/* SPDX-License-Identifier: GPL-2.0-or-later */ #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ /* * PowerPC64 memory management structures * * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> * PPC64 rework. */ #include #include #include /* * This is necessary to get the definition of PGTABLE_RANGE which we * need for various slices related matters. Note that this isn't the * complete pgtable.h but only a portion of it. */ #include #include #include #include /* * SLB */ #define SLB_NUM_BOLTED 2 #define SLB_CACHE_ENTRIES 8 #define SLB_MIN_SIZE 32 /* Bits in the SLB ESID word */ #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ /* Bits in the SLB VSID word */ #define SLB_VSID_SHIFT 12 #define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT #define SLB_VSID_SHIFT_1T 24 #define SLB_VSID_SSIZE_SHIFT 62 #define SLB_VSID_B ASM_CONST(0xc000000000000000) #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) #define SLB_VSID_KS ASM_CONST(0x0000000000000800) #define SLB_VSID_KP ASM_CONST(0x0000000000000400) #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ #define SLB_VSID_L ASM_CONST(0x0000000000000100) #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ #define SLB_VSID_LP ASM_CONST(0x0000000000000030) #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) #define SLB_VSID_KERNEL (SLB_VSID_KP) #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) #define SLBIE_C (0x08000000) #define SLBIE_SSIZE_SHIFT 25 /* * Hash table */ #define HPTES_PER_GROUP 8 #define HPTE_V_SSIZE_SHIFT 62 #define HPTE_V_AVPN_SHIFT 7 #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff) #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80) #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) #define HPTE_V_VALID ASM_CONST(0x0000000000000001) /* * ISA 3.0 has a different HPTE format. */ #define HPTE_R_3_0_SSIZE_SHIFT 58 #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT) #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) #define HPTE_R_TS ASM_CONST(0x4000000000000000) #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) #define HPTE_R_KEY_BIT4 ASM_CONST(0x2000000000000000) #define HPTE_R_KEY_BIT3 ASM_CONST(0x1000000000000000) #define HPTE_R_RPN_SHIFT 12 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000) #define HPTE_R_PP ASM_CONST(0x0000000000000003) #define HPTE_R_PPP ASM_CONST(0x8000000000000003) #define HPTE_R_N ASM_CONST(0x0000000000000004) #define HPTE_R_G ASM_CONST(0x0000000000000008) #define HPTE_R_M ASM_CONST(0x0000000000000010) #define HPTE_R_I ASM_CONST(0x0000000000000020) #define HPTE_R_W ASM_CONST(0x0000000000000040) #define HPTE_R_WIMG ASM_CONST(0x0000000000000078) #define HPTE_R_C ASM_CONST(0x0000000000000080) #define HPTE_R_R ASM_CONST(0x0000000000000100) #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) #define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800) #define HPTE_R_KEY_BIT1 ASM_CONST(0x0000000000000400) #define HPTE_R_KEY_BIT0 ASM_CONST(0x0000000000000200) #define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI) #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) /* Values for PP (assumes Ks=0, Kp=1) */ #define PP_RWXX 0 /* Supervisor read/write, User none */ #define PP_RWRX 1 /* Supervisor read/write, User read */ #define PP_RWRW 2 /* Supervisor read/write, User read/write */ #define PP_RXRX 3 /* Supervisor read, User read */ #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ /* Fields for tlbiel instruction in architecture 2.06 */ #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */ #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */ #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */ #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */ #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */ #define TLBIEL_INVAL_SET_SHIFT 12 #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */ #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */ #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */ #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */ #ifndef __ASSEMBLY__ struct mmu_hash_ops { void (*hpte_invalidate)(unsigned long slot, unsigned long vpn, int