// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020-2022 Loongson Technology Corporation Limited * * Derived from MIPS: * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995 Waldorf Electronics * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle * Copyright (C) 1996 Stoned Elipot * Copyright (C) 1999 Silicon Graphics, Inc. * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SMBIOS_BIOSSIZE_OFFSET 0x09 #define SMBIOS_BIOSEXTERN_OFFSET 0x13 #define SMBIOS_FREQLOW_OFFSET 0x16 #define SMBIOS_FREQHIGH_OFFSET 0x17 #define SMBIOS_FREQLOW_MASK 0xFF #define SMBIOS_CORE_PACKAGE_OFFSET 0x23 #define LOONGSON_EFI_ENABLE (1 << 3) struct screen_info screen_info __section(".data"); unsigned long fw_arg0, fw_arg1, fw_arg2; DEFINE_PER_CPU(unsigned long, kernelsp); struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly; EXPORT_SYMBOL(cpu_data); struct loongson_board_info b_info; static const char dmi_empty_string[] = " "; /* * Setup information * * These are initialized so they are in the .data section */ char init_command_line[COMMAND_LINE_SIZE] __initdata; static int num_standard_resources; static struct resource *standard_resources; static struct resource code_resource = { .name = "Kernel code", }; static struct resource data_resource = { .name = "Kernel data", }; static struct resource bss_resource = { .name = "Kernel bss", }; const char *get_system_type(void) { return "generic-loongson-machine"; } void __init arch_cpu_finalize_init(void) { alternative_instructions(); } static const char *dmi_string_parse(const struct dmi_header *dm, u8 s) { const u8 *bp = ((u8 *) dm) + dm->length; if (s) { s--; while (s > 0 && *bp) { bp += strlen(bp) + 1; s--; } if (*bp != 0) { size_t len = strlen(bp)+1; size_t cmp_len = len > 8 ? 8 : len; if (!memcmp(bp, dmi_empty_string, cmp_len)) return dmi_empty_string; return bp; } } return ""; } static void __init parse_cpu_table(const struct dmi_header *dm) { long freq_temp = 0; char *dmi_data = (char *)dm; freq_temp = ((*(dmi_data + SMBIOS_FREQHIGH_OFFSET) << 8) + ((*(dmi_data + SMBIOS_FREQLOW_OFFSET)) & SMBIOS_FREQLOW_MASK)); cpu_clock_freq = freq_temp * 1000000; loongson_sysconf.cpuname = (void *)dmi_string_parse(dm, dmi_data[16]); loongson_sysconf.cores_per_package = *(dmi_data + SMBIOS_CORE_PACKAGE_OFFSET); pr_info("CpuClock = %llu\n", cpu_clock_freq); } static void __init parse_bios_table(const struct dmi_header *dm) { char *dmi_data = (char *)dm; b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6; } static void __init find_tokens(const struct dmi_header *dm, void *dummy) { switch (dm->type) { case 0x0: /* Extern BIOS */ parse_bios_table(dm); break; case 0x4: /* Calling interface */ parse_cpu_table(dm); break; } } static void __init smbios_parse(void) { b_info.bios_vendor = (void *)dmi_get_system_info(DMI_BIOS_VENDOR); b_info.bios_version = (void *)dmi_get_system_info(DMI_BIOS_VERSION); b_info.bios_release_date = (void *)dmi_get_system_info(DMI_BIOS_DATE); b_info.board_vendor = (void *)dmi_get_system_info(DMI_BOARD_VENDOR); b_info.board_name = (void *)dmi_get_system_info(DMI_BOARD_NAME); dmi_walk(find_tokens, NULL); } #ifdef CONFIG_ARCH_WRITECOMBINE bool wc_enabled = true; #else bool wc_enabled = false; #endif EXPORT_SYMBOL(wc_enabled); static int __init setup_writecombine(char *p) { if (!strcmp(p, "on")) wc_enabled = true; else if (!strcmp(p, "off")) wc_enabled = false; else pr_warn("Unknown writecombine setting \"%s\".\n", p); return 0; } early_param("writecombine", setup_writecombine); static int usermem __initdata; static int __init early_parse_mem(char *p) { phys_addr_t start, size; if (!p) { pr_err("mem parameter is empty, do nothing\n"); return -EINVAL; } /* * If a user specifies memory size, we * blow away any automatically generated * size. */ if (usermem == 0) { usermem = 1; memblock_remove(memblock_start_of_DRAM(), memblock_end_of_DRAM() - memblock_start_of_DRAM()); } start = 0; size = memparse(p, &p); if (*p == '@') start = memparse(p + 1, &p); else { pr_err("Invalid format!