// SPDX-License-Identifier: GPL-2.0-only /* * Based on arch/arm/mm/fault.c * * Copyright (C) 1995 Linus Torvalds * Copyright (C) 1995-2004 Russell King * Copyright (C) 2012 ARM Ltd. */ #include <linux/acpi.h> #include <linux/bitfield.h> #include <linux/extable.h> #include <linux/kfence.h> #include <linux/signal.h> #include <linux/mm.h> #include <linux/hardirq.h> #include <linux/init.h> #include <linux/kasan.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/page-flags.h> #include <linux/sched/signal.h> #include <linux/sched/debug.h> #include <linux/highmem.h> #include <linux/perf_event.h> #include <linux/preempt.h> #include <linux/hugetlb.h> #include <asm/acpi.h> #include <asm/bug.h> #include <asm/cmpxchg.h> #include <asm/cpufeature.h> #include <asm/exception.h> #include <asm/daifflags.h> #include <asm/debug-monitors.h> #include <asm/esr.h> #include <asm/kprobes.h> #include <asm/mte.h> #include <asm/processor.h> #include <asm/sysreg.h> #include <asm/system_misc.h> #include <asm/tlbflush.h> #include <asm/traps.h> struct fault_info { int (*fn)(unsigned long far, unsigned int esr, struct pt_regs *regs); int sig; int code; const char *name; }; static const struct fault_info fault_info[]; static struct fault_info debug_fault_info[]; static inline const struct fault_info *esr_to_fault_info(unsigned int esr) { return fault_info + (esr & ESR_ELx_FSC); } static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr) { return debug_fault_info + DBG_ESR_EVT(esr); } static void data_abort_decode(unsigned int esr) { pr_alert("Data abort info:\n"); if (esr & ESR_ELx_ISV) { pr_alert(" Access size = %u byte(s)\n", 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); pr_alert(" SSE = %lu, SRT = %lu\n", (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); pr_alert(" SF = %lu, AR = %lu\n", (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); } else { pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); } pr_alert(" CM = %lu, WnR = %lu\n", (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); } static void mem_abort_decode(unsigned int esr) { pr_alert("Mem abort info:\n"); pr_alert(" ESR = 0x%08x\n", esr); pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", ESR_ELx_EC(esr), esr_get_class_string(esr), (esr & ESR_ELx_IL) ? 32 : 16); pr_alert(" SET = %lu, FnV = %lu\n", (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); pr_alert(" EA = %lu, S1PTW = %lu\n", (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); pr_alert(" FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC), esr_to_fault_info(esr)->name); if (esr_is_data_abort(esr)) data_abort_decode(esr); } static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) { /* Either init_pg_dir or swapper_pg_dir */ if (mm == &init_mm) return __pa_symbol(mm->pgd); return (unsigned long)virt_to_phys(mm->pgd); } /* * Dump out the page tables associated with 'addr' in the currently active mm. */ static void show_pte(unsigned long addr) { struct mm_struct *mm; pgd_t *pgdp; pgd_t pgd; if (is_ttbr0_addr(addr)) { /* TTBR0 */ mm = current->active_mm; if (mm == &init_mm) { pr_alert("[%016lx] user address but active_mm is swapper\n", addr); return; } } else if (is_ttbr1_addr(addr)) { /* TTBR1 */ mm = &init_mm; } else { pr_alert("[%016lx] address between user and kernel address ranges\n", addr); return; } pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, vabits_actual, mm_to_pgd_phys(mm)); pgdp = pgd_offset(mm, addr); pgd = READ_ONCE(*pgdp); pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); do { p4d_t *p4dp, p4d; pud_t *pudp, pud; pmd_t *pmdp, pmd; pte_t *ptep, pte; if (pgd_none(pgd) || pgd_bad(pgd)) break; p4dp = p4d_offset(pgdp, addr); p4d = READ_ONCE(*p4dp); pr_cont(", p4d=%016llx", p4d_val(p4d)); if (p4d_none(p4d) || p4d_bad(p4d)) break; pudp = pud_offset(p4dp, addr); pud = READ_ONCE(*pudp); pr_cont(", pud=%016llx", pud_val(pud)); if (pud_none(pud) || pud_bad(pud)) break; pmdp = pmd_offset(pudp, addr); pmd = READ_ONCE(*pmdp); pr_cont(", pmd=%016llx", pmd_val(pmd)); if (pmd_none(pmd) || pmd_bad(pmd)) break; ptep = pte_offset_map(pmdp, addr); pte = READ_ONCE(*ptep); pr_cont(", pte=%016llx", pte_val(pte)); pte_unmap(ptep); } while(0); pr_cont("\n"); } /* * This function sets the access flags (dirty, accessed), as well as write * permission, and only to a more permissive setting. * * It needs to cope with hardware update of the accessed/dirty state by other * agents in the system and can safely skip the __sync_icache_dcache() call as, * like set_pte_at(), the PTE is never changed from no-exec to exec here. * * Returns whether or not the PTE actually changed. */ int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty) { pteval_t old_pteval, pteval; pte_t pte = READ_ONCE(*ptep); if (pte_same(pte, entry)) return 0; /* only preserve the access flags and write permission */ pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; /* * Setting the flags must be done atomically to avoid racing with the * hardware update of the access/dirty state. The PTE_RDONLY bit must * be set to the most permissive (lowest value) of *ptep and entry * (calculated as: a & b == ~(~a | ~b)). */ pte_val(entry) ^= PTE_RDONLY; pteval = pte_val(pte); do { old_pteval = pteval; pteval ^= PTE_RDONLY; pteval |= pte_val(entry); pteval ^= PTE_RDONLY; pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); } while (pteval != old_pteval); /* Invalidate a stale read-only entry */ if (dirty) flush_tlb_page(vma, address); return 1; } static bool is_el1_instruction_abort(unsigned int esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; } static bool is_el1_data_abort(unsigned int esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; } static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) return false; if (fsc_type == ESR_ELx_FSC_PERM) return true; if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) return fsc_type == ESR_ELx_FSC_FAULT && (regs->pstate & PSR_PAN_BIT); return false; } static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { unsigned long flags; u64 par, dfsc; if (!is_el1_data_abort(esr) || (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) return false; local_irq_save(flags); asm volatile("at s1e1r, %0" :: "r" (addr)); isb(); par = read_sysreg_par(); local_irq_restore(flags); /* * If we now have a valid translation, treat the translation fault as * spurious. */ if (!(par & SYS_PAR_EL1_F)) return true; /* * If we got a different type of fault from the AT instruction, * treat the translation fault as spurious. */ dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; } static void die_kernel_fault(const char *msg, unsigned long addr, unsigned int esr, struct pt_regs *regs) { bust_spinlocks(1); pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, addr); kasan_non_canonical_hook(addr); mem_abort_decode(esr); show_pte(addr); die("Oops", regs, esr); bust_spinlocks(0); make_task_dead(SIGKILL); } #ifdef CONFIG_KASAN_HW_TAGS static void report_tag_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { /* * SAS bits aren't set for all faults reported in EL1, so we can't * find out access size. */ bool is_write = !!(esr & ESR_ELx_WNR); kasan_report(addr, 0, is_write, regs->pc); } #else /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ static inline void report_tag_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { } #endif static void do_tag_recovery(unsigned long addr, unsigned int esr, struct pt_regs *regs) { report_tag_fault(addr, esr, regs); /* * Disable MTE Tag Checking on the local CPU for the current EL. * It will be done lazily on the other CPUs when they will hit a * tag fault. */ sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE); isb(); } static bool is_el1_mte_sync_tag_check_fault(unsigned int esr) { unsigned int fsc = esr & ESR_ELx_FSC; if (!is_el1_data_abort(esr)) return false; if (fsc == ESR_ELx_FSC_MTE) return true; return false; } static void __do_kernel_fault(unsigned long addr, unsigned int esr, struct pt_regs *regs) { const char *msg; /* * Are we prepared to handle this kernel fault? * We are almost certainly not prepared to handle instruction faults. */ if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) return; if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) return; if (is_el1_mte_sync_tag_check_fault(esr)) { do_tag_recovery(addr, esr, regs); return; } if (is_el1_permission_fault(addr, esr, regs)) { if (esr & ESR_ELx_WNR) msg = "write to read-only memory"; else if (is_el1_instruction_abort(esr)) msg = "execute from non-executable memory"; else msg = "read from unreadable memory"; } else if (addr < PAGE_SIZE) { msg = "NULL pointer dereference"; } else { if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) return; msg = "paging request"; } die_kernel_fault(msg, addr, esr, regs); } static void set_thread_esr(unsigned long address, unsigned int esr) { current->thread.fault_address = address; /* * If the faulting address is in the kernel, we must sanitize the ESR. * From userspace's point of view, kernel-only mappings don't exist * at all, so we report them as level 0 translation faults. * (This is not quite the way that "no mapping there at all" behaves: * an alignment fault not caused by the memory type would take * precedence over translation fault for a real access to empty * space. Unfortunately we can't easily distinguish "alignment fault * not caused by memory type" from "alignment fault caused by memory * type", so we ignore this wrinkle and just return the translation * fault.) */ if (!is_ttbr0_addr(current->thread.fault_address)) { switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_DABT_LOW: /* * These bits provide only information about the * faulting instruction, which userspace knows already. * We explicitly clear bits which are architecturally * RES0 in case they are given meanings in future. * We always report the ESR as if the fault was taken * to EL1 and so ISV and the bits in ISS[23:14] are * clear. (In fact it always will be a fault to EL1.) */ esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | ESR_ELx_CM | ESR_ELx_WNR; esr |= ESR_ELx_FSC_FAULT; break; case ESR_ELx_EC_IABT_LOW: /* * Claim a level 0 translation fault. * All other bits are architecturally RES0 for faults * reported with that DFSC value, so we clear them. */ esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; esr |= ESR_ELx_FSC_FAULT; break; default: /* * This should never happen (entry.S only brings us * into this code for insn and data aborts from a lower * exception level). Fail safe by not providing an ESR * context record at all. */ WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); esr = 0; break; } } current->thread.fault_code = esr; } static void do_bad_area(unsigned long far, unsigned int esr, struct pt_regs *regs) { unsigned long addr = untagged_addr(far); /* * If we are in kernel mode at this point, we have no context to * handle this fault with. */ if (user_mode(regs)) { const struct fault_info *inf = esr_to_fault_info(esr); set_thread_esr(addr, esr); arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); } else { __do_kernel_fault(addr, esr, regs); } } #define VM_FAULT_BADMAP 0x010000 #define VM_FAULT_BADACCESS 0x020000 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int mm_flags, unsigned long vm_flags, struct pt_regs *regs) { struct vm_area_struct *vma = find_vma(mm, addr); if (unlikely(!vma)) return VM_FAULT_BADMAP; /* * Ok, we have a good vm_area for this memory access, so we can handle * it. */ if (unlikely(vma->vm_start > addr)) { if (!(vma->vm_flags & VM_GROWSDOWN)) return VM_FAULT_BADMAP; if (expand_stack(vma, addr)) return VM_FAULT_BADMAP; } /* * Check that the permissions on the VMA allow for the fault which * occurred. */ if (!