/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Kernel execution entry point code. * * Copyright (c) 1995-1996 Gary Thomas * Initial PowerPC version. * Copyright (c) 1996 Cort Dougan * Rewritten for PReP * Copyright (c) 1996 Paul Mackerras * Low-level exception handers, MMU support, and rewrite. * Copyright (c) 1997 Dan Malek * PowerPC 8xx modifications. * Copyright (c) 1998-1999 TiVo, Inc. * PowerPC 403GCX modifications. * Copyright (c) 1999 Grant Erickson * PowerPC 403GCX/405GP modifications. * Copyright 2000 MontaVista Software Inc. * PPC405 modifications * PowerPC 403GCX/405GP modifications. * Author: MontaVista Software, Inc. * frank_rowand@mvista.com or source@mvista.com * debbie_chu@mvista.com * Copyright 2002-2004 MontaVista Software, Inc. * PowerPC 44x support, Matt Porter * Copyright 2004 Freescale Semiconductor, Inc * PowerPC e500 modifications, Kumar Gala */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "head_booke.h" /* As with the other PowerPC ports, it is expected that when code * execution begins here, the following registers contain valid, yet * optional, information: * * r3 - Board info structure pointer (DRAM, frequency, MAC address, etc.) * r4 - Starting address of the init RAM disk * r5 - Ending address of the init RAM disk * r6 - Start of kernel command line string (e.g. "mem=128") * r7 - End of kernel command line string * */ __HEAD _GLOBAL(_stext); _GLOBAL(_start); /* * Reserve a word at a fixed location to store the address * of abatron_pteptrs */ nop /* Translate device tree address to physical, save in r30/r31 */ bl get_phys_addr mr r30,r3 mr r31,r4 li r25,0 /* phys kernel start (low) */ li r24,0 /* CPU number */ li r23,0 /* phys kernel start (high) */ #ifdef CONFIG_RELOCATABLE LOAD_REG_ADDR_PIC(r3, _stext) /* Get our current runtime base */ /* Translate _stext address to physical, save in r23/r25 */ bl get_phys_addr mr r23,r3 mr r25,r4 bcl 20,31,$+4 0: mflr r8 addis r3,r8,(is_second_reloc - 0b)@ha lwz r19,(is_second_reloc - 0b)@l(r3) /* Check if this is the second relocation. */ cmpwi r19,1 bne 1f /* * For the second relocation, we already get the real memstart_addr * from device tree. So we will map PAGE_OFFSET to memstart_addr, * then the virtual address of start kernel should be: * PAGE_OFFSET + (kernstart_addr - memstart_addr) * Since the offset between kernstart_addr and memstart_addr should * never be beyond 1G, so we can just use the lower 32bit of them * for the calculation. */ lis r3,PAGE_OFFSET@h addis r4,r8,(kernstart_addr - 0b)@ha addi r4,r4,(kernstart_addr - 0b)@l lwz r5,4(r4) addis r6,r8,(memstart_addr - 0b)@ha addi r6,r6,(memstart_addr - 0b)@l lwz r7,4(r6) subf r5,r7,r5 add r3,r3,r5 b 2f 1: /* * We have the runtime (virtual) address of our base. * We calculate our shift of offset from a 64M page. * We could map the 64M page we belong to at PAGE_OFFSET and * get going from there. */ lis r4,KERNELBASE@h ori r4,r4,KERNELBASE@l rlwinm r6,r25,0,0x3ffffff /* r6 = PHYS_START % 64M */ rlwinm r5,r4,0,0x3ffffff /* r5 = KERNELBASE % 64M */ subf r3,r5,r6 /* r3 = r6 - r5 */ add r3,r4,r3 /* Required Virtual Address */ 2: bl relocate /* * For the second relocation, we already set the right tlb entries * for the kernel space, so skip the code in 85xx_entry_mapping.S */ cmpwi r19,1 beq set_ivor #endif /* We try to not make any assumptions about how the boot loader * setup or used the TLBs. We invalidate all mappings from the * boot loader and load a single entry in TLB1[0] to map the * first 64M of kernel memory. Any boot info passed from the * bootloader needs to live in this first 64M. * * Requirement on bootloader: * - The page we're executing in needs to reside in TLB1 and * have IPROT=1. If