANC | SKF_AD_RXHASH: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, hash)); break; case BPF_ANC | SKF_AD_VLAN_TAG: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, vlan_tci)); break; case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: PPC_LBZ_OFFS(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET()); if (PKT_VLAN_PRESENT_BIT) PPC_SRWI(r_A, r_A, PKT_VLAN_PRESENT_BIT); if (PKT_VLAN_PRESENT_BIT < 7) PPC_ANDI(r_A, r_A, 1); break; case BPF_ANC | SKF_AD_QUEUE: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, queue_mapping)); break; case BPF_ANC | SKF_AD_PKTTYPE: PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET()); PPC_ANDI(r_A, r_A, PKT_TYPE_MAX); PPC_SRWI(r_A, r_A, 5); break; case BPF_ANC | SKF_AD_CPU: PPC_BPF_LOAD_CPU(r_A); break; /*** Absolute loads from packet header/data ***/ case BPF_LD | BPF_W | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_word); goto common_load; case BPF_LD | BPF_H | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_half); goto common_load; case BPF_LD | BPF_B | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_byte); common_load: /* Load from [K]. */ ctx->seen |= SEEN_DATAREF; PPC_FUNC_ADDR(r_scratch1, func); PPC_MTLR(r_scratch1); PPC_LI32(r_addr, K); PPC_BLRL(); /* * Helper returns 'lt' condition on error, and an * appropriate return value in r3 */ PPC_BCC(COND_LT, exit_addr); break; /*** Indirect loads from packet header/data ***/ case BPF_LD | BPF_W | BPF_IND: func = sk_load_word; goto common_load_ind; case BPF_LD | BPF_H | BPF_IND: func = sk_load_half; goto common_load_ind; case BPF_LD | BPF_B | BPF_IND: func = sk_load_byte; common_load_ind: /* * Load from [X + K]. Negative offsets are tested for * in the helper functions. */ ctx->seen |= SEEN_DATAREF | SEEN_XREG; PPC_FUNC_ADDR(r_scratch1, func); PPC_MTLR(r_scratch1); PPC_ADDI(r_addr, r_X, IMM_L(K)); if (K >= 32768) PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); PPC_BLRL(); /* If error, cr0.LT set */ PPC_BCC(COND_LT, exit_addr); break; case BPF_LDX | BPF_B | BPF_MSH: func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh); goto common_load; break; /*** Jump and branches ***/ case BPF_JMP | BPF_JA: if (K != 0) PPC_JMP(addrs[i + 1 + K]); break; case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: true_cond = COND_GT; goto cond_branch; case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: true_cond = COND_GE; goto cond_branch; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: true_cond = COND_EQ; goto cond_branch; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: true_cond = COND_NE; /* Fall through */ cond_branch: /* same targets, can avoid doing the test :) */ if (filter[i].jt == filter[i].jf) { if (filter[i].jt > 0) PPC_JMP(addrs[i + 1 + filter[i].jt]); break; } switch (code) { case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JEQ | BPF_X: ctx->seen |= SEEN_XREG; PPC_CMPLW(r_A, r_X); break; case BPF_JMP | BPF_JSET | BPF_X: ctx->seen |= SEEN_XREG; PPC_AND_DOT(r_scratch1, r_A, r_X); break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: if (K < 32768) PPC_CMPLWI(r_A, K); else { PPC_LI32(r_scratch1, K); PPC_CMPLW(r_A, r_scratch1); } break; case BPF_JMP | BPF_JSET | BPF_K: if (K < 32768) /* PPC_ANDI is /only/ dot-form */ PPC_ANDI(r_scratch1, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_AND_DOT(r_scratch1, r_A, r_scratch1); } break; } /* Sometimes branches are constructed "backward", with * the false path being the branch and true path being * a fallthrough to the next instruction. */ if (filter[i].jt == 0) /* Swap the sense of the branch */ PPC_BCC(true_cond ^ COND_CMP_TRUE, addrs[i + 1 + filter[i].jf]); else { PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); if (filter[i].jf != 0) PPC_JMP(addrs[i + 1 + filter[i].jf]); } break; default: /* The filter contains something cruel & unusual. * We don't handle it, but also there shouldn't be * anything missing from our list. */ if (printk_ratelimit()) pr_err("BPF filter opcode %04x (@%d) unsupported\n", filter[i].code, i); return -ENOTSUPP; } } /* Set end-of-body-code address for exit. */ addrs[i] = ctx->idx * 4; return 0; } void bpf_jit_compile(struct