(vma->vm_flags & vm_flags)) return VM_FAULT_BADACCESS; return handle_mm_fault(vma, addr, mm_flags, regs); } static bool is_el0_instruction_abort(unsigned int esr) { return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; } /* * Note: not valid for EL1 DC IVAC, but we never use that such that it * should fault. EL0 cannot issue DC IVAC (undef). */ static bool is_write_abort(unsigned int esr) { return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); } static int __kprobes do_page_fault(unsigned long far, unsigned int esr, struct pt_regs *regs) { const struct fault_info *inf; struct mm_struct *mm = current->mm; vm_fault_t fault; unsigned long vm_flags; unsigned int mm_flags = FAULT_FLAG_DEFAULT; unsigned long addr = untagged_addr(far); if (kprobe_page_fault(regs, esr)) return 0; /* * If we're in an interrupt or have no user context, we must not take * the fault. */ if (faulthandler_disabled() || !mm) goto no_context; if (user_mode(regs)) mm_flags |= FAULT_FLAG_USER; /* * vm_flags tells us what bits we must have in vma->vm_flags * for the fault to be benign, __do_page_fault() would check * vma->vm_flags & vm_flags and returns an error if the * intersection is empty */ if (is_el0_instruction_abort(esr)) { /* It was exec fault */ vm_flags = VM_EXEC; mm_flags |= FAULT_FLAG_INSTRUCTION; } else if (is_write_abort(esr)) { /* It was write fault */ vm_flags = VM_WRITE; mm_flags |= FAULT_FLAG_WRITE; } else { /* It was read fault */ vm_flags = VM_READ; /* Write implies read */ vm_flags |= VM_WRITE; /* If EPAN is absent then exec implies read */ if (!cpus_have_const_cap(ARM64_HAS_EPAN)) vm_flags |= VM_EXEC; } if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { if (is_el1_instruction_abort(esr)) die_kernel_fault("execution of user memory", addr, esr, regs); if (!search_exception_tables(regs->pc)) die_kernel_fault("access to user memory outside uaccess routines", addr, esr, regs); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); /* * As per x86, we may deadlock here. However, since the kernel only * validly references user space from well defined areas of the code, * we can bug out early if this is from code which shouldn't. */ if (!mmap_read_trylock(mm)) { if (!user_mode(regs) && !search_exception_tables(regs->pc)) goto no_context; retry: mmap_read_lock(mm); } else { /* * The above mmap_read_trylock() might have succeeded in which * case, we'll have missed the might_sleep() from down_read(). */ might_sleep(); #ifdef CONFIG_DEBUG_VM if (!user_mode(regs) && !search_exception_tables(regs->pc)) { mmap_read_unlock(mm); goto no_context; } #endif } fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs); /* Quick path to respond to signals */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) goto no_context; return 0; } if (fault & VM_FAULT_RETRY) { mm_flags |= FAULT_FLAG_TRIED; goto retry; } mmap_read_unlock(mm); /* * Handle the "normal" (no error) case first. */ if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) return 0; /* * If we are in kernel mode at this point, we have no context to * handle this fault with. */ if (!user_mode(regs)) goto no_context; if (fault & VM_FAULT_OOM) { /* * We ran out of memory, call the OOM killer, and return to * userspace (which will retry the fault, or kill us if we got * oom-killed). */ pagefault_out_of_memory(); return 0; } inf = esr_to_fault_info(esr); set_thread_esr(addr, esr); if (fault & VM_FAULT_SIGBUS) { /* * We had some memory, but were unable to successfully fix up * this page fault. */ arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { unsigned int lsb; lsb = PAGE_SHIFT; if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); } else { /* * Something tried to access memory that isn't in our memory * map. */ arm64_force_sig_fault(SIGSEGV, fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, far, inf->name); } return 0; no_context: __do_kernel_fault(addr, esr, regs); return 0; } static int __kprobes do_translation_fault(unsigned long far, unsigned int esr, struct pt_regs *regs) { unsigned long addr = untagged_addr(far); if (is_ttbr0_addr(addr)) return do_page_fault(far, esr, regs); do_bad_area(far, esr, regs); return 0; } static int do_alignment_fault(unsigned long far, unsigned int esr, struct pt_regs *regs) { do_bad_area(far, esr, regs); return 0; } static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs) { return 1; /* "fault" */ } static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs) { const struct fault_info *inf; unsigned long siaddr; inf = esr_to_fault_info(esr); if (user_mode(regs) && apei_claim_sea(regs) == 0) { /* * APEI claimed this as a firmware-first notification. * Some processing deferred to task_work before ret_to_user(). */ return 0; } if (esr & ESR_ELx_FnV) { siaddr = 0; } else { /* * The architecture specifies that the tag bits of FAR_EL1 are * UNKNOWN for synchronous external aborts. Mask them out now * so that userspace doesn't see them. */ siaddr = untagged_addr(far); } arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); return 0; } static int do_tag_check_fault(unsigned long far, unsigned int esr, struct pt_regs *regs) { /* * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN * for tag check faults. Set them to corresponding bits in the untagged * address. */ far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); do_bad_area(far, esr, regs); return 0; } static const struct fault_info fault_info[] = { { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, }; void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs) { const struct fault_info *inf = esr_to_fault_info(esr); unsigned long addr = untagged_addr(far); if (!inf->fn(far, esr, regs)) return; if (!user_mode(regs)) die_kernel_fault(inf->name, addr, esr, regs); /* * At this point we have an unrecognized fault type whose tag bits may * have been defined as UNKNOWN. Therefore we only expose the untagged * address to the signal handler. */ arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); } NOKPROBE_SYMBOL(do_mem_abort); void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) { arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, addr, esr); } NOKPROBE_SYMBOL(do_sp_pc_abort); int __init early_brk64(unsigned long addr, unsigned int esr, struct pt_regs *regs); /* * __refdata because early_brk64 is __init, but the reference to it is * clobbered at arch_initcall time. * See traps.c and debug-monitors.c:debug_traps_init(). */ static struct fault_info __refdata debug_fault_info[] = { { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, }; void __init hook_debug_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), int sig, int code, const char *name) { BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); debug_fault_info[nr].fn = fn; debug_fault_info[nr].sig = sig; debug_fault_info[nr].code = code; debug_fault_info[nr].name = name; } /* * In debug exception context, we explicitly disable preemption despite * having interrupts disabled. * This serves two purposes: it makes it much less likely that we would * accidentally schedule in exception context and it will force a warning * if we somehow manage to schedule by accident. */ static void debug_exception_enter(struct pt_regs *regs) { preempt_disable(); /* This code is a bit fragile. Test it. */ RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); } NOKPROBE_SYMBOL(debug_exception_enter); static void debug_exception_exit(struct pt_regs *regs) { preempt_enable_no_resched(); } NOKPROBE_SYMBOL(debug_exception_exit); void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr, struct pt_regs *regs) { const struct fault_info *inf = esr_to_debug_fault_info(esr); unsigned long pc = instruction_pointer(regs); debug_exception_enter(regs); if (user_mode(regs) && !is_ttbr0_addr(pc)) arm64_apply_bp_hardening(); if (inf->fn(addr_if_watchpoint, esr, regs)) { arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); } debug_exception_exit(regs); } NOKPROBE_SYMBOL(do_debug_exception); /* * Used during anonymous page fault handling. */ struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma, unsigned long vaddr) { gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; /* * If the page is mapped with PROT_MTE, initialise the tags at the * point of allocation and page zeroing as this is usually faster than * separate DC ZVA and STGM. */ if (vma->vm_flags & VM_MTE) flags |= __GFP_ZEROTAGS; return alloc_page_vma(flags, vma, vaddr); } void tag_clear_highpage(struct page *page) { mte_zero_clear_page_tags(page_address(page)); page_kasan_tag_reset(page); set_bit(PG_mte_tagged, &page->flags); }