// SPDX-License-Identifier: GPL-2.0-or-later /* * Page table handling routines for radix page table. * * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. */ #define pr_fmt(fmt) "radix-mmu: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int mmu_pid_bits; unsigned int mmu_base_pid; unsigned long radix_mem_block_size __ro_after_init; static __ref void *early_alloc_pgtable(unsigned long size, int nid, unsigned long region_start, unsigned long region_end) { phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT; phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE; void *ptr; if (region_start) min_addr = region_start; if (region_end) max_addr = region_end; ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid); if (!ptr) panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n", __func__, size, size, nid, &min_addr, &max_addr); return ptr; } /* * When allocating pud or pmd pointers, we allocate a complete page * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This * is to ensure that the page obtained from the memblock allocator * can be completely used as page table page and can be freed * correctly when the page table entries are removed. */ static int early_map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t flags, unsigned int map_page_size, int nid, unsigned long region_start, unsigned long region_end) { unsigned long pfn = pa >> PAGE_SHIFT; pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; pgdp = pgd_offset_k(ea); p4dp = p4d_offset(pgdp, ea); if (p4d_none(*p4dp)) { pudp = early_alloc_pgtable(PAGE_SIZE, nid, region_start, region_end); p4d_populate(&init_mm, p4dp, pudp); } pudp = pud_offset(p4dp, ea); if (map_page_size == PUD_SIZE) { ptep = (pte_t *)pudp; goto set_the_pte; } if (pud_none(*pudp)) { pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start, region_end); pud_populate(&init_mm, pudp, pmdp); } pmdp = pmd_offset(pudp, ea); if (map_page_size == PMD_SIZE) { ptep = pmdp_ptep(pmdp); goto set_the_pte; } if (!pmd_present(*pmdp)) { ptep = early_alloc_pgtable(PAGE_SIZE, nid, region_start, region_end); pmd_populate_kernel(&init_mm, pmdp, ptep); } ptep = pte_offset_kernel(pmdp, ea); set_the_pte: set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); asm volatile("ptesync": : :"memory"); return 0; } /* * nid, region_start, and region_end are hints to try to place the page * table memory in the same node or region. */ static int __map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t flags, unsigned int map_page_size, int nid, unsigned long region_start, unsigned long region_end) { unsigned long pfn = pa >> PAGE_SHIFT; pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; /* * Make sure task size is correct as per the max adddr */ BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); #ifdef CONFIG_PPC_64K_PAGES BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT)); #endif if (unlikely(!slab_is_available())) return early_map_kernel_page(ea, pa, flags, map_page_size, nid, region_start, region_end); /* * Should make page table allocation functions be able to take a * node, so we can place kernel page tables on the right nodes after * boot. */ pgdp = pgd_offset_k(ea); p4dp = p4d_offset(pgdp, ea); pudp = pud_alloc(&init_mm, p4dp, ea); if (!pudp) return -ENOMEM; if (map_page_size == PUD_SIZE) { ptep = (pte_t *)pudp; goto set_the_pte; } pmdp = pmd_alloc(&init_mm, pudp, ea); if (!pmdp) return -ENOMEM; if (map_page_size == PMD_SIZE) { ptep = pmdp_ptep(pmdp); goto set_the_pte; } ptep = pte_alloc_kernel(pmdp, ea); if (!ptep) return -ENOMEM; set_the_pte: set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags)); asm volatile("ptesync": : :"memory"); return 0; } int radix__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t flags, unsigned int map_page_size) { return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0); } #ifdef CONFIG_STRICT_KERNEL_RWX static void radix__change_memory_range(unsigned long start, unsigned long end, unsigned long clear) { unsigned long idx; pgd_t *pgdp; p4d_t *p4dp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; start = ALIGN_DOWN(start, PAGE_SIZE); end = PAGE_ALIGN(end); // aligns up pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", start, end, clear); for (idx = start; idx < end; idx += PAGE_SIZE) { pgdp = pgd_offset_k(idx); p4dp = p4d_offset(pgdp, idx); pudp = pud_alloc(&init_mm, p4dp, idx); if (!pudp) continue; if (pud_is_leaf(*pudp)) { ptep = (pte_t *)pudp; goto update_the_pte; } pmdp = pmd_alloc(&init_mm, pudp, idx); if (!pmdp) continue; if (pmd_is_leaf(*pmdp)) { ptep = pmdp_ptep(pmdp); goto update_the_pte; } ptep = pte_alloc_kernel(pmdp, idx); if (!ptep) continue; update_the_pte: radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); } radix__flush_tlb_kernel_range(start, end); } void radix__mark_rodata_ro(void) { unsigned long start, end; start = (unsigned long)_stext; end = (unsigned long)__init_begin; radix__change_memory_range(start, end, _PAGE_WRITE); } void radix__mark_initmem_nx(void) { unsigned long start = (unsigned long)__init_begin; unsigned long end = (unsigned long)__init_end; radix__change_memory_range(start, end, _PAGE_EXEC); } #endif /* CONFIG_STRICT_KERNEL_RWX */ static inline void __meminit print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec) { char buf[10]; if (end <= start) return; string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf)); pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf, exec ? " (exec)" : ""); } static unsigned long next_boundary(unsigned long addr, unsigned long end) { #ifdef CONFIG_STRICT_KERNEL_RWX if (addr < __pa_symbol(__init_begin)) return __pa_symbol(__init_begin); #endif return end; } static int __meminit create_physical_mapping(unsigned long start, unsigned long end, unsigned long max_mapping_size, int nid, pgprot_t _prot) { unsigned long vaddr, addr, mapping_size = 0; bool prev_exec, exec = false; pgprot_t prot; int psize; start = ALIGN(start, PAGE_SIZE); end = ALIGN_DOWN(end, PAGE_SIZE); for (addr = start; addr < end; addr += mapping_size) { unsigned long gap, previous_size; int rc; gap = next_boundary(addr, end) - addr; if (gap > max_mapping_size) gap = max_mapping_size; previous_size = mapping_size; prev_exec = exec; if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && mmu_psize_defs[MMU_PAGE_1G].shift) { mapping_size = PUD_SIZE; psize = MMU_PAGE_1G; } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && mmu_psize_defs[MMU_PAGE_2M].shift) { mapping_size = PMD_SIZE; psize = MMU_PAGE_2M; } else { mapping_size = PAGE_SIZE; psize = mmu_virtual_psize; } vaddr = (unsigned long)__va(addr); if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) { prot = PAGE_KERNEL_X; exec = true; } else { prot = _prot; exec = false; } if (mapping_size != previous_size || exec != prev_exec) { print_mapping(start, addr, previous_size, prev_exec); start = addr; } rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end); if (rc) return rc; update_page_count(psize, 1); } print_mapping(start, addr, mapping_size, exec); return 0; } static void __init radix_init_pgtable(void) { unsigned long rts_field; phys_addr_t start, end; u64 i; /* We don't support slb for radix */ mmu_slb_size = 0; /* * Create the linear mapping */ for_each_mem_range(i, &start, &end) { /* * The memblock allocator is up at this point, so the * page tables will be allocated within the range. No * need or a node (which we don't have yet). */ if (end >= RADIX_VMALLOC_START) { pr_warn("Outside the supported range\n"); continue; } WARN_ON(create_physical_mapping(start, end, radix_mem_block_size, -1, PAGE_KERNEL)); } /* Find out how many PID bits are supported */ if (!cpu_has_feature(CPU_FTR_HVMODE) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) { /* * Older versions of KVM on these machines perfer if the * guest only uses the low 19 PID bits. */ if (!mmu_pid_bits) mmu_pid_bits = 19; } else { if (!mmu_pid_bits) mmu_pid_bits = 20; } mmu_base_pid = 1; /* * Allocate Partition table and process table for the * host. */ BUG_ON(PRTB_SIZE_SHIFT > 36); process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0); /* * Fill in the process table. */ rts_field = radix__get_tree_size(); process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); /* * The