bpsize, int apsize, int ssize, int local); long (*hpte_updatepp)(unsigned long slot, unsigned long newpp, unsigned long vpn, int bpsize, int apsize, int ssize, unsigned long flags); void (*hpte_updateboltedpp)(unsigned long newpp, unsigned long ea, int psize, int ssize); long (*hpte_insert)(unsigned long hpte_group, unsigned long vpn, unsigned long prpn, unsigned long rflags, unsigned long vflags, int psize, int apsize, int ssize); long (*hpte_remove)(unsigned long hpte_group); int (*hpte_removebolted)(unsigned long ea, int psize, int ssize); void (*flush_hash_range)(unsigned long number, int local); void (*hugepage_invalidate)(unsigned long vsid, unsigned long addr, unsigned char *hpte_slot_array, int psize, int ssize, int local); int (*resize_hpt)(unsigned long shift); /* * Special for kexec. * To be called in real mode with interrupts disabled. No locks are * taken as such, concurrent access on pre POWER5 hardware could result * in a deadlock. * The linear mapping is destroyed as well. */ void (*hpte_clear_all)(void); }; extern struct mmu_hash_ops mmu_hash_ops; struct hash_pte { __be64 v; __be64 r; }; extern struct hash_pte *htab_address; extern unsigned long htab_size_bytes; extern unsigned long htab_hash_mask; static inline int shift_to_mmu_psize(unsigned int shift) { int psize; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) if (mmu_psize_defs[psize].shift == shift) return psize; return -1; } static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) { if (mmu_psize_defs[mmu_psize].shift) return mmu_psize_defs[mmu_psize].shift; BUG(); } static inline unsigned int ap_to_shift(unsigned long ap) { int psize; for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { if (mmu_psize_defs[psize].ap == ap) return mmu_psize_defs[psize].shift; } return -1; } static inline unsigned long get_sllp_encoding(int psize) { unsigned long sllp; sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) | ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4); return sllp; } #endif /* __ASSEMBLY__ */ /* * Segment sizes. * These are the values used by hardware in the B field of * SLB entries and the first dword of MMU hashtable entries. * The B field is 2 bits; the values 2 and 3 are unused and reserved. */ #define MMU_SEGSIZE_256M 0 #define MMU_SEGSIZE_1T 1 /* * encode page number shift. * in order to fit the 78 bit va in a 64 bit variable we shift the va by * 12 bits. This enable us to address upto 76 bit va. * For hpt hash from a va we can ignore the page size bits of va and for * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure * we work in all cases including 4k page size. */ #define VPN_SHIFT 12 /* * HPTE Large Page (LP) details */ #define LP_SHIFT 12 #define LP_BITS 8 #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT) #ifndef __ASSEMBLY__ static inline int slb_vsid_shift(int ssize) { if (ssize == MMU_SEGSIZE_256M) return SLB_VSID_SHIFT; return SLB_VSID_SHIFT_1T; } static inline int segment_shift(int ssize) { if (ssize == MMU_SEGSIZE_256M) return SID_SHIFT; return SID_SHIFT_1T; } /* * This array is indexed by the LP field of the HPTE second dword. * Since this field may contain some RPN bits, some entries are * replicated so that we get the same value irrespective of RPN. * The top 4 bits are the page size index (MMU_PAGE_*) for the * actual page size, the bottom 4 bits are the base page size. */ extern u8 hpte_page_sizes[1 << LP_BITS]; static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l, bool is_base_size) { unsigned int i, lp; if (!(h & HPTE_V_LARGE)) return 1ul << 12; /* Look at the 8 bit LP value */ lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1); i = hpte_page_sizes[lp]; if (!i) return 0; if (!is_base_size) i >>= 4; return 1ul << mmu_psize_defs[i & 0xf].shift; } static inline unsigned long hpte_page_size(unsigned long h, unsigned long l) { return __hpte_page_size(h, l, 0); } static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l) { return __hpte_page_size(h, l, 1); } /* * The current system page and segment sizes */ extern int mmu_kernel_ssize; extern int mmu_highuser_ssize; extern u16 mmu_slb_size; extern unsigned long