not an invalidate broadcast could * evict the entry we're currently executing in. * * r3 = Index of TLB1 were executing in * r4 = Current MSR[IS] * r5 = Index of TLB1 temp mapping * * Later in mapin_ram we will correctly map lowmem, and resize TLB1[0] * if needed */ _GLOBAL(__early_start) LOAD_REG_ADDR_PIC(r20, kernstart_virt_addr) lwz r20,0(r20) #define ENTRY_MAPPING_BOOT_SETUP #include "85xx_entry_mapping.S" #undef ENTRY_MAPPING_BOOT_SETUP set_ivor: /* Establish the interrupt vector offsets */ SET_IVOR(0, CriticalInput); SET_IVOR(1, MachineCheck); SET_IVOR(2, DataStorage); SET_IVOR(3, InstructionStorage); SET_IVOR(4, ExternalInput); SET_IVOR(5, Alignment); SET_IVOR(6, Program); SET_IVOR(7, FloatingPointUnavailable); SET_IVOR(8, SystemCall); SET_IVOR(9, AuxillaryProcessorUnavailable); SET_IVOR(10, Decrementer); SET_IVOR(11, FixedIntervalTimer); SET_IVOR(12, WatchdogTimer); SET_IVOR(13, DataTLBError); SET_IVOR(14, InstructionTLBError); SET_IVOR(15, DebugCrit); /* Establish the interrupt vector base */ lis r4,interrupt_base@h /* IVPR only uses the high 16-bits */ mtspr SPRN_IVPR,r4 /* Setup the defaults for TLB entries */ li r2,(MAS4_TSIZED(BOOK3E_PAGESZ_4K))@l mtspr SPRN_MAS4, r2 #if !defined(CONFIG_BDI_SWITCH) /* * The Abatron BDI JTAG debugger does not tolerate others * mucking with the debug registers. */ lis r2,DBCR0_IDM@h mtspr SPRN_DBCR0,r2 isync /* clear any residual debug events */ li r2,-1 mtspr SPRN_DBSR,r2 #endif #ifdef CONFIG_SMP /* Check to see if we're the second processor, and jump * to the secondary_start code if so */ LOAD_REG_ADDR_PIC(r24, boot_cpuid) lwz r24, 0(r24) cmpwi r24, -1 mfspr r24,SPRN_PIR bne __secondary_start #endif /* * This is where the main kernel code starts. */ /* ptr to current */ lis r2,init_task@h ori r2,r2,init_task@l /* ptr to current thread */ addi r4,r2,THREAD /* init task's THREAD */ mtspr SPRN_SPRG_THREAD,r4 /* stack */ lis r1,init_thread_union@h ori r1,r1,init_thread_union@l li r0,0 stwu r0,THREAD_SIZE-STACK_FRAME_MIN_SIZE(r1) #ifdef CONFIG_SMP stw r24, TASK_CPU(r2) #endif bl early_init #ifdef CONFIG_KASAN bl kasan_early_init #endif #ifdef CONFIG_RELOCATABLE mr r3,r30 mr r4,r31 #ifdef CONFIG_PHYS_64BIT mr r5,r23 mr r6,r25 #else mr r5,r25 #endif bl relocate_init #endif #ifdef CONFIG_DYNAMIC_MEMSTART lis r3,kernstart_addr@ha la r3,kernstart_addr@l(r3) #ifdef CONFIG_PHYS_64BIT stw r23,0(r3) stw r25,4(r3) #else stw r25,0(r3) #endif #endif /* * Decide what sort of machine this is and initialize the MMU. */ mr r3,r30 mr r4,r31 bl machine_init bl MMU_init /* Setup PTE pointers for the Abatron bdiGDB */ lis r6, swapper_pg_dir@h ori r6, r6, swapper_pg_dir@l lis r5, abatron_pteptrs@h ori r5, r5, abatron_pteptrs@l lis r3, kernstart_virt_addr@ha lwz r4, kernstart_virt_addr@l(r3) stw r5, 0(r4) /* Save abatron_pteptrs at a fixed location */ stw r6, 0(r5) /* Let's move on */ lis r4,start_kernel@h ori r4,r4,start_kernel@l lis r3,MSR_KERNEL@h ori r3,r3,MSR_KERNEL@l mtspr SPRN_SRR0,r4 mtspr SPRN_SRR1,r3 rfi /* change context and jump to start_kernel */ /* Macros to hide the PTE size differences * * FIND_PTE -- walks the page tables given EA & pgdir pointer * r10 -- EA of fault * r11 -- PGDIR pointer * r12 -- free * label 2: is the bailout case * * if we find the pte (fall through): * r11 is low pte word * r12 is pointer to the pte * r10 is the pshift from the PGD, if we're a hugepage */ #ifdef CONFIG_PTE_64BIT #ifdef CONFIG_HUGETLB_PAGE #define FIND_PTE \ rlwinm r12, r10, 13, 19, 29; /* Compute pgdir/pmd offset */ \ lwzx r11, r12, r11; /* Get pgd/pmd entry */ \ rlwinm. r12, r11, 0, 0, 20; /* Extract pt base address */ \ blt 1000f; /* Normal non-huge page */ \ beq 2f; /* Bail if no table */ \ oris