init_mm context is given the first available (non-zero) PID, * which is the "guard PID" and contains no page table. PIDR should * never be set to zero because that duplicates the kernel address * space at the 0x0... offset (quadrant 0)! * * An arbitrary PID that may later be allocated by the PID allocator * for userspace processes must not be used either, because that * would cause stale user mappings for that PID on CPUs outside of * the TLB invalidation scheme (because it won't be in mm_cpumask). * * So permanently carve out one PID for the purpose of a guard PID. */ init_mm.context.id = mmu_base_pid; mmu_base_pid++; } static void __init radix_init_partition_table(void) { unsigned long rts_field, dw0, dw1; mmu_partition_table_init(); rts_field = radix__get_tree_size(); dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR; mmu_partition_table_set_entry(0, dw0, dw1, false); pr_info("Initializing Radix MMU\n"); } static int __init get_idx_from_shift(unsigned int shift) { int idx = -1; switch (shift) { case 0xc: idx = MMU_PAGE_4K; break; case 0x10: idx = MMU_PAGE_64K; break; case 0x15: idx = MMU_PAGE_2M; break; case 0x1e: idx = MMU_PAGE_1G; break; } return idx; } static int __init radix_dt_scan_page_sizes(unsigned long node, const char *uname, int depth, void *data) { int size = 0; int shift, idx; unsigned int ap; const __be32 *prop; const char *type = of_get_flat_dt_prop(node, "device_type", NULL); /* We are scanning "cpu" nodes only */ if (type == NULL || strcmp(type, "cpu") != 0) return 0; /* Find MMU PID size */ prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); if (prop && size == 4) mmu_pid_bits = be32_to_cpup(prop); /* Grab page size encodings */ prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); if (!prop) return 0; pr_info("Page sizes from device-tree:\n"); for (; size >= 4; size -= 4, ++prop) { struct mmu_psize_def *def; /* top 3 bit is AP encoding */ shift = be32_to_cpu(prop[0]) & ~(0xe << 28); ap = be32_to_cpu(prop[0]) >> 29; pr_info("Page size shift = %d AP=0x%x\n", shift, ap); idx = get_idx_from_shift(shift); if (idx < 0) continue; def = &mmu_psize_defs[idx]; def->shift = shift; def->ap = ap; def->h_rpt_pgsize = psize_to_rpti_pgsize(idx); } /* needed ? */ cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; return 1; } #ifdef CONFIG_MEMORY_HOTPLUG static int __init probe_memory_block_size(unsigned long node, const char *uname, int depth, void *data) { unsigned long *mem_block_size = (unsigned long *)data; const __be32 *prop; int len; if (depth != 1) return 0; if (strcmp(uname, "ibm,dynamic-reconfiguration-memory")) return 0; prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len); if (!prop || len < dt_root_size_cells * sizeof(__be32)) /* * Nothing in the device tree */ *mem_block_size = MIN_MEMORY_BLOCK_SIZE; else *mem_block_size = of_read_number(prop, dt_root_size_cells); return 1; } static unsigned long radix_memory_block_size(void) { unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE; /* * OPAL firmware feature is set by now. Hence we are ok * to test OPAL feature. */ if (firmware_has_feature(FW_FEATURE_OPAL)) mem_block_size = 1UL * 1024 * 1024 * 1024; else of_scan_flat_dt(probe_memory_block_size, &mem_block_size); return mem_block_size; } #else /* CONFIG_MEMORY_HOTPLUG */ static unsigned long radix_memory_block_size(void) { return 1UL * 1024 * 1024 * 1024; } #endif /* CONFIG_MEMORY_HOTPLUG */ void __init radix__early_init_devtree(void) { int rc; /* * Try to find the available page sizes in the device-tree */ rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); if (!rc) { /* * No page size details found in device tree. * Let's assume we have page 4k and 64k support */ mmu_psize_defs[MMU_PAGE_4K].shift = 12; mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize = psize_to_rpti_pgsize(MMU_PAGE_4K); mmu_psize_defs[MMU_PAGE_64K].shift = 16; mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize = psize_to_rpti_pgsize(MMU_PAGE_64K); } /* * Max mapping size used when mapping pages. We don't use * ppc_md.memory_block_size() here because this get called * early and we don't have machine probe called yet. Also * the pseries implementation only check for ibm,lmb-size. * All hypervisor supporting radix do expose that device * tree node. */ radix_mem_block_size = radix_memory_block_size(); return; } static void radix_init_amor(void) { /* * In HV mode, we init AMOR (Authority Mask Override Register) so that * the hypervisor and guest can setup IAMR (Instruction Authority Mask * Register), enable key 0 and set it to 1. * * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11) */ mtspr(SPRN_AMOR, (3ul << 62)); } void __init radix__early_init_mmu(void) { unsigned long lpcr; #ifdef CONFIG_PPC_64K_PAGES /* PAGE_SIZE mappings */ mmu_virtual_psize = MMU_PAGE_64K; #else mmu_virtual_psize = MMU_PAGE_4K; #endif #ifdef CONFIG_SPARSEMEM_VMEMMAP /* vmemmap mapping */ if (mmu_psize_defs[MMU_PAGE_2M].shift) { /* * map vmemmap using 2M if available */ mmu_vmemmap_psize = MMU_PAGE_2M; } else mmu_vmemmap_psize = mmu_virtual_psize; #endif /* * initialize page table size */ __pte_index_size = RADIX_PTE_INDEX_SIZE; __pmd_index_size = RADIX_PMD_INDEX_SIZE; __pud_index_size = RADIX_PUD_INDEX_SIZE; __pgd_index_size = RADIX_PGD_INDEX_SIZE; __pud_cache_index = RADIX_PUD_INDEX_SIZE; __pte_table_size = RADIX_PTE_TABLE_SIZE; __pmd_table_size = RADIX_PMD_TABLE_SIZE; __pud_table_size = RADIX_PUD_TABLE_SIZE; __pgd_table_size = RADIX_PGD_TABLE_SIZE; __pmd_val_bits = RADIX_PMD_VAL_BITS; __pud_val_bits = RADIX_PUD_VAL_BITS; __pgd_val_bits = RADIX_PGD_VAL_BITS; __kernel_virt_start = RADIX_KERN_VIRT_START; __vmalloc_start = RADIX_VMALLOC_START; __vmalloc_end = RADIX_VMALLOC_END; __kernel_io_start = RADIX_KERN_IO_START; __kernel_io_end = RADIX_KERN_IO_END; vmemmap = (struct page *)RADIX_VMEMMAP_START; ioremap_bot = IOREMAP_BASE; #ifdef CONFIG_PCI pci_io_base = ISA_IO_BASE; #endif __pte_frag_nr = RADIX_PTE_FRAG_NR; __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT; __pmd_frag_nr = RADIX_PMD_FRAG_NR; __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT; radix_init_pgtable(); if (!firmware_has_feature(FW_FEATURE_LPAR)) { lpcr = mfspr(SPRN_LPCR); mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); radix_init_partition_table(); radix_init_amor(); } else { radix_init_pseries(); } memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); /* Switch to the guard PID before turning on MMU */ radix__switch_mmu_context(NULL, &init_mm); tlbiel_all(); } void radix__early_init_mmu_secondary(void) { unsigned long lpcr; /* * update partition table control register and UPRT */ if (!firmware_has_feature(FW_FEATURE_LPAR)) { lpcr = mfspr(SPRN_LPCR); mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); set_ptcr_when_no_uv(__pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); radix_init_amor(); } radix__switch_mmu_context(NULL, &init_mm); tlbiel_all(); /* Make sure userspace can't change the AMR */ mtspr(SPRN_UAMOR, 0); } void radix__mmu_cleanup_all(void) { unsigned long lpcr; if (!firmware_has_feature(FW_FEATURE_LPAR)) { lpcr = mfspr(SPRN_LPCR); mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); set_ptcr_when_no_uv(0); powernv_set_nmmu_ptcr(0); radix__flush_tlb_all(); } } #ifdef CONFIG_MEMORY_HOTPLUG static void free_pte_table(pte_t *pte_start, pmd_t *pmd) { pte_t *pte; int i; for (i = 0; i < PTRS_PER_PTE; i++) { pte = pte_start + i; if (!pte_none(*pte)) return; } pte_free_kernel(&init_mm, pte_start); pmd_clear(pmd); } static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) { pmd_t *pmd; int i; for (i = 0; i < PTRS_PER_PMD; i++) { pmd = pmd_start + i; if (!pmd_none(*pmd)) return; } pmd_free(&init_mm, pmd_start); pud_clear(pud); } static void free_pud_table(pud_t *pud_start, p4d_t *p4d) { pud_t *pud; int i; for (i = 0; i < PTRS_PER_PUD; i++) { pud = pud_start + i; if (!pud_none(*pud)) return; } pud_free(&init_mm, pud_start); p4d_clear(p4d); } static void remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end) { unsigned long next; pte_t *pte; pte = pte_start + pte_index(addr); for (; addr < end; addr = next, pte++) { next = (addr + PAGE_SIZE) & PAGE_MASK; if (next > end) next = end; if (!pte_present(*pte)) continue; if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) { /* * The vmemmap_free() and remove_section_mapping() * codepaths call us with aligned addresses. */ WARN_ONCE(1, "%s: unaligned range\n", __func__); continue; } pte_clear(&init_mm, addr, pte); } } static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end) { unsigned long next; pte_t *pte_base; pmd_t *pmd; pmd = pmd_start + pmd_index(addr); for (; addr < end; addr = next, pmd++) { next = pmd_addr_end(addr, end); if (!pmd_present(*pmd)) continue; if (pmd_is_leaf(*pmd)) { if (!IS_ALIGNED(addr, PMD_SIZE) || !IS_ALIGNED(next, PMD_SIZE)) { WARN_ONCE(1, "%s: unaligned range\n", __func__); continue; } pte_clear(&init_mm, addr, (pte_t *)pmd); continue; } pte_base = (pte_t *)pmd_page_vaddr(*pmd); remove_pte_table(pte_base, addr, next); free_pte_table(pte_base, pmd); } } static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end) { unsigned long next; pmd_t *pmd_base; pud_t *pud; pud = pud_start + pud_index(addr); for (; addr < end; addr = next, pud++) { next = pud_addr_end(addr, end); if (!pud_present(*pud)) continue; if (pud_is_leaf(*pud)) { if (!IS_ALIGNED(addr, PUD_SIZE) || !IS_ALIGNED(next, PUD_SIZE)) { WARN_ONCE(1, "%s: unaligned range\n", __func__); continue; } pte_clear(&init_mm, addr, (pte_t *)pud); continue; } pmd_base = (pmd_t *)pud_page_vaddr(*pud); remove_pmd_table(pmd_base, addr, next); free_pmd_table(pmd_base, pud); } } static void __meminit remove_pagetable(unsigned long start, unsigned long end) { unsigned long addr, next; pud_t *pud_base; pgd_t *pgd; p4d_t *p4d; spin_lock(&init_mm.page_table_lock); for (addr = start; addr < end; addr = next) { next = pgd_addr_end(addr, end); pgd = pgd_offset_k(addr); p4d = p4d_offset(pgd, addr); if (!p4d_present(*p4d)) continue; if (p4d_is_leaf(*p4d)) { if (!IS_ALIGNED(addr, P4D_SIZE) || !IS_ALIGNED(next, P4D_SIZE)) { WARN_ONCE(1, "%s: unaligned range\n", __func__); continue; } pte_clear(&init_mm, addr, (pte_t *)pgd); continue; } pud_base = (pud_t *)p4d_page_vaddr(*p4d); remove_pud_table(pud_base, addr, next); free_pud_table(pud_base, p4d); } spin_unlock(&init_mm.page_table_lock); radix__flush_tlb_kernel_range(start, end); } int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid, pgprot_t prot) { if (end >= RADIX_VMALLOC_START) { pr_warn("Outside the supported range\n"); return -1; } return create_physical_mapping(__pa(start), __pa(end), radix_mem_block_size, nid, prot); } int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end) { remove_pagetable(start, end); return 0; } #endif /* CONFIG_MEMORY_HOTPLUG */ #ifdef CONFIG_SPARSEMEM_VMEMMAP static int __map_kernel_page_nid(unsigned long ea, unsigned long pa, pgprot_t flags, unsigned int map_page_size, int nid) { return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0); } int __meminit radix__vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys) { /* Create a PTE encoding */ unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW; int nid = early_pfn_to_nid(phys >> PAGE_SHIFT); int ret; if ((start + page_size) >= RADIX_VMEMMAP_END) { pr_warn("Outside the supported range\n"); return -1; } ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid); BUG_ON(ret); return 0; } #ifdef CONFIG_MEMORY_HOTPLUG void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) { remove_pagetable(start, start + page_size); } #endif #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set) { unsigned long old; #ifdef CONFIG_DEBUG_VM WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); assert_spin_locked(pmd_lockptr(mm, pmdp)); #endif old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1); trace_hugepage_update(addr, old, clr, set); return old; } pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd; VM_BUG_ON(address & ~HPAGE_PMD_MASK); VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); VM_BUG_ON(pmd_devmap(*pmdp)); /* * khugepaged calls this for normal pmd */ pmd = *pmdp; pmd_clear(pmdp); /* * pmdp collapse_flush need to ensure that there are no parallel gup * walk after this call. This is needed so that we can have stable * page ref count when collapsing a page. We don't allow a collapse