/* * arch/m68k/mvme16x/config.c * * Copyright (C) 1995 Richard Hirst [richard@sleepie.demon.co.uk] * * Based on: * * linux/amiga/config.c * * Copyright (C) 1993 Hamish Macdonald * * This file is subject to the terms and conditions of the GNU General Public * License. See the file README.legal in the main directory of this archive * for more details. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/seq_file.h> #include <linux/tty.h> #include <linux/clocksource.h> #include <linux/console.h> #include <linux/linkage.h> #include <linux/init.h> #include <linux/major.h> #include <linux/genhd.h> #include <linux/rtc.h> #include <linux/interrupt.h> #include <linux/module.h> #include <asm/bootinfo.h> #include <asm/bootinfo-vme.h> #include <asm/byteorder.h> #include <asm/pgtable.h> #include <asm/setup.h> #include <asm/irq.h> #include <asm/traps.h> #include <asm/machdep.h> #include <asm/mvme16xhw.h> extern t_bdid mvme_bdid; static MK48T08ptr_t volatile rtc = (MK48T08ptr_t)MVME_RTC_BASE; static void mvme16x_get_model(char *model); extern void mvme16x_sched_init(irq_handler_t handler); extern int mvme16x_hwclk (int, struct rtc_time *); extern void mvme16x_reset (void); int bcd2int (unsigned char b); unsigned short mvme16x_config; EXPORT_SYMBOL(mvme16x_config); int __init mvme16x_parse_bootinfo(const struct bi_record *bi) { uint16_t tag = be16_to_cpu(bi->tag); if (tag == BI_VME_TYPE || tag == BI_VME_BRDINFO) return 0; else return 1; } void mvme16x_reset(void) { pr_info("\r\n\nCalled mvme16x_reset\r\n" "\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r"); /* The string of returns is to delay the reset until the whole * message is output. Assert reset bit in GCSR */ *(volatile char *)0xfff40107 = 0x80; } static void mvme16x_get_model(char *model) { p_bdid p = &mvme_bdid; char suf[4]; suf[1] = p->brdsuffix[0]; suf[2] = p->brdsuffix[1]; suf[3] = '\0'; suf[0] = suf[1] ? '-' : '\0'; sprintf(model, "Motorola MVME%x%s", be16_to_cpu(p->brdno), suf); } static void mvme16x_get_hardware_list(struct seq_file *m) { uint16_t brdno = be16_to_cpu(mvme_bdid.brdno); if (brdno == 0x0162 || brdno == 0x0172) { unsigned char rev = *(unsigned char *)MVME162_VERSION_REG; seq_printf (m, "VMEchip2 %spresent\n", rev & MVME16x_CONFIG_NO_VMECHIP2 ? "NOT " : ""); seq_printf (m, "SCSI interface %spresent\n", rev & MVME16x_CONFIG_NO_SCSICHIP ? "NOT " : ""); seq_printf (m, "Ethernet i/f %spresent\n", rev & MVME16x_CONFIG_NO_ETHERNET ? "NOT " : ""); } } /* * This function is called during kernel startup to initialize * the mvme16x IRQ handling routines. Should probably ensure * that the base vectors for the VMEChip2 and PCCChip2 are valid. */ static void __init mvme16x_init_IRQ (void) { m68k_setup_user_interrupt(VEC_USER, 192); } #define PCC2CHIP (0xfff42000) #define PCCSCCMICR (PCC2CHIP + 0x1d) #define PCCSCCTICR (PCC2CHIP + 0x1e) #define PCCSCCRICR (PCC2CHIP + 0x1f) #define PCCTPIACKR (PCC2CHIP + 0x25) #ifdef CONFIG_EARLY_PRINTK /**** cd2401 registers ****/ #define CD2401_ADDR (0xfff45000) #define CyGFRCR (0x81) #define CyCCR (0x13) #define CyCLR_CHAN (0x40) #define CyINIT_CHAN (0x20) #define CyCHIP_RESET (0x10) #define CyENB_XMTR (0x08) #define CyDIS_XMTR (0x04) #define CyENB_RCVR (0x02) #define CyDIS_RCVR (0x01) #define CyCAR (0xee) #define CyIER (0x11) #define CyMdmCh (0x80) #define CyRxExc (0x20) #define CyRxData (0x08) #define CyTxMpty (0x02) #define CyTxRdy (0x01) #define CyLICR (0x26) #define CyRISR (0x89) #define