/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995 Waldorf Electronics * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle * Copyright (C) 1996 Stoned Elipot * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_MIPS_ELF_APPENDED_DTB char __section(".appended_dtb") __appended_dtb[0x100000]; #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */ struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_data); #ifdef CONFIG_VGA_CONSOLE struct screen_info screen_info; #endif /* * Setup information * * These are initialized so they are in the .data section */ unsigned long mips_machtype __read_mostly = MACH_UNKNOWN; EXPORT_SYMBOL(mips_machtype); static char __initdata command_line[COMMAND_LINE_SIZE]; char __initdata arcs_cmdline[COMMAND_LINE_SIZE]; #ifdef CONFIG_CMDLINE_BOOL static const char builtin_cmdline[] __initconst = CONFIG_CMDLINE; #else static const char builtin_cmdline[] __initconst = ""; #endif /* * mips_io_port_base is the begin of the address space to which x86 style * I/O ports are mapped. */ unsigned long mips_io_port_base = -1; EXPORT_SYMBOL(mips_io_port_base); static struct resource code_resource = { .name = "Kernel code", }; static struct resource data_resource = { .name = "Kernel data", }; static struct resource bss_resource = { .name = "Kernel bss", }; unsigned long __kaslr_offset __ro_after_init; EXPORT_SYMBOL(__kaslr_offset); static void *detect_magic __initdata = detect_memory_region; #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET unsigned long ARCH_PFN_OFFSET; EXPORT_SYMBOL(ARCH_PFN_OFFSET); #endif void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max) { void *dm = &detect_magic; phys_addr_t size; for (size = sz_min; size < sz_max; size <<= 1) { if (!memcmp(dm, dm + size, sizeof(detect_magic))) break; } pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n", ((unsigned long long) size) / SZ_1M, (unsigned long long) start, ((unsigned long long) sz_min) / SZ_1M, ((unsigned long long) sz_max) / SZ_1M); memblock_add(start, size); } /* * Manage initrd */ #ifdef CONFIG_BLK_DEV_INITRD static int __init rd_start_early(char *p) { unsigned long start = memparse(p, &p); #ifdef CONFIG_64BIT /* Guess if the sign extension was forgotten by bootloader */ if (start < XKPHYS) start = (int)start; #endif initrd_start = start; initrd_end += start; return 0; } early_param("rd_start", rd_start_early); static int __init rd_size_early(char *p) { initrd_end += memparse(p, &p); return 0; } early_param("rd_size", rd_size_early); /* it returns the next free pfn after initrd */ static unsigned long __init init_initrd(void) { unsigned long end; /* * Board specific code or command line parser should have * already set up initrd_start and initrd_end. In these cases * perfom sanity checks and use them if all looks good. */ if (!initrd_start || initrd_end <= initrd_start) goto disable; if (initrd_start & ~PAGE_MASK) { pr_err("initrd start must be page aligned\n"); goto disable; } /* * Sanitize initrd addresses. For example firmware * can't guess if they need to pass them through * 64-bits values if the kernel has been built in pure * 32-bit. We need also to switch from KSEG0 to XKPHYS * addresses now, so the code can now safely use __pa(). */ end = __pa(initrd_end); initrd_end = (unsigned long)__va(end); initrd_start = (unsigned long)__va(__pa(initrd_start)); if (initrd_start < PAGE_OFFSET) { pr_err("initrd start < PAGE_OFFSET\n"); goto disable; } ROOT_DEV = Root_RAM0; return PFN_UP(end); disable: initrd_start = 0; initrd_end = 0; return 0; } /* In some conditions (e.g. big endian bootloader with a little endian kernel), the initrd might appear byte swapped. Try to detect this and byte swap it if needed. */ static void __init maybe_bswap_initrd(void) { #if