// SPDX-License-Identifier: GPL-2.0-or-later /* * OpenRISC process.c * * Linux architectural port borrowing liberally from similar works of * others. All original copyrights apply as per the original source * declaration. * * Modifications for the OpenRISC architecture: * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com> * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se> * * This file handles the architecture-dependent parts of process handling... */ #define __KERNEL_SYSCALLS__ #include <linux/errno.h> #include <linux/sched.h> #include <linux/sched/debug.h> #include <linux/sched/task.h> #include <linux/sched/task_stack.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/mm.h> #include <linux/stddef.h> #include <linux/unistd.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/elfcore.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/init_task.h> #include <linux/mqueue.h> #include <linux/fs.h> #include <linux/reboot.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/processor.h> #include <asm/spr_defs.h> #include <linux/smp.h> /* * Pointer to Current thread info structure. * * Used at user space -> kernel transitions. */ struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, }; void machine_restart(char *cmd) { do_kernel_restart(cmd); /* Give a grace period for failure to restart of 1s */ mdelay(1000); /* Whoops - the platform was unable to reboot. Tell the user! */ pr_emerg("Reboot failed -- System halted\n"); while (1); } /* * Similar to machine_power_off, but don't shut off power. Add code * here to freeze the system for e.g. post-mortem debug purpose when * possible. This halt has nothing to do with the idle halt. */ void machine_halt(void) { printk(KERN_INFO "*** MACHINE HALT ***\n"); __asm__("l.nop 1"); } /* If or when software power-off is implemented, add code here. */ void machine_power_off(void) { printk(KERN_INFO "*** MACHINE POWER OFF ***\n"); __asm__("l.nop 1"); } /* * Send the doze signal to the cpu if available. * Make sure, that all interrupts are enabled */ void arch_cpu_idle(void) { raw_local_irq_enable(); if (mfspr(SPR_UPR) & SPR_UPR_PMP) mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME); } void (*pm_power_off) (void) = machine_power_off; EXPORT_SYMBOL(pm_power_off); /* * When a process does an "exec", machine state like FPU and debug * registers need to be reset. This is a hook function for that. * Currently we don't have any such state to reset, so this is empty. */ void flush_thread(void) { } void show_regs(struct pt_regs *regs) { extern void show_registers(struct pt_regs *regs); show_regs_print_info(KERN_DEFAULT); /* __PHX__ cleanup this mess */ show_registers(regs); } void release_thread(struct task_struct *dead_task) { } /* * Copy the thread-specific (arch specific) info from the current * process to the new one p */ extern asmlinkage void ret_from_fork(void); /* * copy_thread * @clone_flags: flags * @usp: user stack pointer or fn for kernel thread * @arg: arg to fn for kernel thread; always NULL for userspace thread * @p: the newly created task * @tls: the Thread Local Storage pointer for the new process * * At the top of a newly initialized kernel stack are two stacked pt_reg * structures. The first (topmost) is the userspace context of the thread. * The second is the kernelspace context of the thread. * * A kernel thread will not be returning to userspace, so the topmost pt_regs * struct can be uninitialized; it _does_ need to exist, though, because * a kernel thread can become a userspace thread by doing a kernel_execve, in * which case the topmost context will be initialized and used for 'returning' * to userspace. * * The second pt_reg struct needs to be initialized to 'return' to * ret_from_fork. A kernel thread will need to set r20 to the address of * a function to call into (with arg in r22); userspace threads need to set * r20 to NULL in which case ret_from_fork will just continue a return to * userspace. * * A kernel thread 'fn' may return; this is effectively what happens when * kernel_execve is called. In that case, the userspace pt_regs must have * been initialized (which kernel_execve takes care of, see start_thread * below); ret_from_fork will then continue its execution causing the * 'kernel thread' to return to userspace as a userspace thread. */ int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long arg, struct task_struct *p, unsigned long tls) { struct pt_regs *userregs; struct pt_regs *kregs; unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; unsigned long top_of_kernel_stack; top_of_kernel_stack = sp; /* Locate userspace context on stack... */ sp -= STACK_FRAME_OVERHEAD; /* redzone */ sp -= sizeof(struct pt_regs); userregs = (struct pt_regs *) sp; /* ...and kernel context */ sp -= STACK_FRAME_OVERHEAD; /* redzone */ sp -= sizeof(struct pt_regs); kregs = (struct pt_regs *)sp; if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) { memset(kregs, 0, sizeof(struct pt_regs)); kregs->gpr[20] = usp; /* fn, kernel thread */ kregs->gpr[22] = arg; } else { *userregs = *current_pt_regs(); if (usp) userregs->sp = usp; /* * For CLONE_SETTLS set "tp" (r10) to the TLS pointer. */ if (clone_flags & CLONE_SETTLS) userregs->gpr[10] = tls; userregs->gpr[11] = 0; /* Result from fork() */ kregs->gpr[20] = 0; /* Userspace thread */ } /* * _switch wants the kernel stack page in pt_regs->sp so that it * can restore it to thread_info->ksp... see _switch for details. */ kregs->sp = top_of_kernel_stack; kregs->gpr[9] = (unsigned long)ret_from_fork; task_thread_info(p)->ksp = (unsigned long)kregs; return 0; } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp) { unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM; memset(regs, 0, sizeof(struct pt_regs)); regs->pc = pc; regs->sr = sr; regs->sp = sp; } extern struct thread_info *_switch(struct thread_info *old_ti, struct thread_info *new_ti); extern int lwa_flag; struct task_struct *__switch_to(struct task_struct *old, struct task_struct *new) { struct task_struct *last; struct thread_info *new_ti, *old_ti; unsigned long flags; local_irq_save(flags); /* current_set is an array of saved current pointers * (one for each cpu). we need them at user->kernel transition, * while we save them at kernel->user transition */ new_ti = new->stack; old_ti = old->stack; lwa_flag = 0; current_thread_info_set[smp_processor_id()] = new_ti; last = (_switch(old_ti, new_ti))->task; local_irq_restore(flags); return last; } /* * Write out registers in core dump format, as defined by the * struct user_regs_struct */ void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs) { dest[0] = 0; /* r0 */ memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long)); dest[32] = regs->pc; dest[33] = regs->sr; dest[34] = 0; dest[35] = 0; } unsigned long __get_wchan(struct task_struct *p) { /* TODO */ return 0; }