CyTIMEOUT (0x80) #define CySPECHAR (0x70) #define CyOVERRUN (0x08) #define CyPARITY (0x04) #define CyFRAME (0x02) #define CyBREAK (0x01) #define CyREOIR (0x84) #define CyTEOIR (0x85) #define CyMEOIR (0x86) #define CyNOTRANS (0x08) #define CyRFOC (0x30) #define CyRDR (0xf8) #define CyTDR (0xf8) #define CyMISR (0x8b) #define CyRISR (0x89) #define CyTISR (0x8a) #define CyMSVR1 (0xde) #define CyMSVR2 (0xdf) #define CyDSR (0x80) #define CyDCD (0x40) #define CyCTS (0x20) #define CyDTR (0x02) #define CyRTS (0x01) #define CyRTPRL (0x25) #define CyRTPRH (0x24) #define CyCOR1 (0x10) #define CyPARITY_NONE (0x00) #define CyPARITY_E (0x40) #define CyPARITY_O (0xC0) #define Cy_5_BITS (0x04) #define Cy_6_BITS (0x05) #define Cy_7_BITS (0x06) #define Cy_8_BITS (0x07) #define CyCOR2 (0x17) #define CyETC (0x20) #define CyCtsAE (0x02) #define CyCOR3 (0x16) #define Cy_1_STOP (0x02) #define Cy_2_STOP (0x04) #define CyCOR4 (0x15) #define CyREC_FIFO (0x0F) /* Receive FIFO threshold */ #define CyCOR5 (0x14) #define CyCOR6 (0x18) #define CyCOR7 (0x07) #define CyRBPR (0xcb) #define CyRCOR (0xc8) #define CyTBPR (0xc3) #define CyTCOR (0xc0) #define CySCHR1 (0x1f) #define CySCHR2 (0x1e) #define CyTPR (0xda) #define CyPILR1 (0xe3) #define CyPILR2 (0xe0) #define CyPILR3 (0xe1) #define CyCMR (0x1b) #define CyASYNC (0x02) #define CyLICR (0x26) #define CyLIVR (0x09) #define CySCRL (0x23) #define CySCRH (0x22) #define CyTFTC (0x80) void mvme16x_cons_write(struct console *co, const char *str, unsigned count) { volatile unsigned char *base_addr = (u_char *)CD2401_ADDR; volatile u_char sink; u_char ier; int port; u_char do_lf = 0; int i = 0; /* Ensure transmitter is enabled! */ port = 0; base_addr[CyCAR] = (u_char)port; while (base_addr[CyCCR]) ; base_addr[CyCCR] = CyENB_XMTR; ier = base_addr[CyIER]; base_addr[CyIER] = CyTxMpty; while (1) { if (in_8(PCCSCCTICR) & 0x20) { /* We have a Tx int. Acknowledge it */ sink = in_8(PCCTPIACKR); if ((base_addr[CyLICR] >> 2) == port) { if (i == count) { /* Last char of string is now output */ base_addr[CyTEOIR] = CyNOTRANS; break; } if (do_lf) { base_addr[CyTDR] = '\n'; str++; i++; do_lf = 0; } else if (*str == '\n') { base_addr[CyTDR] = '\r'; do_lf = 1; } else { base_addr[CyTDR] = *str++; i++; } base_addr[CyTEOIR] = 0; } else base_addr[CyTEOIR] = CyNOTRANS; } } base_addr[CyIER] = ier; } #endif void __init config_mvme16x(void) { p_bdid p = &mvme_bdid; char id[40]; uint16_t brdno = be16_to_cpu(p->brdno); mach_max_dma_address = 0xffffffff; mach_sched_init = mvme16x_sched_init; mach_init_IRQ = mvme16x_init_IRQ; mach_hwclk = mvme16x_hwclk; mach_reset = mvme16x_reset; mach_get_model = mvme16x_get_model; mach_get_hardware_list = mvme16x_get_hardware_list; /* Report board revision */ if (strncmp("BDID", p->bdid, 4)) { pr_crit("Bug call .BRD_ID returned garbage - giving up\n"); while (1) ; } /* Board type is only set by newer versions of vmelilo/tftplilo */ if (vme_brdtype == 0) vme_brdtype = brdno; mvme16x_get_model(id); pr_info("BRD_ID: %s BUG %x.%x %02x/%02x/%02x\n", id, p->rev >> 4, p->rev & 0xf, p->yr, p->mth, p->day); if (brdno == 0x0162 || brdno == 0x172) { unsigned char rev = *(unsigned char *)MVME162_VERSION_REG; mvme16x_config = rev | MVME16x_CONFIG_GOT_SCCA; pr_info("MVME%x Hardware status:\n", brdno); pr_info(" CPU Type 68%s040\n", rev & MVME16x_CONFIG_GOT_FPU ? "" : "LC"); pr_info(" CPU clock %dMHz\n", rev & MVME16x_CONFIG_SPEED_32 ? 