tce_alloc_start, tce_alloc_end; /* * If the processor supports 64k normal pages but not 64k cache * inhibited pages, we have to be prepared to switch processes * to use 4k pages when they create cache-inhibited mappings. * If this is the case, mmu_ci_restrictions will be set to 1. */ extern int mmu_ci_restrictions; /* * This computes the AVPN and B fields of the first dword of a HPTE, * for use when we want to match an existing PTE. The bottom 7 bits * of the returned value are zero. */ static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, int ssize) { unsigned long v; /* * The AVA field omits the low-order 23 bits of the 78 bits VA. * These bits are not needed in the PTE, because the * low-order b of these bits are part of the byte offset * into the virtual page and, if b < 23, the high-order * 23-b of these bits are always used in selecting the * PTEGs to be searched */ v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); v <<= HPTE_V_AVPN_SHIFT; v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; return v; } /* * ISA v3.0 defines a new HPTE format, which differs from the old * format in having smaller AVPN and ARPN fields, and the B field * in the second dword instead of the first. */ static inline unsigned long hpte_old_to_new_v(unsigned long v) { /* trim AVPN, drop B */ return v & HPTE_V_COMMON_BITS; } static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r) { /* move B field from 1st to 2nd dword, trim ARPN */ return (r & ~HPTE_R_3_0_SSIZE_MASK) | (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT); } static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r) { /* insert B field */ return (v & HPTE_V_COMMON_BITS) | ((r & HPTE_R_3_0_SSIZE_MASK) << (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT)); } static inline unsigned long hpte_new_to_old_r(unsigned long r) { /* clear out B field */ return r & ~HPTE_R_3_0_SSIZE_MASK; } static inline unsigned long hpte_get_old_v(struct hash_pte *hptep) { unsigned long hpte_v; hpte_v = be64_to_cpu(hptep->v); if (cpu_has_feature(CPU_FTR_ARCH_300)) hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r)); return hpte_v; } /* * This function sets the AVPN and L fields of the HPTE appropriately * using the base page size and actual page size. */ static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize, int actual_psize, int ssize) { unsigned long v; v = hpte_encode_avpn(vpn, base_psize, ssize); if (actual_psize != MMU_PAGE_4K) v |= HPTE_V_LARGE; return v; } /* * This function sets the ARPN, and LP fields of the HPTE appropriately * for the page size. We assume the pa is already "clean" that is properly * aligned for the requested page size */ static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize, int actual_psize) { /* A 4K page needs no special encoding */ if (actual_psize == MMU_PAGE_4K) return pa & HPTE_R_RPN; else { unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize]; unsigned int shift = mmu_psize_defs[actual_psize].shift; return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT); } } /* * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. */ static inline unsigned long hpt_vpn(unsigned long ea, unsigned long vsid, int ssize) { unsigned long mask; int s_shift = segment_shift(ssize); mask = (1ul << (s_shift - VPN_SHIFT)) - 1; return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); } /* * This hashes a virtual address */ static inline unsigned long hpt_hash(unsigned long vpn, unsigned int shift, int ssize) { unsigned long mask; unsigned long hash, vsid; /* VPN_SHIFT can be atmost 12 */ if (ssize == MMU_SEGSIZE_256M) { mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ ((vpn & mask) >> (shift - VPN_SHIFT)); } else { mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); hash = vsid ^ (vsid << 25) ^ ((vpn & mask) >> (shift - VPN_SHIFT)) ; } return hash & 0x7fffffffffUL; } #define HPTE_LOCAL_UPDATE 0x1 #define HPTE_NOHPTE_UPDATE 0x2 extern int __hash_page_4K(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned long flags, int ssize, int subpage_prot); extern int __hash_page_64K(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned long flags, int