r11, r11, PD_HUGE@h; /* Put back address bit */ \ andi. r10, r11, HUGEPD_SHIFT_MASK@l; /* extract size field */ \ xor r12, r10, r11; /* drop size bits from pointer */ \ b 1001f; \ 1000: rlwimi r12, r10, 23, 20, 28; /* Compute pte address */ \ li r10, 0; /* clear r10 */ \ 1001: lwz r11, 4(r12); /* Get pte entry */ #else #define FIND_PTE \ rlwinm r12, r10, 13, 19, 29; /* Compute pgdir/pmd offset */ \ lwzx r11, r12, r11; /* Get pgd/pmd entry */ \ rlwinm. r12, r11, 0, 0, 20; /* Extract pt base address */ \ beq 2f; /* Bail if no table */ \ rlwimi r12, r10, 23, 20, 28; /* Compute pte address */ \ lwz r11, 4(r12); /* Get pte entry */ #endif /* HUGEPAGE */ #else /* !PTE_64BIT */ #define FIND_PTE \ rlwimi r11, r10, 12, 20, 29; /* Create L1 (pgdir/pmd) address */ \ lwz r11, 0(r11); /* Get L1 entry */ \ rlwinm. r12, r11, 0, 0, 19; /* Extract L2 (pte) base address */ \ beq 2f; /* Bail if no table */ \ rlwimi r12, r10, 22, 20, 29; /* Compute PTE address */ \ lwz r11, 0(r12); /* Get Linux PTE */ #endif /* * Interrupt vector entry code * * The Book E MMUs are always on so we don't need to handle * interrupts in real mode as with previous PPC processors. In * this case we handle interrupts in the kernel virtual address * space. * * Interrupt vectors are dynamically placed relative to the * interrupt prefix as determined by the address of interrupt_base. * The interrupt vectors offsets are programmed using the labels * for each interrupt vector entry. * * Interrupt vectors must be aligned on a 16 byte boundary. * We align on a 32 byte cache line boundary for good measure. */ interrupt_base: /* Critical Input Interrupt */ CRITICAL_EXCEPTION(0x0100, CRITICAL, CriticalInput, unknown_exception) /* Machine Check Interrupt */ MCHECK_EXCEPTION(0x0200, MachineCheck, machine_check_exception) /* Data Storage Interrupt */ START_EXCEPTION(DataStorage) NORMAL_EXCEPTION_PROLOG(0x300, DATA_STORAGE) mfspr r5,SPRN_ESR /* Grab the ESR, save it */ stw r5,_ESR(r11) mfspr r4,SPRN_DEAR /* Grab the DEAR, save it */ stw r4, _DEAR(r11) andis. r10,r5,(ESR_ILK|ESR_DLK)@h bne 1f prepare_transfer_to_handler bl do_page_fault b interrupt_return 1: prepare_transfer_to_handler bl CacheLockingException b interrupt_return /* Instruction Storage Interrupt */ INSTRUCTION_STORAGE_EXCEPTION /* External Input Interrupt */ EXCEPTION(0x0500, EXTERNAL, ExternalInput, do_IRQ) /* Alignment Interrupt */ ALIGNMENT_EXCEPTION /* Program Interrupt */ PROGRAM_EXCEPTION /* Floating Point Unavailable Interrupt */ #ifdef CONFIG_PPC_FPU FP_UNAVAILABLE_EXCEPTION #else EXCEPTION(0x0800, FP_UNAVAIL, FloatingPointUnavailable, unknown_exception) #endif /* System Call Interrupt */ START_EXCEPTION(SystemCall) SYSCALL_ENTRY 0xc00 BOOKE_INTERRUPT_SYSCALL SPRN_SRR1 /* Auxiliary Processor Unavailable Interrupt */ EXCEPTION(0x2900, AP_UNAVAIL, AuxillaryProcessorUnavailable, unknown_exception) /* Decrementer Interrupt */ DECREMENTER_EXCEPTION /* Fixed Internal Timer Interrupt */ /* TODO: Add FIT support */ EXCEPTION(0x3100, FIT, FixedIntervalTimer, unknown_exception) /* Watchdog Timer Interrupt */ #ifdef CONFIG_BOOKE_WDT CRITICAL_EXCEPTION(0x3200, WATCHDOG, WatchdogTimer, WatchdogException) #else CRITICAL_EXCEPTION(0x3200, WATCHDOG, WatchdogTimer, unknown_exception) #endif /* Data TLB Error Interrupt */ START_EXCEPTION(DataTLBError) mtspr SPRN_SPRG_WSCRATCH0, r10 /* Save some working registers */ mfspr r10, SPRN_SPRG_THREAD stw r11, THREAD_NORMSAVE(0)(r10) #ifdef CONFIG_KVM_BOOKE_HV BEGIN_FTR_SECTION mfspr r11, SPRN_SRR1 END_FTR_SECTION_IFSET(CPU_FTR_EMB_HV) #endif stw r12, THREAD_NORMSAVE(1)(r10) stw r13, THREAD_NORMSAVE(2)(r10) mfcr r13 stw r13, THREAD_NORMSAVE(3)(r10) DO_KVM BOOKE_INTERRUPT_DTLB_MISS SPRN_SRR1 