32 : 25); pr_info(" VMEchip2 %spresent\n", rev & MVME16x_CONFIG_NO_VMECHIP2 ? "NOT " : ""); pr_info(" SCSI interface %spresent\n", rev & MVME16x_CONFIG_NO_SCSICHIP ? "NOT " : ""); pr_info(" Ethernet interface %spresent\n", rev & MVME16x_CONFIG_NO_ETHERNET ? "NOT " : ""); } else { mvme16x_config = MVME16x_CONFIG_GOT_LP | MVME16x_CONFIG_GOT_CD2401; } } static irqreturn_t mvme16x_abort_int (int irq, void *dev_id) { unsigned long *new = (unsigned long *)vectors; unsigned long *old = (unsigned long *)0xffe00000; volatile unsigned char uc, *ucp; uint16_t brdno = be16_to_cpu(mvme_bdid.brdno); if (brdno == 0x0162 || brdno == 0x172) { ucp = (volatile unsigned char *)0xfff42043; uc = *ucp | 8; *ucp = uc; } else { *(volatile unsigned long *)0xfff40074 = 0x40000000; } *(new+4) = *(old+4); /* Illegal instruction */ *(new+9) = *(old+9); /* Trace */ *(new+47) = *(old+47); /* Trap #15 */ if (brdno == 0x0162 || brdno == 0x172) *(new+0x5e) = *(old+0x5e); /* ABORT switch */ else *(new+0x6e) = *(old+0x6e); /* ABORT switch */ return IRQ_HANDLED; } static u64 mvme16x_read_clk(struct clocksource *cs); static struct clocksource mvme16x_clk = { .name = "pcc", .rating = 250, .read = mvme16x_read_clk, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u32 clk_total; #define PCC_TIMER_CLOCK_FREQ 1000000 #define PCC_TIMER_CYCLES (PCC_TIMER_CLOCK_FREQ / HZ) #define PCCTCMP1 (PCC2CHIP + 0x04) #define PCCTCNT1 (PCC2CHIP + 0x08) #define PCCTOVR1 (PCC2CHIP + 0x17) #define PCCTIC1 (PCC2CHIP + 0x1b) #define PCCTOVR1_TIC_EN 0x01 #define PCCTOVR1_COC_EN 0x02 #define PCCTOVR1_OVR_CLR 0x04 #define PCCTIC1_INT_CLR 0x08 #define PCCTIC1_INT_EN 0x10 static irqreturn_t mvme16x_timer_int (int irq, void *dev_id) { irq_handler_t timer_routine = dev_id; unsigned long flags; local_irq_save(flags); out_8(PCCTIC1, in_8(PCCTIC1) | PCCTIC1_INT_CLR); out_8(PCCTOVR1, PCCTOVR1_OVR_CLR); clk_total += PCC_TIMER_CYCLES; timer_routine(0, NULL); local_irq_restore(flags); return IRQ_HANDLED; } void mvme16x_sched_init (irq_handler_t timer_routine) { uint16_t brdno = be16_to_cpu(mvme_bdid.brdno); int irq; /* Using PCCchip2 or MC2 chip tick timer 1 */ out_be32(PCCTCNT1, 0); out_be32(PCCTCMP1, PCC_TIMER_CYCLES); out_8(PCCTOVR1, in_8(PCCTOVR1) | PCCTOVR1_TIC_EN | PCCTOVR1_COC_EN); out_8(PCCTIC1, PCCTIC1_INT_EN | 6); if (request_irq(MVME16x_IRQ_TIMER, mvme16x_timer_int, IRQF_TIMER, "timer", timer_routine)) panic ("Couldn't register timer int"); clocksource_register_hz(&mvme16x_clk, PCC_TIMER_CLOCK_FREQ); if (brdno == 0x0162 || brdno == 0x172) irq = MVME162_IRQ_ABORT; else irq = MVME167_IRQ_ABORT; if (request_irq(irq, mvme16x_abort_int, 0, "abort", mvme16x_abort_int)) panic ("Couldn't register abort int"); } static u64 mvme16x_read_clk(struct clocksource *cs) { unsigned long flags; u8 overflow, tmp; u32 ticks; local_irq_save(flags); tmp = in_8(PCCTOVR1) >> 4; ticks = in_be32(PCCTCNT1); overflow = in_8(PCCTOVR1) >> 4; if (overflow != tmp) ticks = in_be32(PCCTCNT1); ticks += overflow * PCC_TIMER_CYCLES; ticks += clk_total; local_irq_restore(flags); return ticks; } int bcd2int (unsigned char b) { return ((b>>4)*10 + (b&15)); } int mvme16x_hwclk(int op, struct rtc_time *t) { #warning check me! if (!op) { rtc->ctrl = RTC_READ; t->tm_year = bcd2int (rtc->bcd_year); t->tm_mon = bcd2int(rtc->bcd_mth) - 1; t->tm_mday = bcd2int (rtc->bcd_dom); t->tm_hour = bcd2int (rtc->bcd_hr); t->tm_min = bcd2int (rtc->bcd_min); t->tm_sec = bcd2int (rtc->bcd_sec); rtc->ctrl = 0; if (t->tm_year < 70) t->tm_year += 100; } return 0; }