ssize); struct mm_struct; unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); extern int hash_page_mm(struct mm_struct *mm, unsigned long ea, unsigned long access, unsigned long trap, unsigned long flags); extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap, unsigned long dsisr); int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, pte_t *ptep, unsigned long trap, unsigned long flags, int ssize, unsigned int shift, unsigned int mmu_psize); #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern int __hash_page_thp(unsigned long ea, unsigned long access, unsigned long vsid, pmd_t *pmdp, unsigned long trap, unsigned long flags, int ssize, unsigned int psize); #else static inline int __hash_page_thp(unsigned long ea, unsigned long access, unsigned long vsid, pmd_t *pmdp, unsigned long trap, unsigned long flags, int ssize, unsigned int psize) { BUG(); return -1; } #endif extern void hash_failure_debug(unsigned long ea, unsigned long access, unsigned long vsid, unsigned long trap, int ssize, int psize, int lpsize, unsigned long pte); extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, unsigned long pstart, unsigned long prot, int psize, int ssize); int htab_remove_mapping(unsigned long vstart, unsigned long vend, int psize, int ssize); extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); extern void hash__setup_new_exec(void); #ifdef CONFIG_PPC_PSERIES void hpte_init_pseries(void); #else static inline void hpte_init_pseries(void) { } #endif extern void hpte_init_native(void); struct slb_entry { u64 esid; u64 vsid; }; extern void slb_initialize(void); void slb_flush_and_restore_bolted(void); void slb_flush_all_realmode(void); void __slb_restore_bolted_realmode(void); void slb_restore_bolted_realmode(void); void slb_save_contents(struct slb_entry *slb_ptr); void slb_dump_contents(struct slb_entry *slb_ptr); extern void slb_vmalloc_update(void); extern void slb_set_size(u16 size); #endif /* __ASSEMBLY__ */ /* * VSID allocation (256MB segment) * * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated * from mmu context id and effective segment id of the address. * * For user processes max context id is limited to MAX_USER_CONTEXT. * more details in get_user_context * * For kernel space get_kernel_context * * The proto-VSIDs are then scrambled into real VSIDs with the * multiplicative hash: * * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS * * VSID_MULTIPLIER is prime, so in particular it is * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. * Because the modulus is 2^n-1 we can compute it efficiently without * a divide or extra multiply (see below). The scramble function gives * robust scattering in the hash table (at least based on some initial * results). * * We use VSID 0 to indicate an invalid VSID. The means we can't use context id * 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which * will produce a VSID of 0. * * We also need to avoid the last segment of the last context, because that * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 * because of the modulo operation in vsid scramble. */ /* * Max Va bits we support as of now is 68 bits. We want 19 bit * context ID. * Restrictions: * GPU has restrictions of not able to access beyond 128TB * (47 bit effective address). We also cannot do more than 20bit PID. * For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS * to 16 bits (ie, we can only have 2^16 pids at the same time). */ #define VA_BITS 68 #define CONTEXT_BITS 19 #define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS)) #define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS)) #define ESID_BITS_MASK ((1 << ESID_BITS) - 1) #define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1) /* * Now certain config support MAX_PHYSMEM more than 512TB. Hence we will need * to use more than one context for linear mapping the kernel. * For vmalloc and memmap, we use just one context with 512TB. With 64 byte * struct page size, we need ony 32 TB in memmap for 2PB (51 bits (MAX_PHYSMEM_BITS)). */ #if (MAX_PHYSMEM_BITS > MAX_EA_BITS_PER_CONTEXT) #define MAX_KERNEL_CTX_CNT (1UL << (MAX_PHYSMEM_BITS - MAX_EA_BITS_PER_CONTEXT)) #else #define MAX_KERNEL_CTX_CNT 1 #endif #define MAX_VMALLOC_CTX_CNT 1 #define MAX_IO_CTX_CNT 1 #define MAX_VMEMMAP_CTX_CNT 1 /* * 256MB segment * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments * available for user + kernel mapping. VSID 0 is reserved as invalid, contexts * 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each * context maps 2^49 bytes (512TB). * * We also need to avoid the last segment of the last context, because that * would give a protovsid of 0x1fffffffff. That will result in a VSID 0 * because of the modulo operation in vsid scramble. * */ #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2) // The + 2 accounts for INVALID_REGION and 1 more to avoid overlap with kernel #define MIN_USER_CONTEXT (MAX_KERNEL_CTX_CNT + MAX_VMALLOC_CTX_CNT + \ MAX_IO_CTX_CNT + MAX_VMEMMAP_CTX_CNT + 2) /* * For platforms that support on 65bit VA we limit the context bits */ #define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2) /* * This should be computed such that protovosid * vsid_mulitplier * doesn't overflow 64 bits. The vsid_mutliplier should also be * co-prime to vsid_modulus. We also need to make sure that number * of bits in multiplied result (dividend) is less than twice the number of * protovsid bits for our modulus optmization to work. * * The below table shows the current values used. * |-------+------------+----------------------+------------+-------------------| * | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS | * |-------+------------+----------------------+------------+-------------------| * | 1T | 24 | 25 | 49 | 50 | * |-------+------------+----------------------+------------+-------------------| * | 256MB | 24 | 37 | 61 | 74 | * |-------+------------+----------------------+------------+-------------------| * * |-------+------------+----------------------+------------+--------------------| * | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS | * |-------+------------+----------------------+------------+--------------------| * | 1T | 24 | 28 | 52 | 56 | * |-------+------------+----------------------+------------+--------------------| * | 256MB | 24 | 40 | 64 | 80 | * |-------+------------+----------------------+------------+--------------------| * */ #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ #define VSID_BITS_256M (VA_BITS - SID_SHIFT) #define VSID_BITS_65_256M (65 - SID_SHIFT) /* * Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS */ #define VSID_MULINV_256M ASM_CONST(665548017062) #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ #define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T) #define VSID_BITS_65_1T (65 - SID_SHIFT_1T) #define VSID_MULINV_1T ASM_CONST(209034062) /* 1TB VSID reserved for VRMA */ #define VRMA_VSID 0x1ffffffUL #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT)) /* 4 bits per slice and we have one slice per 1TB */ #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41) #define LOW_SLICE_ARRAY_SZ (BITS_PER_LONG / BITS_PER_BYTE) #define TASK_SLICE_ARRAY_SZ(x) ((x)->hash_context->slb_addr_limit >> 41) #ifndef __ASSEMBLY__ #ifdef CONFIG_PPC_SUBPAGE_PROT /* * For the sub-page protection option, we extend the PGD with one of * these. Basically we have a 3-level tree, with the top level being * the protptrs array. To optimize speed and memory consumption when * only addresses < 4GB are being protected, pointers to the first * four pages of sub-page protection words are stored in the low_prot * array. * Each page of sub-page protection words protects 1GB (4 bytes * protects 64k). For the 3-level tree, each page of pointers then * protects 8TB. */ struct subpage_prot_table { unsigned long maxaddr; /* only addresses < this are protected */ unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)]; unsigned int *low_prot[4]; }; #define SBP_L1_BITS (PAGE_SHIFT - 2) #define SBP_L2_BITS (PAGE_SHIFT - 3) #define SBP_L1_COUNT (1 << SBP_L1_BITS) #define SBP_L2_COUNT (1 << SBP_L2_BITS) #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) extern void subpage_prot_free(struct mm_struct *mm); #else static inline void