START_BTB_FLUSH_SECTION mfspr r11, SPRN_SRR1 andi. r10,r11,MSR_PR beq 1f BTB_FLUSH(r10) 1: END_BTB_FLUSH_SECTION mfspr r10, SPRN_DEAR /* Get faulting address */ /* If we are faulting a kernel address, we have to use the * kernel page tables. */ lis r11, PAGE_OFFSET@h cmplw 5, r10, r11 blt 5, 3f lis r11, swapper_pg_dir@h ori r11, r11, swapper_pg_dir@l mfspr r12,SPRN_MAS1 /* Set TID to 0 */ rlwinm r12,r12,0,16,1 mtspr SPRN_MAS1,r12 b 4f /* Get the PGD for the current thread */ 3: mfspr r11,SPRN_SPRG_THREAD lwz r11,PGDIR(r11) #ifdef CONFIG_PPC_KUAP mfspr r12, SPRN_MAS1 rlwinm. r12,r12,0,0x3fff0000 beq 2f /* KUAP fault */ #endif 4: /* Mask of required permission bits. Note that while we * do copy ESR:ST to _PAGE_RW position as trying to write * to an RO page is pretty common, we don't do it with * _PAGE_DIRTY. We could do it, but it's a fairly rare * event so I'd rather take the overhead when it happens * rather than adding an instruction here. We should measure * whether the whole thing is worth it in the first place * as we could avoid loading SPRN_ESR completely in the first * place... * * TODO: Is it worth doing that mfspr & rlwimi in the first * place or can we save a couple of instructions here ? */ mfspr r12,SPRN_ESR #ifdef CONFIG_PTE_64BIT li r13,_PAGE_PRESENT oris r13,r13,_PAGE_ACCESSED@h #else li r13,_PAGE_PRESENT|_PAGE_ACCESSED #endif rlwimi r13,r12,11,29,29 FIND_PTE andc. r13,r13,r11 /* Check permission */ #ifdef CONFIG_PTE_64BIT #ifdef CONFIG_SMP subf r13,r11,r12 /* create false data dep */ lwzx r13,r11,r13 /* Get upper pte bits */ #else lwz r13,0(r12) /* Get upper pte bits */ #endif #endif bne 2f /* Bail if permission/valid mismatch */ /* Jump to common tlb load */ b finish_tlb_load 2: /* The bailout. Restore registers to pre-exception conditions * and call the heavyweights to help us out. */ mfspr r10, SPRN_SPRG_THREAD lwz r11, THREAD_NORMSAVE(3)(r10) mtcr r11 lwz r13, THREAD_NORMSAVE(2)(r10) lwz r12, THREAD_NORMSAVE(1)(r10) lwz r11, THREAD_NORMSAVE(0)(r10) mfspr r10, SPRN_SPRG_RSCRATCH0 b DataStorage /* Instruction TLB Error Interrupt */ /* * Nearly the same as above, except we get our * information from different registers and bailout * to a different point. */ START_EXCEPTION(InstructionTLBError) mtspr SPRN_SPRG_WSCRATCH0, r10 /* Save some working registers */ mfspr r10, SPRN_SPRG_THREAD stw r11, THREAD_NORMSAVE(0)(r10) #ifdef CONFIG_KVM_BOOKE_HV BEGIN_FTR_SECTION mfspr r11, SPRN_SRR1 END_FTR_SECTION_IFSET(CPU_FTR_EMB_HV) #endif stw r12, THREAD_NORMSAVE(1)(r10) stw r13, THREAD_NORMSAVE(2)(r10) mfcr r13 stw r13, THREAD_NORMSAVE(3)(r10) DO_KVM BOOKE_INTERRUPT_ITLB_MISS SPRN_SRR1 START_BTB_FLUSH_SECTION mfspr r11, SPRN_SRR1 andi. r10,r11,MSR_PR beq 1f BTB_FLUSH(r10) 1: END_BTB_FLUSH_SECTION mfspr r10, SPRN_SRR0 /* Get faulting address */ /* If we are faulting a kernel address, we have to use the * kernel page tables. */ lis r11, PAGE_OFFSET@h cmplw 5, r10, r11 blt 5, 3f lis r11, swapper_pg_dir@h ori r11, r11, swapper_pg_dir@l mfspr r12,SPRN_MAS1 /* Set TID to 0 */ rlwinm r12,r12,0,16,1 mtspr SPRN_MAS1,r12 /* Make up the required permissions for kernel code */ #ifdef CONFIG_PTE_64BIT li r13,_PAGE_PRESENT | _PAGE_BAP_SX oris r13,r13,_PAGE_ACCESSED@h #else li r13,_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_EXEC #endif b 4f /* Get the PGD for the current thread */ 3: mfspr r11,SPRN_SPRG_THREAD lwz r11,PGDIR(r11) #ifdef CONFIG_PPC_KUAP mfspr r12, SPRN_MAS1 rlwinm. r12,r12,0,0x3fff0000 beq 2f /* KUAP fault */ #endif /* Make up the required permissions for user code */ #ifdef CONFIG_PTE_64BIT li r13,_PAGE_PRESENT | _PAGE_BAP_UX oris r13,r13,_PAGE_ACCESSED@h #else li r13,_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_EXEC #endif 4: FIND_PTE andc. r13,r13,r11 /* Check permission */ #ifdef CONFIG_PTE_64BIT #ifdef CONFIG_SMP subf r13,r11,r12 /* create false data dep */ lwzx r13,r11,r13 /* Get upper pte bits */ #else lwz r13,0(r12) /* Get upper pte bits */ #endif #endif bne 2f /* Bail if permission mismatch */ /* Jump to common TLB load point */ b finish_tlb_load 2: /* The bailout. Restore registers to pre-exception conditions * and call the heavyweights to help us out. */ mfspr r10, SPRN_SPRG_THREAD lwz r11, THREAD_NORMSAVE(3)(r10) mtcr r11 lwz r13, THREAD_NORMSAVE(2)(r10) lwz r12, THREAD_NORMSAVE(1)(r10) lwz r11, THREAD_NORMSAVE(0)(r10) mfspr r10, SPRN_SPRG_RSCRATCH0 b InstructionStorage /* Define SPE handlers for e500v2 */ #ifdef CONFIG_SPE /* SPE Unavailable */ START_EXCEPTION(SPEUnavailable) NORMAL_EXCEPTION_PROLOG(0x2010, SPE_UNAVAIL) beq 1f bl load_up_spe b fast_exception_return 1: prepare_transfer_to_handler bl KernelSPE b interrupt_return #elif defined(CONFIG_SPE_POSSIBLE) EXCEPTION(0x2020, SPE_UNAVAIL, SPEUnavailable, unknown_exception) #endif /* CONFIG_SPE_POSSIBLE */ /* SPE Floating Point Data */ #ifdef CONFIG_SPE START_EXCEPTION(SPEFloatingPointData) NORMAL_EXCEPTION_PROLOG(0x2030, SPE_FP_DATA) prepare_transfer_to_handler bl SPEFloatingPointException REST_NVGPRS(r1) b interrupt_return /* SPE Floating Point Round */ START_EXCEPTION(SPEFloatingPointRound) NORMAL_EXCEPTION_PROLOG(0x2050, SPE_FP_ROUND) prepare_transfer_to_handler bl SPEFloatingPointRoundException REST_NVGPRS(r1) b interrupt_return #elif defined(CONFIG_SPE_POSSIBLE) EXCEPTION(0x2040, SPE_FP_DATA, SPEFloatingPointData, unknown_exception) EXCEPTION(0x2050, SPE_FP_ROUND, SPEFloatingPointRound, unknown_exception) #endif /* CONFIG_SPE_POSSIBLE */ /* Performance Monitor */ EXCEPTION(0x2060, PERFORMANCE_MONITOR, PerformanceMonitor, \ performance_monitor_exception) EXCEPTION(0x2070, DOORBELL, Doorbell, doorbell_exception) CRITICAL_EXCEPTION(0x2080, DOORBELL_CRITICAL, \ CriticalDoorbell, unknown_exception) /* Debug Interrupt */ DEBUG_DEBUG_EXCEPTION DEBUG_CRIT_EXCEPTION GUEST_DOORBELL_EXCEPTION CRITICAL_EXCEPTION(0, GUEST_DBELL_CRIT, CriticalGuestDoorbell, \ unknown_exception) /* Hypercall */ EXCEPTION(0, HV_SYSCALL, Hypercall, unknown_exception) /* Embedded Hypervisor Privilege */ EXCEPTION(0, HV_PRIV, Ehvpriv, unknown_exception) interrupt_end: /* * Local functions */ /* * Both the instruction and data TLB miss get to this * point to load the TLB. * r10 - tsize encoding (if HUGETLB_PAGE) or available to use * r11 - TLB (info from Linux PTE) * r12 - available to use * r13 - upper bits of PTE (if PTE_64BIT) or available to use * CR5 - results of addr >= PAGE_OFFSET * MAS0, MAS1 - loaded with proper value when we get here * MAS2, MAS3 - will need additional info from Linux PTE * Upon exit, we reload everything and RFI. */ finish_tlb_load: #ifdef CONFIG_HUGETLB_PAGE cmpwi 6, r10, 0 /* check for huge page */ beq 6, finish_tlb_load_cont /* !huge */ /* Alas, we need more scratch registers for hugepages */ mfspr r12, SPRN_SPRG_THREAD stw r14, THREAD_NORMSAVE(4)(r12) stw r15, THREAD_NORMSAVE(5)(r12) stw r16, THREAD_NORMSAVE(6)(r12) stw r17, THREAD_NORMSAVE(7)(r12) /* Get the next_tlbcam_idx percpu var */ #ifdef CONFIG_SMP lwz r15, TASK_CPU-THREAD(r12) lis r14, __per_cpu_offset@h ori r14, r14, __per_cpu_offset@l rlwinm r15, r15, 2, 0, 29 lwzx r16, r14, r15 #else li r16, 0 #endif lis r17, next_tlbcam_idx@h ori r17, r17, next_tlbcam_idx@l add r17, r17, r16 /* r17 = *next_tlbcam_idx */ lwz r15, 0(r17) /* r15 = next_tlbcam_idx */ lis r14, MAS0_TLBSEL(1)@h /* select TLB1 (TLBCAM) */ rlwimi r14, r15, 16, 4, 15 /* next_tlbcam_idx entry */ mtspr SPRN_MAS0, r14 /* Extract TLB1CFG(NENTRY) */ mfspr r16, SPRN_TLB1CFG andi. r16, r16, 0xfff /* Update next_tlbcam_idx, wrapping when necessary */ addi r15, r15, 1 cmpw r15, r16 blt 100f lis r14, tlbcam_index@h ori r14, r14, tlbcam_index@l lwz r15, 0(r14) 100: stw r15, 0(r17) /* * Calc MAS1_TSIZE from r10 (which has pshift encoded) * tlb_enc = (pshift - 10). */ subi r15, r10, 10 mfspr r16, SPRN_MAS1 rlwimi r16, r15, 7, 20, 24 mtspr SPRN_MAS1, r16 /* copy the pshift for use later */ mr r14, r10 /* fall through */ #endif /* CONFIG_HUGETLB_PAGE */ /* * We set execute, because we don't have the granularity to * properly set this at the page level (Linux problem). * Many of these bits are software only. Bits we don't set * here we (properly should) assume have the appropriate value. */ finish_tlb_load_cont: #ifdef CONFIG_PTE_64BIT rlwinm r12, r11, 32-2, 26, 31 /* Move in perm bits */ andi. r10, r11, _PAGE_DIRTY bne 1f li r10, MAS3_SW | MAS3_UW andc r12, r12, r10 1: rlwimi r12, r13, 20, 0, 11 /* grab RPN[32:43] */ rlwimi r12, r11, 20, 12, 19 /* grab RPN[44:51] */ 2: mtspr SPRN_MAS3, r12 BEGIN_MMU_FTR_SECTION srwi r10, r13, 12 /* grab RPN[12:31] */ mtspr SPRN_MAS7, r10 END_MMU_FTR_SECTION_IFSET(MMU_FTR_BIG_PHYS) #else li r10, (_PAGE_EXEC | _PAGE_PRESENT) mr r13, r11 rlwimi r10, r11, 31, 29, 29 /* extract _PAGE_DIRTY into SW */ and r12, r11, r10 andi. r10, r11, _PAGE_USER /* Test for _PAGE_USER */ slwi r10, r12, 1 or r10, r10, r12 rlwinm r10, r10, 0, ~_PAGE_EXEC /* Clear SX on user pages */ iseleq r12, r12, r10 rlwimi r13, r12, 0, 20, 31 /* Get RPN from PTE, merge w/ perms */ mtspr SPRN_MAS3, r13 #endif mfspr r12, SPRN_MAS2 #ifdef CONFIG_PTE_64BIT rlwimi r12, r11, 32-19, 27, 31 /* extract WIMGE from pte */ #else rlwimi r12, r11, 26, 27, 31 /* extract WIMGE from pte */ #endif #ifdef CONFIG_HUGETLB_PAGE beq 6, 3f /* don't mask if page isn't huge */ li r13, 1 slw r13, r13, r14 subi r13, r13, 1 rlwinm r13, r13, 0, 0, 19 /* bottom bits used for WIMGE/etc */ andc r12, r12, r13 /* mask off ea bits within the page */ #endif 3: mtspr SPRN_MAS2, r12 tlb_write_entry: tlbwe /* Done...restore registers and get out of here. */ mfspr r10, SPRN_SPRG_THREAD #ifdef CONFIG_HUGETLB_PAGE beq 6, 8f /* skip restore for 4k page faults */ lwz r14, THREAD_NORMSAVE(4)(r10) lwz r15, THREAD_NORMSAVE(5)(r10) lwz r16, THREAD_NORMSAVE(6)(r10) lwz r17, THREAD_NORMSAVE(7)(r10) #endif 8: lwz r11, THREAD_NORMSAVE(3)(r10) mtcr r11 lwz r13, THREAD_NORMSAVE(2)(r10) lwz r12, THREAD_NORMSAVE(1)(r10) lwz r11, THREAD_NORMSAVE(0)(r10) mfspr r10, SPRN_SPRG_RSCRATCH0 rfi /* Force context change */ #ifdef CONFIG_SPE /* Note that the SPE support is closely modeled after the AltiVec * support. Changes to one are likely to be applicable to the * other! */ _GLOBAL(load_up_spe) /* * Disable SPE for the task which had SPE previously, * and save its SPE registers in its thread_struct. * Enables SPE for use in the kernel on return. * On SMP we know the SPE units are free, since we give it up every * switch. -- Kumar */ mfmsr r5 oris r5,r5,MSR_SPE@h mtmsr r5 /* enable use of SPE now */ isync /* enable use of SPE after return */ oris r9,r9,MSR_SPE@h mfspr r5,SPRN_SPRG_THREAD /* current task's THREAD (phys) */ li r4,1 li r10,THREAD_ACC stw r4,THREAD_USED_SPE(r5) evlddx evr4,r10,r5 evmra evr4,evr4 REST_32EVRS(0,r10,r5,THREAD_EVR0) blr /* * SPE unavailable trap from kernel - print a message, but let * the task use SPE in the kernel until it returns to user mode. */ KernelSPE: lwz r3,_MSR(r1) oris r3,r3,MSR_SPE@h stw r3,_MSR(r1) /* enable use of SPE after return */ #ifdef CONFIG_PRINTK lis r3,87f@h ori r3,r3,87f@l mr r4,r2 /* current */ lwz r5,_NIP(r1) bl _printk #endif b interrupt_return #ifdef CONFIG_PRINTK 87: .string "SPE used in kernel (task=%p, pc=%x) \n" #endif .align 4,0 #endif /* CONFIG_SPE */ /* * Translate the effec addr in r3 to phys addr. The phys addr will be put * into r3(higher 32bit) and r4(lower 32bit) */ SYM_FUNC_START_LOCAL(get_phys_addr) mfmsr r8 mfspr r9,SPRN_PID rlwinm r9,r9,16,0x3fff0000 /* turn PID into MAS6[SPID] */ rlwimi r9,r8,28,0x00000001 /* turn MSR[DS] into MAS6[SAS] */ mtspr SPRN_MAS6,r9 tlbsx 0,r3 /* must succeed */ mfspr r8,SPRN_MAS1 mfspr r12,SPRN_MAS3 rlwinm r9,r8,25,0x1f /* r9 = log2(page size) */ li r10,1024 slw r10,r10,r9 /* r10 = page size */ addi r10,r10,-1 and r11,r3,r10 /* r11 = page offset */ andc r4,r12,r10 /* r4 = page base */ or r4,r4,r11 /* r4 = devtree phys addr */ #ifdef CONFIG_PHYS_64BIT mfspr r3,SPRN_MAS7 #endif blr SYM_FUNC_END(get_phys_addr) /* * Global functions */ #ifdef CONFIG_PPC_E500 #ifndef CONFIG_PPC_E500MC /* Adjust or setup IVORs for e500v1/v2 */ _GLOBAL(__setup_e500_ivors) li r3,DebugCrit@l mtspr SPRN_IVOR15,r3 li r3,SPEUnavailable@l mtspr SPRN_IVOR32,r3 li r3,SPEFloatingPointData@l mtspr SPRN_IVOR33,r3 li r3,SPEFloatingPointRound@l mtspr SPRN_IVOR34,r3 li r3,PerformanceMonitor@l mtspr SPRN_IVOR35,r3 sync blr #else /* Adjust or setup IVORs for e500mc */ _GLOBAL(__setup_e500mc_ivors) li r3,DebugDebug@l mtspr SPRN_IVOR15,r3 li r3,PerformanceMonitor@l mtspr SPRN_IVOR35,r3 li r3,Doorbell@l mtspr SPRN_IVOR36,r3 li r3,CriticalDoorbell@l mtspr SPRN_IVOR37,r3 sync blr /* setup ehv ivors for */ _GLOBAL(__setup_ehv_ivors) li r3,GuestDoorbell@l mtspr SPRN_IVOR38,r3 li r3,CriticalGuestDoorbell@l mtspr SPRN_IVOR39,r3 li r3,Hypercall@l mtspr SPRN_IVOR40,r3 li r3,Ehvpriv@l mtspr SPRN_IVOR41,r3 sync blr #endif /* CONFIG_PPC_E500MC */ #endif /* CONFIG_PPC_E500 */ #ifdef CONFIG_SPE /* * extern void __giveup_spe(struct task_struct *prev) * */ _GLOBAL(__giveup_spe) addi r3,r3,THREAD /* want THREAD of task */ lwz r5,PT_REGS(r3) cmpi 0,r5,0 SAVE_32EVRS(0, r4, r3, THREAD_EVR0) evxor evr6, evr6, evr6 /* clear out evr6 */ evmwumiaa evr6, evr6, evr6 /* evr6 <- ACC = 0 * 0 + ACC */ li r4,THREAD_ACC evstddx evr6, r4, r3 /* save off accumulator */ beq 1f lwz r4,_MSR-STACK_INT_FRAME_REGS(r5) lis r3,MSR_SPE@h andc r4,r4,r3 /* disable SPE for previous task */ stw r4,_MSR-STACK_INT_FRAME_REGS(r5) 1: blr #endif /* CONFIG_SPE */ /* * extern void abort(void) * * At present, this routine just applies a system reset. */ _GLOBAL(abort) li r13,0 mtspr SPRN_DBCR0,r13 /* disable all debug events */ isync mfmsr r13 ori r13,r13,MSR_DE@l /* Enable Debug Events */ mtmsr r13 isync mfspr r13,SPRN_DBCR0 lis r13,(DBCR0_IDM|DBCR0_RST_CHIP)@h mtspr SPRN_DBCR0,r13 isync #ifdef CONFIG_SMP /* When we get here, r24 needs to hold the CPU # */ .globl __secondary_start __secondary_start: LOAD_REG_ADDR_PIC(r3, tlbcam_index) lwz r3,0(r3) mtctr r3 li r26,0 /* r26 safe? */ bl switch_to_as1 mr r27,r3 /* tlb entry */ /* Load each CAM entry */ 1: mr r3,r26 bl loadcam_entry addi r26,r26,1 bdnz 1b mr r3,r27 /* tlb entry */ LOAD_REG_ADDR_PIC(r4, memstart_addr) lwz r4,0(r4) mr r5,r25 /* phys kernel start */ rlwinm r5,r5,0,~0x3ffffff /* aligned 64M */ subf r4,r5,r4 /* memstart_addr - phys kernel start */ lis r7,KERNELBASE@h ori r7,r7,KERNELBASE@l cmpw r20,r7 /* if kernstart_virt_addr != KERNELBASE, randomized */ beq 2f li r4,0 2: li r5,0 /* no device tree */ li r6,0 /* not boot cpu */ bl restore_to_as0 lis r3,__secondary_hold_acknowledge@h ori r3,r3,__secondary_hold_acknowledge@l stw r24,0(r3) li r3,0 mr r4,r24 /* Why? */ bl call_setup_cpu /* get current's stack and current */ lis r2,secondary_current@ha lwz r2,secondary_current@l(r2) lwz r1,TASK_STACK(r2) /* stack */ addi r1,r1,THREAD_SIZE-STACK_FRAME_MIN_SIZE li r0,0 stw r0,0(r1) /* ptr to current thread */ addi r4,r2,THREAD /* address of our thread_struct */ mtspr SPRN_SPRG_THREAD,r4 /* Setup the defaults for TLB entries */ li r4,(MAS4_TSIZED(BOOK3E_PAGESZ_4K))@l mtspr SPRN_MAS4,r4 /* Jump to start_secondary */ lis r4,MSR_KERNEL@h ori r4,r4,MSR_KERNEL@l lis r3,start_secondary@h ori r3,r3,start_secondary@l mtspr SPRN_SRR0,r3 mtspr SPRN_SRR1,r4 sync rfi sync .globl __secondary_hold_acknowledge __secondary_hold_acknowledge: .long -1 #endif /* * Create a 64M tlb by address and entry * r3 - entry * r4 - virtual address * r5/r6 - physical address */ _GLOBAL(create_kaslr_tlb_entry) lis r7,0x1000 /* Set MAS0(TLBSEL) = 1 */ rlwimi r7,r3,16,4,15 /* Setup MAS0 = TLBSEL | ESEL(r6) */ mtspr SPRN_MAS0,r7 /* Write MAS0 */ lis r3,(MAS1_VALID|MAS1_IPROT)@h ori r3,r3,(MAS1_TSIZE(BOOK3E_PAGESZ_64M))@l mtspr SPRN_MAS1,r3 /* Write MAS1 */ lis r3,MAS2_EPN_MASK(BOOK3E_PAGESZ_64M)@h ori r3,r3,MAS2_EPN_MASK(BOOK3E_PAGESZ_64M)@l and r3,r3,r4 ori r3,r3,MAS2_M_IF_NEEDED@l mtspr SPRN_MAS2,r3 /* Write MAS2(EPN) */ #ifdef CONFIG_PHYS_64BIT ori r8,r6,(MAS3_SW|MAS3_SR|MAS3_SX) mtspr SPRN_MAS3,r8 /* Write MAS3(RPN) */ mtspr SPRN_MAS7,r5 #else ori r8,r5,(MAS3_SW|MAS3_SR|MAS3_SX) mtspr SPRN_MAS3,r8 /* Write MAS3(RPN) */ #endif tlbwe /* Write TLB */ isync sync blr /* * Return to the start of the relocated kernel and run again * r3 - virtual address of fdt * r4 - entry of the kernel */ _GLOBAL(reloc_kernel_entry) mfmsr r7 rlwinm r7, r7, 0, ~(MSR_IS | MSR_DS) mtspr SPRN_SRR0,r4 mtspr SPRN_SRR1,r7 rfi /* * Create a tlb entry with the same effective and physical address as * the tlb entry used by the current running code. But set the TS to 1. * Then switch to the address space 1. It will return with the r3 set to * the ESEL of the new created tlb. */ _GLOBAL(switch_to_as1) mflr r5 /* Find a entry not used */ mfspr r3,SPRN_TLB1CFG andi. r3,r3,0xfff mfspr r4,SPRN_PID rlwinm r4,r4,16,0x3fff0000 /* turn PID into MAS6[SPID] */ mtspr SPRN_MAS6,r4 1: lis r4,0x1000 /* Set MAS0(TLBSEL) = 1 */ addi r3,r3,-1 rlwimi r4,r3,16,4,15 /* Setup MAS0 = TLBSEL | ESEL(r3) */ mtspr SPRN_MAS0,r4 tlbre mfspr r4,SPRN_MAS1 andis. r4,r4,MAS1_VALID@h bne 1b /* Get the tlb entry used by the current running code */ bcl 20,31,$+4 0: mflr r4 tlbsx 0,r4 mfspr r4,SPRN_MAS1 ori r4,r4,MAS1_TS /* Set the TS = 1 */ mtspr SPRN_MAS1,r4 mfspr r4,SPRN_MAS0 rlwinm r4,r4,0,~MAS0_ESEL_MASK rlwimi r4,r3,16,4,15 /* Setup MAS0 = TLBSEL | ESEL(r3) */ mtspr SPRN_MAS0,r4 tlbwe isync sync mfmsr r4 ori r4,r4,MSR_IS | MSR_DS mtspr SPRN_SRR0,r5 mtspr SPRN_SRR1,r4 sync rfi /* * Restore to the address space 0 and also invalidate the tlb entry created * by switch_to_as1. * r3 - the tlb entry which should be invalidated * r4 - __pa(PAGE_OFFSET in AS1) - __pa(PAGE_OFFSET in AS0) * r5 - device tree virtual address. If r4 is 0, r5 is ignored. * r6 - boot cpu */ _GLOBAL(restore_to_as0) mflr r0 bcl 20,31,$+4 0: mflr r9 addi r9,r9,1f - 0b /* * We may map the PAGE_OFFSET in AS0 to a different physical address, * so we need calculate the right jump and device tree address based * on the offset passed by r4. */ add r9,r9,r4 add r5,r5,r4 add r0,r0,r4 2: mfmsr r7 li r8,(MSR_IS | MSR_DS) andc r7,r7,r8 mtspr SPRN_SRR0,r9 mtspr SPRN_SRR1,r7 sync rfi /* Invalidate the temporary tlb entry for AS1 */ 1: lis r9,0x1000 /* Set MAS0(TLBSEL) = 1 */ rlwimi r9,r3,16,4,15 /* Setup MAS0 = TLBSEL | ESEL(r3) */ mtspr SPRN_MAS0,r9 tlbre mfspr r9,SPRN_MAS1 rlwinm r9,r9,0,2,31 /* Clear MAS1 Valid and IPPROT */ mtspr SPRN_MAS1,r9 tlbwe isync cmpwi r4,0 cmpwi cr1,r6,0 cror eq,4*cr1+eq,eq bne 3f /* offset != 0 && is_boot_cpu */ mtlr r0 blr /* * The PAGE_OFFSET will map to a different physical address, * jump to _start to do another relocation again. */ 3: mr r3,r5 bl _start