#ifndef _M68K_BITOPS_H #define _M68K_BITOPS_H /* * Copyright 1992, Linus Torvalds. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive * for more details. */ #ifndef _LINUX_BITOPS_H #error only can be included directly #endif #include #include /* * Bit access functions vary across the ColdFire and 68k families. * So we will break them out here, and then macro in the ones we want. * * ColdFire - supports standard bset/bclr/bchg with register operand only * 68000 - supports standard bset/bclr/bchg with memory operand * >= 68020 - also supports the bfset/bfclr/bfchg instructions * * Although it is possible to use only the bset/bclr/bchg with register * operands on all platforms you end up with larger generated code. * So we use the best form possible on a given platform. */ static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; __asm__ __volatile__ ("bset %1,(%0)" : : "a" (p), "di" (nr & 7) : "memory"); } static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; __asm__ __volatile__ ("bset %1,%0" : "+m" (*p) : "di" (nr & 7)); } static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr) { __asm__ __volatile__ ("bfset %1{%0:#1}" : : "d" (nr ^ 31), "o" (*vaddr) : "memory"); } #if defined(CONFIG_COLDFIRE) #define set_bit(nr, vaddr) bset_reg_set_bit(nr, vaddr) #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) #define set_bit(nr, vaddr) bset_mem_set_bit(nr, vaddr) #else #define set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ bset_mem_set_bit(nr, vaddr) : \ bfset_mem_set_bit(nr, vaddr)) #endif static __always_inline void arch___set_bit(unsigned long nr, volatile unsigned long *addr) { set_bit(nr, addr); } static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; __asm__ __volatile__ ("bclr %1,(%0)" : : "a" (p), "di" (nr & 7) : "memory"); } static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; __asm__ __volatile__ ("bclr %1,%0" : "+m" (*p) : "di" (nr & 7)); } static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr) { __asm__ __volatile__ ("bfclr %1{%0:#1}" : : "d" (nr ^ 31), "o" (*vaddr) : "memory"); } #if defined(CONFIG_COLDFIRE) #define clear_bit(nr, vaddr) bclr_reg_clear_bit(nr, vaddr) #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) #define clear_bit(nr, vaddr) bclr_mem_clear_bit(nr, vaddr) #else #define clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ bclr_mem_clear_bit(nr, vaddr) : \ bfclr_mem_clear_bit(nr, vaddr)) #endif static __always_inline void arch___clear_bit(unsigned long nr, volatile unsigned long *addr) { clear_bit(nr, addr); } static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; __asm__ __volatile__ ("bchg %1,(%0)" : : "a" (p), "di" (nr & 7) : "memory"); } static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; __asm__ __volatile__ ("bchg %1,%0" : "+m" (*p) : "di" (nr & 7)); } static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr) { __asm__ __volatile__ ("bfchg %1{%0:#1}" : : "d" (nr ^ 31), "o" (*vaddr) : "memory"); } #if defined(CONFIG_COLDFIRE) #define change_bit(nr, vaddr) bchg_reg_change_bit(nr, vaddr) #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) #define change_bit(nr, vaddr) bchg_mem_change_bit(nr, vaddr) #else #define change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ bchg_mem_change_bit(nr, vaddr) : \ bfchg_mem_change_bit(nr, vaddr)) #endif static __always_inline void arch___change_bit(unsigned long nr, volatile unsigned long *addr) { change_bit(nr, addr); } static __always_inline bool arch_test_bit(unsigned long nr, const volatile unsigned long *addr) { return (addr[nr >> 5] & (1UL << (nr & 31))) != 0; } static inline int bset_reg_test_and_set_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; char retval; __asm__ __volatile__ ("bset %2,(%1); sne %0" : "=d" (retval) : "a" (p), "di" (nr & 7) : "memory"); return retval; } static