page * if we have gup taken on the page. We can ensure that by sending IPI * because gup walk happens with IRQ disabled. */ serialize_against_pte_lookup(vma->vm_mm); radix__flush_tlb_collapsed_pmd(vma->vm_mm, address); return pmd; } /* * For us pgtable_t is pte_t *. Inorder to save the deposisted * page table, we consider the allocated page table as a list * head. On withdraw we need to make sure we zero out the used * list_head memory area. */ void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable) { struct list_head *lh = (struct list_head *) pgtable; assert_spin_locked(pmd_lockptr(mm, pmdp)); /* FIFO */ if (!pmd_huge_pte(mm, pmdp)) INIT_LIST_HEAD(lh); else list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); pmd_huge_pte(mm, pmdp) = pgtable; } pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) { pte_t *ptep; pgtable_t pgtable; struct list_head *lh; assert_spin_locked(pmd_lockptr(mm, pmdp)); /* FIFO */ pgtable = pmd_huge_pte(mm, pmdp); lh = (struct list_head *) pgtable; if (list_empty(lh)) pmd_huge_pte(mm, pmdp) = NULL; else { pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; list_del(lh); } ptep = (pte_t *) pgtable; *ptep = __pte(0); ptep++; *ptep = __pte(0); return pgtable; } pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t old_pmd; unsigned long old; old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); old_pmd = __pmd(old); return old_pmd; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { struct mm_struct *mm = vma->vm_mm; unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); unsigned long change = pte_val(entry) ^ pte_val(*ptep); /* * To avoid NMMU hang while relaxing access, we need mark * the pte invalid in between. */ if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) { unsigned long old_pte, new_pte; old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID); /* * new value of pte */ new_pte = old_pte | set; radix__flush_tlb_page_psize(mm, address, psize); __radix_pte_update(ptep, _PAGE_INVALID, new_pte); } else { __radix_pte_update(ptep, 0, set); /* * Book3S does not require a TLB flush when relaxing access * restrictions when the address space is not attached to a * NMMU, because the core MMU will reload the pte after taking * an access fault, which is defined by the architecture. */ } /* See ptesync comment in radix__set_pte_at */ } void radix__ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, pte_t old_pte, pte_t pte) { struct mm_struct *mm = vma->vm_mm; /* * To avoid NMMU hang while relaxing access we need to flush the tlb before * we set the new value. We need to do this only for radix, because hash * translation does flush when updating the linux pte. */ if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) && (atomic_read(&mm->context.copros) > 0)) radix__flush_tlb_page(vma, addr); set_pte_at(mm, addr, ptep, pte); } int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { pte_t *ptep = (pte_t *)pud; pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot); if (!radix_enabled()) return 0; set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud); return 1; } int pud_clear_huge(pud_t *pud) { if (pud_huge(*pud)) { pud_clear(pud); return 1; } return 0; } int pud_free_pmd_page(pud_t *pud, unsigned long addr) { pmd_t *pmd; int i; pmd = (pmd_t *)pud_page_vaddr(*pud); pud_clear(pud); flush_tlb_kernel_range(addr, addr + PUD_SIZE); for (i = 0; i < PTRS_PER_PMD; i++) { if (!pmd_none(pmd[i])) { pte_t *pte; pte = (pte_t *)pmd_page_vaddr(pmd[i]); pte_free_kernel(&init_mm, pte); } } pmd_free(&init_mm, pmd); return 1; } int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { pte_t *ptep = (pte_t *)pmd; pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot); if (!radix_enabled()) return 0; set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd); return 1; } int pmd_clear_huge(pmd_t *pmd) { if (pmd_huge(*pmd)) { pmd_clear(pmd); return 1; } return 0; } int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) { pte_t *pte; pte = (pte_t *)pmd_page_vaddr(*pmd); pmd_clear(pmd); flush_tlb_kernel_range(addr, addr + PMD_SIZE); pte_free_kernel(&init_mm, pte); return 1; }