subpage_prot_free(struct mm_struct *mm) {} #endif /* CONFIG_PPC_SUBPAGE_PROT */ /* * One bit per slice. We have lower slices which cover 256MB segments * upto 4G range. That gets us 16 low slices. For the rest we track slices * in 1TB size. */ struct slice_mask { u64 low_slices; DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH); }; struct hash_mm_context { u16 user_psize; /* page size index */ /* SLB page size encodings*/ unsigned char low_slices_psize[LOW_SLICE_ARRAY_SZ]; unsigned char high_slices_psize[SLICE_ARRAY_SIZE]; unsigned long slb_addr_limit; #ifdef CONFIG_PPC_64K_PAGES struct slice_mask mask_64k; #endif struct slice_mask mask_4k; #ifdef CONFIG_HUGETLB_PAGE struct slice_mask mask_16m; struct slice_mask mask_16g; #endif #ifdef CONFIG_PPC_SUBPAGE_PROT struct subpage_prot_table *spt; #endif /* CONFIG_PPC_SUBPAGE_PROT */ }; #if 0 /* * The code below is equivalent to this function for arguments * < 2^VSID_BITS, which is all this should ever be called * with. However gcc is not clever enough to compute the * modulus (2^n-1) without a second multiply. */ #define vsid_scramble(protovsid, size) \ ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) /* simplified form avoiding mod operation */ #define vsid_scramble(protovsid, size) \ ({ \ unsigned long x; \ x = (protovsid) * VSID_MULTIPLIER_##size; \ x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ }) #else /* 1 */ static inline unsigned long vsid_scramble(unsigned long protovsid, unsigned long vsid_multiplier, int vsid_bits) { unsigned long vsid; unsigned long vsid_modulus = ((1UL << vsid_bits) - 1); /* * We have same multipler for both 256 and 1T segements now */ vsid = protovsid * vsid_multiplier; vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus); return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus; } #endif /* 1 */ /* Returns the segment size indicator for a user address */ static inline int user_segment_size(unsigned long addr) { /* Use 1T segments if possible for addresses >= 1T */ if (addr >= (1UL << SID_SHIFT_1T)) return mmu_highuser_ssize; return MMU_SEGSIZE_256M; } static inline unsigned long get_vsid(unsigned long context, unsigned long ea, int ssize) { unsigned long va_bits = VA_BITS; unsigned long vsid_bits; unsigned long protovsid; /* * Bad address. We return VSID 0 for that */ if ((ea & EA_MASK) >= H_PGTABLE_RANGE) return 0; if (!mmu_has_feature(MMU_FTR_68_BIT_VA)) va_bits = 65; if (ssize == MMU_SEGSIZE_256M) { vsid_bits = va_bits - SID_SHIFT; protovsid = (context << ESID_BITS) | ((ea >> SID_SHIFT) & ESID_BITS_MASK); return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits); } /* 1T segment */ vsid_bits = va_bits - SID_SHIFT_1T; protovsid = (context << ESID_BITS_1T) | ((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK); return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits); } /* * For kernel space, we use context ids as * below. Range is 512TB per context. * * 0x00001 - [ 0xc000000000000000 - 0xc001ffffffffffff] * 0x00002 - [ 0xc002000000000000 - 0xc003ffffffffffff] * 0x00003 - [ 0xc004000000000000 - 0xc005ffffffffffff] * 0x00004 - [ 0xc006000000000000 - 0xc007ffffffffffff] * * vmap, IO, vmemap * * 0x00005 - [ 0xc008000000000000 - 0xc009ffffffffffff] * 0x00006 - [ 0xc00a000000000000 - 0xc00bffffffffffff] * 0x00007 - [ 0xc00c000000000000 - 0xc00dffffffffffff] * */ static inline unsigned long get_kernel_context(unsigned long ea) { unsigned long region_id = get_region_id(ea); unsigned long ctx; /* * Depending on Kernel config, kernel region can have one context * or more. */ if (region_id == LINEAR_MAP_REGION_ID) { /* * We already verified ea to be not beyond the addr limit. */ ctx = 1 + ((ea & EA_MASK) >> MAX_EA_BITS_PER_CONTEXT); } else ctx = region_id + MAX_KERNEL_CTX_CNT - 1; return ctx; } /* * This is only valid for addresses >= PAGE_OFFSET */ static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) { unsigned long context; if (!is_kernel_addr(ea)) return 0; context = get_kernel_context(ea); return get_vsid(context, ea, ssize); } unsigned htab_shift_for_mem_size(unsigned long mem_size); #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */