/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2003 Ralf Baechle */ #ifndef _ASM_PGTABLE_H #define _ASM_PGTABLE_H #include #include #ifdef CONFIG_32BIT #include #endif #ifdef CONFIG_64BIT #include #endif #include #include #include #include struct mm_struct; struct vm_area_struct; #define PAGE_SHARED vm_get_page_prot(VM_READ|VM_WRITE|VM_SHARED) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _PAGE_GLOBAL | _page_cachable_default) #define PAGE_KERNEL_NC __pgprot(_PAGE_PRESENT | __READABLE | __WRITEABLE | \ _PAGE_GLOBAL | _CACHE_CACHABLE_NONCOHERENT) #define PAGE_KERNEL_UNCACHED __pgprot(_PAGE_PRESENT | __READABLE | \ __WRITEABLE | _PAGE_GLOBAL | _CACHE_UNCACHED) /* * If _PAGE_NO_EXEC is not defined, we can't do page protection for * execute, and consider it to be the same as read. Also, write * permissions imply read permissions. This is the closest we can get * by reasonable means.. */ extern unsigned long _page_cachable_default; extern void __update_cache(unsigned long address, pte_t pte); /* * ZERO_PAGE is a global shared page that is always zero; used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page; extern unsigned long zero_page_mask; #define ZERO_PAGE(vaddr) \ (virt_to_page((void *)(empty_zero_page + (((unsigned long)(vaddr)) & zero_page_mask)))) #define __HAVE_COLOR_ZERO_PAGE extern void paging_init(void); /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define pmd_phys(pmd) virt_to_phys((void *)pmd_val(pmd)) static inline unsigned long pmd_pfn(pmd_t pmd) { return pmd_val(pmd) >> PFN_PTE_SHIFT; } #ifndef CONFIG_MIPS_HUGE_TLB_SUPPORT #define pmd_page(pmd) (pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT)) #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ #define pmd_page_vaddr(pmd) pmd_val(pmd) #define htw_stop() \ do { \ unsigned long __flags; \ \ if (cpu_has_htw) { \ local_irq_save(__flags); \ if(!raw_current_cpu_data.htw_seq++) { \ write_c0_pwctl(read_c0_pwctl() & \ ~(1 << MIPS_PWCTL_PWEN_SHIFT)); \ back_to_back_c0_hazard(); \ } \ local_irq_restore(__flags); \ } \ } while(0) #define htw_start() \ do { \ unsigned long __flags; \ \ if (cpu_has_htw) { \ local_irq_save(__flags); \ if (!--raw_current_cpu_data.htw_seq) { \ write_c0_pwctl(read_c0_pwctl() | \ (1 << MIPS_PWCTL_PWEN_SHIFT)); \ back_to_back_c0_hazard(); \ } \ local_irq_restore(__flags); \ } \ } while(0) #if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) #ifdef CONFIG_XPA # define pte_none(pte) (!(((pte).pte_high) & ~_PAGE_GLOBAL)) #else # define pte_none(pte) (!(((pte).pte_low | (pte).pte_high) & ~_PAGE_GLOBAL)) #endif #define pte_present(pte) ((pte).pte_low & _PAGE_PRESENT) #define pte_no_exec(pte) ((pte).pte_low & _PAGE_NO_EXEC) static inline void set_pte(pte_t *ptep, pte_t pte) { ptep->pte_high = pte.pte_high; smp_wmb(); ptep->pte_low = pte.pte_low; #ifdef CONFIG_XPA if (pte.pte_high & _PAGE_GLOBAL) { #else if (pte.pte_low & _PAGE_GLOBAL) { #endif pte_t *buddy = ptep_buddy(ptep); /* * Make sure the buddy is global too (if it's !none, * it better already be global) */ if (pte_none(*buddy)) { if (!IS_ENABLED(CONFIG_XPA)) buddy->pte_low |= _PAGE_GLOBAL; buddy->pte_high |= _PAGE_GLOBAL; } } } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t null = __pte(0); htw_stop(); /* Preserve global status for the pair */ if (IS_ENABLED(CONFIG_XPA)) { if (ptep_buddy(ptep)->pte_high & _PAGE_GLOBAL) null.pte_high = _PAGE_GLOBAL; } else { if (ptep_buddy(ptep)->pte_low & _PAGE_GLOBAL) null.pte_low = null.pte_high = _PAGE_GLOBAL; } set_pte(ptep, null); htw_start(); } #else #define pte_none(pte) (!