defined(CONFIG_CPU_CAVIUM_OCTEON) u64 buf; /* Check for CPIO signature */ if (!memcmp((void *)initrd_start, "070701", 6)) return; /* Check for compressed initrd */ if (decompress_method((unsigned char *)initrd_start, 8, NULL)) return; /* Try again with a byte swapped header */ buf = swab64p((u64 *)initrd_start); if (!memcmp(&buf, "070701", 6) || decompress_method((unsigned char *)(&buf), 8, NULL)) { unsigned long i; pr_info("Byteswapped initrd detected\n"); for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8) swab64s((u64 *)i); } #endif } static void __init finalize_initrd(void) { unsigned long size = initrd_end - initrd_start; if (size == 0) { printk(KERN_INFO "Initrd not found or empty"); goto disable; } if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) { printk(KERN_ERR "Initrd extends beyond end of memory"); goto disable; } maybe_bswap_initrd(); memblock_reserve(__pa(initrd_start), size); initrd_below_start_ok = 1; pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n", initrd_start, size); return; disable: printk(KERN_CONT " - disabling initrd\n"); initrd_start = 0; initrd_end = 0; } #else /* !CONFIG_BLK_DEV_INITRD */ static unsigned long __init init_initrd(void) { return 0; } #define finalize_initrd() do {} while (0) #endif /* * Initialize the bootmem allocator. It also setup initrd related data * if needed. */ #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON64) && defined(CONFIG_NUMA)) static void __init bootmem_init(void) { init_initrd(); finalize_initrd(); } #else /* !CONFIG_SGI_IP27 */ static void __init bootmem_init(void) { phys_addr_t ramstart, ramend; unsigned long start, end; int i; ramstart = memblock_start_of_DRAM(); ramend = memblock_end_of_DRAM(); /* * Sanity check any INITRD first. We don't take it into account * for bootmem setup initially, rely on the end-of-kernel-code * as our memory range starting point. Once bootmem is inited we * will reserve the area used for the initrd. */ init_initrd(); /* Reserve memory occupied by kernel. */ memblock_reserve(__pa_symbol(&_text), __pa_symbol(&_end) - __pa_symbol(&_text)); /* max_low_pfn is not a number of pages but the end pfn of low mem */ #ifdef CONFIG_MIPS_AUTO_PFN_OFFSET ARCH_PFN_OFFSET = PFN_UP(ramstart); #else /* * Reserve any memory between the start of RAM and PHYS_OFFSET */ if (ramstart > PHYS_OFFSET) memblock_reserve(PHYS_OFFSET, ramstart - PHYS_OFFSET); if (PFN_UP(ramstart) > ARCH_PFN_OFFSET) { pr_info("Wasting %lu bytes for tracking %lu unused pages\n", (unsigned long)((PFN_UP(ramstart) - ARCH_PFN_OFFSET) * sizeof(struct page)), (unsigned long)(PFN_UP(ramstart) - ARCH_PFN_OFFSET)); } #endif min_low_pfn = ARCH_PFN_OFFSET; max_pfn = PFN_DOWN(ramend); for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { /* * Skip highmem here so we get an accurate max_low_pfn if low * memory stops short of high memory. * If the region overlaps HIGHMEM_START, end is clipped so * max_pfn excludes the highmem portion. */ if (start >= PFN_DOWN(HIGHMEM_START)) continue; if (end > PFN_DOWN(HIGHMEM_START)) end = PFN_DOWN(HIGHMEM_START); if (end > max_low_pfn) max_low_pfn = end; } if (min_low_pfn >= max_low_pfn) panic("Incorrect memory mapping !!!"); if (max_pfn > PFN_DOWN(HIGHMEM_START)) { max_low_pfn = PFN_DOWN(HIGHMEM_START); #ifdef CONFIG_HIGHMEM highstart_pfn = max_low_pfn; highend_pfn = max_pfn; #else max_pfn = max_low_pfn; #endif } /* * Reserve initrd memory if needed. */ finalize_initrd(); } #endif /* CONFIG_SGI_IP27 */ static int usermem __initdata; static int __init early_parse_mem(char *p) { phys_addr_t start, size; if (!p) { pr_err("mem parameter is empty, do nothing\n"); return -EINVAL; } /* * If a user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { usermem = 1; memblock_remove(memblock_start_of_DRAM(), memblock_end_of_DRAM() - memblock_start_of_DRAM()); } start = 0; size = memparse(p, &p); if (*p == '@') start = memparse(p + 1, &p); if (IS_ENABLED(CONFIG_NUMA)) memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE); else memblock_add(start, size); return 0; } early_param("mem", early_parse_mem); static int __init early_parse_memmap(char *p) { char *oldp; u64 start_at, mem_size; if (!p) return -EINVAL; if (!strncmp(p, "exactmap", 8)) { pr_err("\"memmap=exactmap\" invalid on MIPS\n"); return 0; } oldp = p; mem_size = memparse(p, &p); if (p == oldp) return -EINVAL; if (*p == '@') { start_at = memparse(p+1, &p); memblock_add(start_at, mem_size); } else if (*p == '#') { pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on MIPS\n"); return -EINVAL; } else if (*p == '$') { start_at = memparse(p+1, &p); memblock_add(start_at, mem_size); memblock_reserve(start_at, mem_size); } else { pr_err("\"memmap\" invalid format!\n"); return -EINVAL; } if (*p == '\0') { usermem = 1; return 0; } else return -EINVAL; } early_param("memmap", early_parse_memmap); static void __init mips_reserve_vmcore(void) { #ifdef CONFIG_PROC_VMCORE phys_addr_t start, end; u64 i; if (!elfcorehdr_size) { for_each_mem_range(i, &start, &end) { if (elfcorehdr_addr >= start && elfcorehdr_addr < end) { /* * Reserve from the elf core header to the end of * the memory segment, that should all be kdump * reserved memory. */ elfcorehdr_size = end - elfcorehdr_addr; break; } } } pr_info("Reserving %ldKB of memory at %ldKB for kdump\n", (unsigned long)elfcorehdr_size >> 10, (unsigned long)elfcorehdr_addr >> 10); memblock_reserve(elfcorehdr_addr, elfcorehdr_size); #endif } #ifdef CONFIG_KEXEC /* 64M alignment for crash kernel regions */ #define CRASH_ALIGN SZ_64M #define CRASH_ADDR_MAX SZ_512M static void __init mips_parse_crashkernel(void) { unsigned long long total_mem; unsigned long long crash_size, crash_base; int ret; total_mem = memblock_phys_mem_size(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret != 0 || crash_size <= 0) return; if (crash_base <= 0) { crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_MAX); if (!crash_base) { pr_warn("crashkernel reservation failed - No suitable area found.\n"); return; } } else { unsigned long long start; start = memblock_phys_alloc_range(crash_size, 1, crash_base, crash_base + crash_size); if (start != crash_base) { pr_warn("Invalid memory region reserved for crash kernel\n"); return; } } crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; } static void __init request_crashkernel(struct resource *res) { int ret; if (crashk_res.start == crashk_res.end) return; ret = request_resource(res, &crashk_res); if (!ret) pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", (unsigned long)(resource_size(&crashk_res) >> 20), (unsigned long)(crashk_res.start >> 20)); } #else /* !defined(CONFIG_KEXEC) */ static void __init mips_parse_crashkernel(void) { } static void __init request_crashkernel(struct resource *res) { } #endif /* !defined(CONFIG_KEXEC) */ static void __init check_kernel_sections_mem(void) { phys_addr_t start = __pa_symbol(&_text); phys_addr_t size = __pa_symbol(&_end) - start; if (!memblock_is_region_memory(start, size)) { pr_info("Kernel sections are not in the memory maps\n"); memblock_add(start, size); } } static void __init bootcmdline_append(const char *s, size_t max) { if (!s[0] || !max) return; if (boot_command_line[0]) strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, s, max); } #ifdef CONFIG_OF_EARLY_FLATTREE static int __init bootcmdline_scan_chosen(unsigned long node, const char *uname, int depth, void *data) { bool *dt_bootargs = data; const char *p; int l; if (depth != 1 || !data || (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) return 0; p = of_get_flat_dt_prop(node, "bootargs", &l); if (p != NULL && l > 0) { bootcmdline_append(p, min(l, COMMAND_LINE_SIZE)); *dt_bootargs = true; } return 1; } #endif /* CONFIG_OF_EARLY_FLATTREE */ static void __init bootcmdline_init(void) { bool dt_bootargs = false; /* * If CMDLINE_OVERRIDE is enabled then initializing the command line is * trivial - we simply use the built-in command line unconditionally & * unmodified. */ if (IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) { strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); return; } /* * If the user specified a built-in command line & * MIPS_CMDLINE_BUILTIN_EXTEND, then the built-in command line is * prepended to arguments from the bootloader or DT so we'll copy them * to the start of boot_command_line here. Otherwise, empty * boot_command_line to undo anything early_init_dt_scan_chosen() did. */ if (IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE); else boot_command_line[0] = 0; #ifdef CONFIG_OF_EARLY_FLATTREE /* * If we're configured to take boot arguments from DT, look for those * now. */ if (IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB) || IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)) of_scan_flat_dt(bootcmdline_scan_chosen, &dt_bootargs); #endif /* * If we didn't get any arguments from DT (regardless of whether that's * because we weren't configured to look for them, or because we looked * & found none) then we'll take arguments from the bootloader. * plat_mem_setup() should have filled arcs_cmdline with arguments from * the bootloader. */ if (IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND) || !dt_bootargs) bootcmdline_append(arcs_cmdline, COMMAND_LINE_SIZE); /* * If the user specified a built-in command line & we didn't already * prepend it, we append it to boot_command_line here. */ if (IS_ENABLED(CONFIG_CMDLINE_BOOL) && !IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)) bootcmdline_append(builtin_cmdline, COMMAND_LINE_SIZE); } /* * arch_mem_init - initialize memory management subsystem * * o plat_mem_setup() detects the memory configuration and will record detected * memory areas using memblock_add. * * At this stage the memory configuration of the system is known to the * kernel but generic memory management system is still entirely uninitialized. * * o bootmem_init() * o sparse_init() * o paging_init() * o dma_contiguous_reserve() * * At this stage the bootmem allocator is ready to use. * * NOTE: historically plat_mem_setup did the entire platform initialization. * This was rather impractical because it meant plat_mem_setup had to * get away without any kind of memory allocator. To keep old code from * breaking plat_setup was just renamed to plat_mem_setup and a second platform * initialization hook for anything else was introduced. */ static void __init arch_mem_init(char **cmdline_p) { /* call board setup routine */ plat_mem_setup(); memblock_set_bottom_up(true); bootcmdline_init(); strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE); *cmdline_p = command_line; parse_early_param(); if (usermem) pr_info("User-defined physical RAM map overwrite\n"); check_kernel_sections_mem(); early_init_fdt_reserve_self(); early_init_fdt_scan_reserved_mem(); #ifndef CONFIG_NUMA memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0); #endif bootmem_init(); /* * Prevent memblock from allocating high memory. * This cannot be done before max_low_pfn is detected, so up * to this point is possible to only reserve physical memory * with memblock_reserve; memblock_alloc* can be used * only after this point */ memblock_set_current_limit(PFN_PHYS(max_low_pfn)); mips_reserve_vmcore(); mips_parse_crashkernel(); device_tree_init(); /* * In order to reduce the possibility of kernel panic when failed to * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate * low memory as small as possible before plat_swiotlb_setup(), so * make sparse_init() using top-down allocation. */ memblock_set_bottom_up(false); sparse_init(); memblock_set_bottom_up(true); plat_swiotlb_setup(); dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); /* Reserve for hibernation. */ memblock_reserve(__pa_symbol(&__nosave_begin), __pa_symbol(&__nosave_end) - __pa_symbol(&__nosave_begin)); early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn)); } static void __init resource_init(void) { phys_addr_t start, end; u64 i; if (UNCAC_BASE != IO_BASE) return; code_resource.start = __pa_symbol(&_text); code_resource.end = __pa_symbol(&_etext) - 1; data_resource.start = __pa_symbol(&_etext); data_resource.end = __pa_symbol(&_edata) - 1; bss_resource.start = __pa_symbol(&__bss_start); bss_resource.end = __pa_symbol(&__bss_stop) - 1; for_each_mem_range(i, &start, &end) { struct resource *res; res = memblock_alloc(sizeof(struct resource), SMP_CACHE_BYTES); if (!res) panic("%s: Failed to allocate %zu bytes\n", __func__, sizeof(struct resource)); res->start = start; /* * In memblock, end points to the first byte after the * range while in resourses, end points to the last byte in * the range. */ res->end = end - 1; res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; res->name = "System RAM"; request_resource(&iomem_resource, res); /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, &code_resource); request_resource(res, &data_resource); request_resource(res, &bss_resource); request_crashkernel(res); } } #ifdef CONFIG_SMP static void __init prefill_possible_map(void) { int i, possible = num_possible_cpus(); if (possible > nr_cpu_ids) possible = nr_cpu_ids; for (i = 0; i < possible; i++) set_cpu_possible(i, true); for (; i < NR_CPUS; i++) set_cpu_possible(i, false); set_nr_cpu_ids(possible); } #else static inline void prefill_possible_map(void) {} #endif static void __init setup_rng_seed(void) { char *rng_seed_hex = fw_getenv("rngseed"); u8 rng_seed[512]; size_t len; if (!rng_seed_hex) return; len = min(sizeof(rng_seed), strlen(rng_seed_hex) / 2); if (hex2bin(rng_seed, rng_seed_hex, len)) return; add_bootloader_randomness(rng_seed, len); memzero_explicit(rng_seed, len); memzero_explicit(rng_seed_hex, len * 2); } void __init setup_arch(char **cmdline_p) { cpu_probe(); mips_cm_probe(); prom_init(); setup_early_fdc_console(); #ifdef CONFIG_EARLY_PRINTK setup_early_printk(); #endif cpu_report(); if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64)) check_bugs64_early(); #if defined(CONFIG_VT) #if defined(CONFIG_VGA_CONSOLE) conswitchp = &vga_con; #endif #endif arch_mem_init(cmdline_p); dmi_setup(); resource_init(); plat_smp_setup(); prefill_possible_map(); cpu_cache_init(); paging_init(); memblock_dump_all(); setup_rng_seed(); } unsigned long kernelsp[NR_CPUS]; unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3; #ifdef CONFIG_DEBUG_FS struct dentry *mips_debugfs_dir; static int __init debugfs_mips(void) { mips_debugfs_dir = debugfs_create_dir("mips", NULL); return 0; } arch_initcall(debugfs_mips); #endif #ifdef CONFIG_DMA_NONCOHERENT static int __init setcoherentio(char *str) { dma_default_coherent = true; pr_info("Hardware DMA cache coherency (command line)\n"); return 0; } early_param("coherentio", setcoherentio); static int __init setnocoherentio(char *str) { dma_default_coherent = false; pr_info("Software DMA cache coherency (command line)\n"); return 0; } early_param("nocoherentio", setnocoherentio); #endif void __init arch_cpu_finalize_init(void) { unsigned int cpu = smp_processor_id(); cpu_data[cpu].udelay_val = loops_per_jiffy; check_bugs32(); if (IS_ENABLED(CONFIG_CPU_R4X00_BUGS64)) check_bugs64(); }