inline int bset_mem_test_and_set_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; char retval; __asm__ __volatile__ ("bset %2,%1; sne %0" : "=d" (retval), "+m" (*p) : "di" (nr & 7)); return retval; } static inline int bfset_mem_test_and_set_bit(int nr, volatile unsigned long *vaddr) { char retval; __asm__ __volatile__ ("bfset %2{%1:#1}; sne %0" : "=d" (retval) : "d" (nr ^ 31), "o" (*vaddr) : "memory"); return retval; } #if defined(CONFIG_COLDFIRE) #define test_and_set_bit(nr, vaddr) bset_reg_test_and_set_bit(nr, vaddr) #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) #define test_and_set_bit(nr, vaddr) bset_mem_test_and_set_bit(nr, vaddr) #else #define test_and_set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ bset_mem_test_and_set_bit(nr, vaddr) : \ bfset_mem_test_and_set_bit(nr, vaddr)) #endif static __always_inline bool arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) { return test_and_set_bit(nr, addr); } static inline int bclr_reg_test_and_clear_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; char retval; __asm__ __volatile__ ("bclr %2,(%1); sne %0" : "=d" (retval) : "a" (p), "di" (nr & 7) : "memory"); return retval; } static inline int bclr_mem_test_and_clear_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; char retval; __asm__ __volatile__ ("bclr %2,%1; sne %0" : "=d" (retval), "+m" (*p) : "di" (nr & 7)); return retval; } static inline int bfclr_mem_test_and_clear_bit(int nr, volatile unsigned long *vaddr) { char retval; __asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0" : "=d" (retval) : "d" (nr ^ 31), "o" (*vaddr) : "memory"); return retval; } #if defined(CONFIG_COLDFIRE) #define test_and_clear_bit(nr, vaddr) bclr_reg_test_and_clear_bit(nr, vaddr) #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) #define test_and_clear_bit(nr, vaddr) bclr_mem_test_and_clear_bit(nr, vaddr) #else #define test_and_clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ bclr_mem_test_and_clear_bit(nr, vaddr) : \ bfclr_mem_test_and_clear_bit(nr, vaddr)) #endif static __always_inline bool arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) { return test_and_clear_bit(nr, addr); } static inline int bchg_reg_test_and_change_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; char retval; __asm__ __volatile__ ("bchg %2,(%1); sne %0" : "=d" (retval) : "a" (p), "di" (nr & 7) : "memory"); return retval; } static inline int bchg_mem_test_and_change_bit(int nr, volatile unsigned long *vaddr) { char *p = (char *)vaddr + (nr ^ 31) / 8; char retval; __asm__ __volatile__ ("bchg %2,%1; sne %0" : "=d" (retval), "+m" (*p) : "di" (nr & 7)); return retval; } static inline int bfchg_mem_test_and_change_bit(int nr, volatile unsigned long *vaddr) { char retval; __asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0" : "=d" (retval) : "d" (nr ^ 31), "o" (*vaddr) : "memory"); return retval; } #if defined(CONFIG_COLDFIRE) #define test_and_change_bit(nr, vaddr) bchg_reg_test_and_change_bit(nr, vaddr) #elif defined(CONFIG_CPU_HAS_NO_BITFIELDS) #define test_and_change_bit(nr, vaddr) bchg_mem_test_and_change_bit(nr, vaddr) #else #define test_and_change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \ bchg_mem_test_and_change_bit(nr, vaddr) : \ bfchg_mem_test_and_change_bit(nr, vaddr)) #endif static __always_inline bool arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) { return test_and_change_bit(nr, addr); } /* * The true 68020 and more advanced processors support the "bfffo" * instruction for finding bits. ColdFire and simple 68000 parts * (including CPU32) do not support this. They simply use the generic * functions. */ #if defined(CONFIG_CPU_HAS_NO_BITFIELDS) #include #else static inline int find_first_zero_bit(const unsigned long *vaddr, unsigned size) { const unsigned long *p = vaddr; int res = 32; unsigned int words; unsigned long num; if (!size) return 0; words = (size + 31) >> 5; while (!