\n"); return -EINVAL; } if (!IS_ENABLED(CONFIG_NUMA)) memblock_add(start, size); else memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE); return 0; } early_param("mem", early_parse_mem); static void __init arch_reserve_vmcore(void) { #ifdef CONFIG_PROC_VMCORE u64 i; phys_addr_t start, end; if (!is_kdump_kernel()) return; if (!elfcorehdr_size) { for_each_mem_range(i, &start, &end) { if (elfcorehdr_addr >= start && elfcorehdr_addr < end) { /* * Reserve from the elf core header to the end of * the memory segment, that should all be kdump * reserved memory. */ elfcorehdr_size = end - elfcorehdr_addr; break; } } } if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { pr_warn("elfcorehdr is overlapped\n"); return; } memblock_reserve(elfcorehdr_addr, elfcorehdr_size); pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n", elfcorehdr_size >> 10, elfcorehdr_addr); #endif } /* 2MB alignment for crash kernel regions */ #define CRASH_ALIGN SZ_2M #define CRASH_ADDR_MAX SZ_4G static void __init arch_parse_crashkernel(void) { #ifdef CONFIG_KEXEC int ret; unsigned long long total_mem; unsigned long long crash_base, crash_size; total_mem = memblock_phys_mem_size(); ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base); if (ret < 0 || crash_size <= 0) return; if (crash_base <= 0) { crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, CRASH_ALIGN, CRASH_ADDR_MAX); if (!crash_base) { pr_warn("crashkernel reservation failed - No suitable area found.\n"); return; } } else if (!memblock_phys_alloc_range(crash_size, CRASH_ALIGN, crash_base, crash_base + crash_size)) { pr_warn("Invalid memory region reserved for crash kernel\n"); return; } crashk_res.start = crash_base; crashk_res.end = crash_base + crash_size - 1; #endif } static void __init fdt_setup(void) { #ifdef CONFIG_OF_EARLY_FLATTREE void *fdt_pointer; /* ACPI-based systems do not require parsing fdt */ if (acpi_os_get_root_pointer()) return; /* Look for a device tree configuration table entry */ fdt_pointer = efi_fdt_pointer(); if (!fdt_pointer || fdt_check_header(fdt_pointer)) return; early_init_dt_scan(fdt_pointer); early_init_fdt_reserve_self(); max_low_pfn = PFN_PHYS(memblock_end_of_DRAM()); #endif } static void __init bootcmdline_init(char **cmdline_p) { /* * If CONFIG_CMDLINE_FORCE is enabled then initializing the command line * is trivial - we simply use the built-in command line unconditionally & * unmodified. */ if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) { strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); goto out; } #ifdef CONFIG_OF_FLATTREE /* * If CONFIG_CMDLINE_BOOTLOADER is enabled and we are in FDT-based system, * the boot_command_line will be overwritten by early_init_dt_scan_chosen(). * So we need to append init_command_line (the original copy of boot_command_line) * to boot_command_line. */ if (initial_boot_params) { if (boot_command_line[0]) strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, init_command_line, COMMAND_LINE_SIZE); goto out; } #endif /* * Append built-in command line to the bootloader command line if * CONFIG_CMDLINE_EXTEND is enabled. */ if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) && CONFIG_CMDLINE[0]) { strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); } /* * Use built-in command line if the bootloader command line is empty. */ if (IS_ENABLED(CONFIG_CMDLINE_BOOTLOADER) && !boot_command_line[0]) strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE); out: *cmdline_p = boot_command_line; } void __init platform_init(void) { arch_reserve_vmcore(); arch_parse_crashkernel(); #ifdef CONFIG_ACPI_TABLE_UPGRADE acpi_table_upgrade(); #endif #ifdef CONFIG_ACPI acpi_gbl_use_default_register_widths = false; acpi_boot_table_init(); #endif early_init_fdt_scan_reserved_mem(); unflatten_and_copy_device_tree(); #ifdef CONFIG_NUMA init_numa_memory(); #endif dmi_setup(); smbios_parse(); pr_info("The BIOS Version: %s\n", b_info.bios_version); efi_runtime_init(); } static void __init check_kernel_sections_mem(void) { phys_addr_t start = __pa_symbol(&_text); phys_addr_t size = __pa_symbol(&_end) - start; if (!memblock_is_region_memory(start, size)) { pr_info("Kernel sections are not in the memory maps\n"); memblock_add(start, size); } } /* * arch_mem_init - initialize memory management subsystem */ static void __init arch_mem_init(char **cmdline_p) { if (usermem) pr_info("User-defined physical RAM map overwrite\n"); check_kernel_sections_mem(); /* * In order to reduce the possibility of kernel panic when failed to * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate * low memory as small as possible before swiotlb_init(), so make * sparse_init() using top-down allocation. */ memblock_set_bottom_up(false); sparse_init(); memblock_set_bottom_up(true); swiotlb_init(true, SWIOTLB_VERBOSE); dma_contiguous_reserve(PFN_PHYS(max_low_pfn)); /* Reserve for hibernation. */ register_nosave_region(PFN_DOWN(__pa_symbol(&__nosave_begin)), PFN_UP(__pa_symbol(&__nosave_end))); memblock_dump_all(); early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn)); } static void __init resource_init(void) { long i = 0; size_t res_size; struct resource *res; struct memblock_region *region; code_resource.start = __pa_symbol(&_text); code_resource.end = __pa_symbol(&_etext) - 1; data_resource.start = __pa_symbol(&_etext); data_resource.end = __pa_symbol(&_edata) - 1; bss_resource.start = __pa_symbol(&__bss_start); bss_resource.end = __pa_symbol(&__bss_stop) - 1; num_standard_resources = memblock.memory.cnt; res_size = num_standard_resources * sizeof(*standard_resources); standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); for_each_mem_region(region) { res = &standard_resources[i++]; if (!memblock_is_nomap(region)) { res->name = "System RAM"; res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; } else { res->name = "Reserved"; res->flags = IORESOURCE_MEM; res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region)); res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1; } request_resource(&iomem_resource, res); /* * We don't know which RAM region contains kernel data, * so we try it repeatedly and let the resource manager * test it. */ request_resource(res, &code_resource); request_resource(res, &data_resource); request_resource(res, &bss_resource); } #ifdef CONFIG_KEXEC if (crashk_res.start < crashk_res.end) { insert_resource(&iomem_resource, &crashk_res); pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n", (unsigned long)((crashk_res.end - crashk_res.start + 1) >> 20), (unsigned long)(crashk_res.start >> 20)); } #endif } static int __init add_legacy_isa_io(struct fwnode_handle *fwnode, resource_size_t hw_start, resource_size_t size) { int ret = 0; unsigned long vaddr; struct logic_pio_hwaddr *range; range = kzalloc(sizeof(*range), GFP_ATOMIC); if (!range) return -ENOMEM; range->fwnode = fwnode; range->size = size = round_up(size, PAGE_SIZE); range->hw_start = hw_start; range->flags = LOGIC_PIO_CPU_MMIO; ret = logic_pio_register_range(range); if (ret) { kfree(range); return ret; } /* Legacy ISA must placed at the start of PCI_IOBASE */ if (range->io_start != 0) { logic_pio_unregister_range(range); kfree(range); return -EINVAL; } vaddr = (unsigned long)(PCI_IOBASE + range->io_start); ioremap_page_range(vaddr, vaddr + size, hw_start, pgprot_device(PAGE_KERNEL)); return 0; } static __init int arch_reserve_pio_range(void) { struct device_node *np; for_each_node_by_name(np, "isa") { struct of_range range; struct of_range_parser parser; pr_info("ISA Bridge: %pOF\n", np); if (of_range_parser_init(&parser, np)) { pr_info("Failed to parse resources.\n"); of_node_put(np); break; } for_each_of_range(&parser, &range) { switch (range.flags & IORESOURCE_TYPE_BITS) { case IORESOURCE_IO: pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n", range.cpu_addr, range.cpu_addr + range.size - 1, range.bus_addr); if (add_legacy_isa_io(&np->fwnode, range.cpu_addr, range.size)) pr_warn("Failed to reserve legacy IO in Logic PIO\n"); break; case IORESOURCE_MEM: pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx\n", range.cpu_addr, range.cpu_addr + range.size - 1, range.bus_addr); break; } } } return 0; } arch_initcall(arch_reserve_pio_range); static int __init reserve_memblock_reserved_regions(void) { u64 i, j; for (i = 0; i < num_standard_resources; ++i) { struct resource *mem = &standard_resources[i]; phys_addr_t r_start, r_end, mem_size = resource_size(mem); if (!memblock_is_region_reserved(mem->start, mem_size)) continue; for_each_reserved_mem_range(j, &r_start, &r_end) { resource_size_t start, end; start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); if (start > mem->end || end < mem->start) continue; reserve_region_with_split(mem, start, end, "Reserved"); } } return 0; } arch_initcall(reserve_memblock_reserved_regions); #ifdef CONFIG_SMP static void __init prefill_possible_map(void) { int i, possible; possible = num_processors + disabled_cpus; if (possible > nr_cpu_ids) possible = nr_cpu_ids; pr_info("SMP: Allowing %d CPUs, %d hotplug CPUs\n", possible, max((possible - num_processors), 0)); for (i = 0; i < possible; i++) set_cpu_possible(i, true); for (; i < NR_CPUS; i++) set_cpu_possible(i, false); set_nr_cpu_ids(possible); } #endif void __init setup_arch(char **cmdline_p) { cpu_probe(); init_environ(); efi_init(); fdt_setup(); memblock_init(); pagetable_init(); bootcmdline_init(cmdline_p); parse_early_param(); reserve_initrd_mem(); platform_init(); arch_mem_init(cmdline_p); resource_init(); #ifdef CONFIG_SMP plat_smp_setup(); prefill_possible_map(); #endif paging_init(); #ifdef CONFIG_KASAN kasan_init(); #endif }