bpf_prog *fp) { unsigned int proglen; unsigned int alloclen; u32 *image = NULL; u32 *code_base; unsigned int *addrs; struct codegen_context cgctx; int pass; int flen = fp->len; if (!bpf_jit_enable) return; addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL); if (addrs == NULL) return; /* * There are multiple assembly passes as the generated code will change * size as it settles down, figuring out the max branch offsets/exit * paths required. * * The range of standard conditional branches is +/- 32Kbytes. Since * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to * finish with 8 bytes/instruction. Not feasible, so long jumps are * used, distinct from short branches. * * Current: * * For now, both branch types assemble to 2 words (short branches padded * with a NOP); this is less efficient, but assembly will always complete * after exactly 3 passes: * * First pass: No code buffer; Program is "faux-generated" -- no code * emitted but maximum size of output determined (and addrs[] filled * in). Also, we note whether we use M[], whether we use skb data, etc. * All generation choices assumed to be 'worst-case', e.g. branches all * far (2 instructions), return path code reduction not available, etc. * * Second pass: Code buffer allocated with size determined previously. * Prologue generated to support features we have seen used. Exit paths * determined and addrs[] is filled in again, as code may be slightly * smaller as a result. * * Third pass: Code generated 'for real', and branch destinations * determined from now-accurate addrs[] map. * * Ideal: * * If we optimise this, near branches will be shorter. On the * first assembly pass, we should err on the side of caution and * generate the biggest code. On subsequent passes, branches will be * generated short or long and code size will reduce. With smaller * code, more branches may fall into the short category, and code will * reduce more. * * Finally, if we see one pass generate code the same size as the * previous pass we have converged and should now generate code for * real. Allocating at the end will also save the memory that would * otherwise be wasted by the (small) current code shrinkage. * Preferably, we should do a small number of passes (e.g. 5) and if we * haven't converged by then, get impatient and force code to generate * as-is, even if the odd branch would be left long. The chances of a * long jump are tiny with all but the most enormous of BPF filter * inputs, so we should usually converge on the third pass. */ cgctx.idx = 0; cgctx.seen = 0; cgctx.pc_ret0 = -1; /* Scouting faux-generate pass 0 */ if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) /* We hit something illegal or unsupported. */ goto out; /* * Pretend to build prologue, given the features we've seen. This will * update ctgtx.idx as it pretends to output instructions, then we can * calculate total size from idx. */ bpf_jit_build_prologue(fp, 0, &cgctx); bpf_jit_build_epilogue(0, &cgctx); proglen = cgctx.idx * 4; alloclen = proglen + FUNCTION_DESCR_SIZE; image = module_alloc(alloclen); if (!image) goto out; code_base = image + (FUNCTION_DESCR_SIZE/4); /* Code generation passes 1-2 */ for (pass = 1; pass < 3; pass++) { /* Now build the prologue, body code & epilogue for real. */ cgctx.idx = 0; bpf_jit_build_prologue(fp, code_base, &cgctx); bpf_jit_build_body(fp, code_base, &cgctx, addrs); bpf_jit_build_epilogue(code_base, &cgctx); if (bpf_jit_enable > 1) pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass, proglen - (cgctx.idx * 4), cgctx.seen); } if (bpf_jit_enable > 1) /* Note that we output the base address of the code_base * rather than image, since opcodes are in code_base. */ bpf_jit_dump(flen, proglen, pass, code_base); bpf_flush_icache(code_base, code_base + (proglen/4)); #ifdef CONFIG_PPC64 /* Function descriptor nastiness: Address + TOC */ ((u64 *)image)[0] = (u64)code_base; ((u64 *)image)[1] = local_paca->kernel_toc; #endif fp->bpf_func = (void *)image; fp->jited = 1; out: kfree(addrs); return; } void bpf_jit_free(struct bpf_prog *fp) { if (fp->jited) module_memfree(fp->bpf_func); bpf_prog_unlock_free(fp); }