(pte_val(pte) & ~_PAGE_GLOBAL)) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) #define pte_no_exec(pte) (pte_val(pte) & _PAGE_NO_EXEC) /* * Certain architectures need to do special things when pte's * within a page table are directly modified. Thus, the following * hook is made available. */ static inline void set_pte(pte_t *ptep, pte_t pteval) { *ptep = pteval; #if !defined(CONFIG_CPU_R3K_TLB) if (pte_val(pteval) & _PAGE_GLOBAL) { pte_t *buddy = ptep_buddy(ptep); /* * Make sure the buddy is global too (if it's !none, * it better already be global) */ # if defined(CONFIG_PHYS_ADDR_T_64BIT) && !defined(CONFIG_CPU_MIPS32) cmpxchg64(&buddy->pte, 0, _PAGE_GLOBAL); # else cmpxchg(&buddy->pte, 0, _PAGE_GLOBAL); # endif } #endif } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { htw_stop(); #if !defined(CONFIG_CPU_R3K_TLB) /* Preserve global status for the pair */ if (pte_val(*ptep_buddy(ptep)) & _PAGE_GLOBAL) set_pte(ptep, __pte(_PAGE_GLOBAL)); else #endif set_pte(ptep, __pte(0)); htw_start(); } #endif static inline void set_ptes(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, unsigned int nr) { unsigned int i; bool do_sync = false; for (i = 0; i < nr; i++) { if (!pte_present(pte)) continue; if (pte_present(ptep[i]) && (pte_pfn(ptep[i]) == pte_pfn(pte))) continue; do_sync = true; } if (do_sync) __update_cache(addr, pte); for (;;) { set_pte(ptep, pte); if (--nr == 0) break; ptep++; pte = __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT)); } } #define set_ptes set_ptes /* * (pmds are folded into puds so this doesn't get actually called, * but the define is needed for a generic inline function.) */ #define set_pmd(pmdptr, pmdval) do { *(pmdptr) = (pmdval); } while(0) #ifndef __PAGETABLE_PMD_FOLDED /* * (puds are folded into pgds so this doesn't get actually called, * but the define is needed for a generic inline function.) */ #define set_pud(pudptr, pudval) do { *(pudptr) = (pudval); } while(0) #endif #define PGD_T_LOG2 (__builtin_ffs(sizeof(pgd_t)) - 1) #define PMD_T_LOG2 (__builtin_ffs(sizeof(pmd_t)) - 1) #define PTE_T_LOG2 (__builtin_ffs(sizeof(pte_t)) - 1) /* * We used to declare this array with size but gcc 3.3 and older are not able * to find that this expression is a constant, so the size is dropped. */ extern pgd_t swapper_pg_dir[]; /* * Platform specific pte_special() and pte_mkspecial() definitions * are required only when ARCH_HAS_PTE_SPECIAL is enabled. */ #if defined(CONFIG_ARCH_HAS_PTE_SPECIAL) #if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) static inline int pte_special(pte_t pte) { return pte.pte_low & _PAGE_SPECIAL; } static inline pte_t pte_mkspecial(pte_t pte) { pte.pte_low |= _PAGE_SPECIAL; return pte; } #else static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } #endif #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ #if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) static inline int pte_write(pte_t pte) { return pte.pte_low & _PAGE_WRITE; } static inline int pte_dirty(pte_t pte) { return pte.pte_low & _PAGE_MODIFIED; } static inline int pte_young(pte_t pte) { return pte.pte_low & _PAGE_ACCESSED; } static inline pte_t pte_wrprotect(pte_t pte) { pte.pte_low &= ~_PAGE_WRITE; if (!IS_ENABLED(CONFIG_XPA)) pte.pte_low &= ~_PAGE_SILENT_WRITE; pte.pte_high &= ~_PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte.pte_low &= ~_PAGE_MODIFIED; if (!IS_ENABLED(CONFIG_XPA)) pte.pte_low &= ~_PAGE_SILENT_WRITE; pte.pte_high &= ~_PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkold(pte_t pte) { pte.pte_low &= ~_PAGE_ACCESSED; if (!IS_ENABLED(CONFIG_XPA)) pte.pte_low &= ~_PAGE_SILENT_READ; pte.pte_high &= ~_PAGE_SILENT_READ; return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte.pte_low |= _PAGE_WRITE; if (pte.pte_low & _PAGE_MODIFIED) { if (!IS_ENABLED(CONFIG_XPA)) pte.pte_low |= _PAGE_SILENT_WRITE; pte.pte_high |= _PAGE_SILENT_WRITE; } return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte.pte_low |= _PAGE_MODIFIED; if (pte.pte_low & _PAGE_WRITE) { if (!IS_ENABLED(CONFIG_XPA)) pte.pte_low |= _PAGE_SILENT_WRITE; pte.pte_high |= _PAGE_SILENT_WRITE; } return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte.pte_low |= _PAGE_ACCESSED; if (!