(num = ~*p++)) { if (!--words) goto out; } __asm__ __volatile__ ("bfffo %1{#0,#0},%0" : "=d" (res) : "d" (num & -num)); res ^= 31; out: res += ((long)p - (long)vaddr - 4) * 8; return res < size ? res : size; } #define find_first_zero_bit find_first_zero_bit static inline int find_next_zero_bit(const unsigned long *vaddr, int size, int offset) { const unsigned long *p = vaddr + (offset >> 5); int bit = offset & 31UL, res; if (offset >= size) return size; if (bit) { unsigned long num = ~*p++ & (~0UL << bit); offset -= bit; /* Look for zero in first longword */ __asm__ __volatile__ ("bfffo %1{#0,#0},%0" : "=d" (res) : "d" (num & -num)); if (res < 32) { offset += res ^ 31; return offset < size ? offset : size; } offset += 32; if (offset >= size) return size; } /* No zero yet, search remaining full bytes for a zero */ return offset + find_first_zero_bit(p, size - offset); } #define find_next_zero_bit find_next_zero_bit static inline int find_first_bit(const unsigned long *vaddr, unsigned size) { const unsigned long *p = vaddr; int res = 32; unsigned int words; unsigned long num; if (!size) return 0; words = (size + 31) >> 5; while (!(num = *p++)) { if (!--words) goto out; } __asm__ __volatile__ ("bfffo %1{#0,#0},%0" : "=d" (res) : "d" (num & -num)); res ^= 31; out: res += ((long)p - (long)vaddr - 4) * 8; return res < size ? res : size; } #define find_first_bit find_first_bit static inline int find_next_bit(const unsigned long *vaddr, int size, int offset) { const unsigned long *p = vaddr + (offset >> 5); int bit = offset & 31UL, res; if (offset >= size) return size; if (bit) { unsigned long num = *p++ & (~0UL << bit); offset -= bit; /* Look for one in first longword */ __asm__ __volatile__ ("bfffo %1{#0,#0},%0" : "=d" (res) : "d" (num & -num)); if (res < 32) { offset += res ^ 31; return offset < size ? offset : size; } offset += 32; if (offset >= size) return size; } /* No one yet, search remaining full bytes for a one */ return offset + find_first_bit(p, size - offset); } #define find_next_bit find_next_bit /* * ffz = Find First Zero in word. Undefined if no zero exists, * so code should check against ~0UL first.. */ static inline unsigned long ffz(unsigned long word) { int res; __asm__ __volatile__ ("bfffo %1{#0,#0},%0" : "=d" (res) : "d" (~word & -~word)); return res ^ 31; } #endif #ifdef __KERNEL__ #if defined(CONFIG_CPU_HAS_NO_BITFIELDS) /* * The newer ColdFire family members support a "bitrev" instruction * and we can use that to implement a fast ffs. Older Coldfire parts, * and normal 68000 parts don't have anything special, so we use the * generic functions for those. */ #if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \ !defined(CONFIG_M68000) static inline unsigned long __ffs(unsigned long x) { __asm__ __volatile__ ("bitrev %0; ff1 %0" : "=d" (x) : "0" (x)); return x; } static inline int ffs(int x) { if (!x) return 0; return __ffs(x) + 1; } #else #include #include #endif #include #include #else /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ static inline int ffs(int x) { int cnt; __asm__ ("bfffo %1{#0:#0},%0" : "=d" (cnt) : "dm" (x & -x)); return 32 - cnt; } static inline unsigned long __ffs(unsigned long x) { return ffs(x) - 1; } /* * fls: find last bit set. */ static inline int fls(unsigned int x) { int cnt; __asm__ ("bfffo %1{#0,#0},%0" : "=d" (cnt) : "dm" (x)); return 32 - cnt; } static inline unsigned long __fls(unsigned long x) { return fls(x) - 1; } #endif /* Simple test-and-set bit locks */ #define test_and_set_bit_lock test_and_set_bit #define clear_bit_unlock clear_bit #define __clear_bit_unlock clear_bit_unlock #include #include #include #include #include #include #endif /* __KERNEL__ */ #endif /* _M68K_BITOPS_H */