(pte.pte_low & _PAGE_NO_READ)) { if (!IS_ENABLED(CONFIG_XPA)) pte.pte_low |= _PAGE_SILENT_READ; pte.pte_high |= _PAGE_SILENT_READ; } return pte; } #else static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pte; } static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); return pte; } static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ); return pte; } static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; if (pte_val(pte) & _PAGE_MODIFIED) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_MODIFIED | _PAGE_SOFT_DIRTY; if (pte_val(pte) & _PAGE_WRITE) pte_val(pte) |= _PAGE_SILENT_WRITE; return pte; } static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; if (!(pte_val(pte) & _PAGE_NO_READ)) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } #define pte_sw_mkyoung pte_mkyoung #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_HUGE; } static inline pte_t pte_mkhuge(pte_t pte) { pte_val(pte) |= _PAGE_HUGE; return pte; } #define pmd_write pmd_write static inline int pmd_write(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_WRITE); } static inline struct page *pmd_page(pmd_t pmd) { if (pmd_val(pmd) & _PAGE_HUGE) return pfn_to_page(pmd_pfn(pmd)); return pfn_to_page(pmd_phys(pmd) >> PAGE_SHIFT); } #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline bool pte_soft_dirty(pte_t pte) { return pte_val(pte) & _PAGE_SOFT_DIRTY; } #define pte_swp_soft_dirty pte_soft_dirty static inline pte_t pte_mksoft_dirty(pte_t pte) { pte_val(pte) |= _PAGE_SOFT_DIRTY; return pte; } #define pte_swp_mksoft_dirty pte_mksoft_dirty static inline pte_t pte_clear_soft_dirty(pte_t pte) { pte_val(pte) &= ~(_PAGE_SOFT_DIRTY); return pte; } #define pte_swp_clear_soft_dirty pte_clear_soft_dirty #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ #endif /* * Macro to make mark a page protection value as "uncacheable". Note * that "protection" is really a misnomer here as the protection value * contains the memory attribute bits, dirty bits, and various other * bits as well. */ #define pgprot_noncached pgprot_noncached static inline pgprot_t pgprot_noncached(pgprot_t _prot) { unsigned long prot = pgprot_val(_prot); prot = (prot & ~_CACHE_MASK) | _CACHE_UNCACHED; return __pgprot(prot); } #define pgprot_writecombine pgprot_writecombine static inline pgprot_t pgprot_writecombine(pgprot_t _prot) { unsigned long prot = pgprot_val(_prot); /* cpu_data[0].writecombine is already shifted by _CACHE_SHIFT */ prot = (prot & ~_CACHE_MASK) | cpu_data[0].writecombine; return __pgprot(prot); } static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS static inline int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { if (!pte_same(*ptep, entry)) set_pte(ptep, entry); /* * update_mmu_cache will unconditionally execute, handling both * the case that the PTE changed and the spurious fault case. */ return true; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) #if defined(CONFIG_XPA) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte.pte_low &= (_PAGE_MODIFIED | _PAGE_ACCESSED | _PFNX_MASK); pte.pte_high &= (_PFN_MASK | _CACHE_MASK); pte.pte_low |= pgprot_val(newprot) & ~_PFNX_MASK; pte.pte_high |= pgprot_val(newprot) & ~(_PFN_MASK | _CACHE_MASK); return pte; } #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte.pte_low &= _PAGE_CHG_MASK; pte.pte_high &= (_PFN_MASK | _CACHE_MASK); pte.pte_low |= pgprot_val(newprot); pte.pte_high |= pgprot_val(newprot) & ~(_PFN_MASK | _CACHE_MASK); return pte; } #else static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pte_val(pte) &= _PAGE_CHG_MASK; pte_val(pte) |= pgprot_val(newprot) & ~_PAGE_CHG_MASK; if ((pte_val(pte) & _PAGE_ACCESSED) && !(pte_val(pte) & _PAGE_NO_READ)) pte_val(pte) |= _PAGE_SILENT_READ; return pte; } #endif #if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) static inline int pte_swp_exclusive(pte_t pte) { return pte.pte_low & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { pte.pte_low |= _PAGE_SWP_EXCLUSIVE; return pte; } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { pte.pte_low &= ~_PAGE_SWP_EXCLUSIVE; return pte; } #else static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; return pte; } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; return pte; } #endif extern void __update_tlb(struct vm_area_struct *vma, unsigned long address, pte_t pte); static inline void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int nr) { for (;;) { pte_t pte = *ptep; __update_tlb(vma, address, pte); if (--nr == 0) break; ptep++; address += PAGE_SIZE; } } #define update_mmu_cache(vma, address, ptep) \ update_mmu_cache_range(NULL, vma, address, ptep, 1) #define __HAVE_ARCH_UPDATE_MMU_TLB #define update_mmu_tlb update_mmu_cache static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pte_t pte = *(pte_t *)pmdp; __update_tlb(vma, address, pte); } /* * Allow physical addresses to be fixed up to help 36-bit peripherals. */ #ifdef CONFIG_MIPS_FIXUP_BIGPHYS_ADDR phys_addr_t fixup_bigphys_addr(phys_addr_t addr, phys_addr_t size); int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long vaddr, unsigned long pfn, unsigned long size, pgprot_t prot); #define io_remap_pfn_range io_remap_pfn_range #else #define fixup_bigphys_addr(addr, size) (addr) #endif /* CONFIG_MIPS_FIXUP_BIGPHYS_ADDR */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* We don't have hardware dirty/accessed bits, generic_pmdp_establish is fine.*/ #define pmdp_establish generic_pmdp_establish #define has_transparent_hugepage has_transparent_hugepage extern int has_transparent_hugepage(void); static inline int pmd_trans_huge(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_HUGE); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { pmd_val(pmd) |= _PAGE_HUGE; return pmd; } extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd); static inline pmd_t pmd_wrprotect(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); return pmd; } static inline pmd_t pmd_mkwrite(pmd_t pmd) { pmd_val(pmd) |= _PAGE_WRITE; if (pmd_val(pmd) & _PAGE_MODIFIED) pmd_val(pmd) |= _PAGE_SILENT_WRITE; return pmd; } static inline int pmd_dirty(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_MODIFIED); } static inline pmd_t pmd_mkclean(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); return pmd; } static inline pmd_t pmd_mkdirty(pmd_t pmd) { pmd_val(pmd) |= _PAGE_MODIFIED | _PAGE_SOFT_DIRTY; if (pmd_val(pmd) & _PAGE_WRITE) pmd_val(pmd) |= _PAGE_SILENT_WRITE; return pmd; } #define pmd_young pmd_young static inline int pmd_young(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_ACCESSED); } static inline pmd_t pmd_mkold(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_ACCESSED|_PAGE_SILENT_READ); return pmd; } static inline pmd_t pmd_mkyoung(pmd_t pmd) { pmd_val(pmd) |= _PAGE_ACCESSED; if (!(pmd_val(pmd) & _PAGE_NO_READ)) pmd_val(pmd) |= _PAGE_SILENT_READ; return pmd; } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pmd_soft_dirty(pmd_t pmd) { return !!(pmd_val(pmd) & _PAGE_SOFT_DIRTY); } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { pmd_val(pmd) |= _PAGE_SOFT_DIRTY; return pmd; } static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_SOFT_DIRTY); return pmd; } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ /* Extern to avoid header file madness */ extern pmd_t mk_pmd(struct page *page, pgprot_t prot); static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) { pmd_val(pmd) = (pmd_val(pmd) & (_PAGE_CHG_MASK | _PAGE_HUGE)) | (pgprot_val(newprot) & ~_PAGE_CHG_MASK); return pmd; } static inline pmd_t pmd_mkinvalid(pmd_t pmd) { pmd_val(pmd) &= ~(_PAGE_PRESENT | _PAGE_VALID | _PAGE_DIRTY); return pmd; } /* * The generic version pmdp_huge_get_and_clear uses a version of pmd_clear() with a * different prototype. */ #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old = *pmdp; pmd_clear(pmdp); return old; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifdef _PAGE_HUGE #define pmd_leaf(pmd) ((pmd_val(pmd) & _PAGE_HUGE) != 0) #define pud_leaf(pud) ((pud_val(pud) & _PAGE_HUGE) != 0) #endif #define gup_fast_permitted(start, end) (!cpu_has_dc_aliases) /* * We provide our own get_unmapped area to cope with the virtual aliasing * constraints placed on us by the cache architecture. */ #define HAVE_ARCH_UNMAPPED_AREA #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN #endif /* _ASM_PGTABLE_H */